Contents
Academic literature on the topic 'Aimants – Recyclage'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aimants – Recyclage.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aimants – Recyclage"
Poedjiastoeti, Hermin, and Benny Syahputra. "Planning for the 3R-based waste processing site in Aimas District, Sorong Regency." IOP Conference Series: Earth and Environmental Science 1098, no. 1 (October 1, 2022): 012056. http://dx.doi.org/10.1088/1755-1315/1098/1/012056.
Full textKwan, Ming, Anthony Kong, and David Liu. "Extraordinary Educative Environmental Events." Journal of Management and Sustainability 9, no. 1 (March 24, 2019): 101. http://dx.doi.org/10.5539/jms.v9n1p101.
Full textDissertations / Theses on the topic "Aimants – Recyclage"
Belfqueh, Sahar. "Développement d’un procédé éco-compatible de recyclage des terres rares issues des aimants permanents." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2022. http://theses.enscm.fr/interne/ENSCM_2022_BELFQUEH.pdf.
Full textRare earth elements (REEs) are omnipresent in high technology devices (smartphones, computers…) and are increasingly used in green technologies (wind power turbines, electric vehicles…). Due to their importance, these metals are considered critical for Europe, which has very few primary deposits. Access to these REEs can be considered through the recycling of end-of-life products, in particular through NdFeB or SmCo permanent magnets, which represent 37%, by weight, of the REEs market.In this context, this thesis studies the recycling of REEs, especially Nd, Pr and Dy from NdFeB permanent magnets, found in hard disk drives, through “eco-compatible” hydrometallurgical routes considering the use of organic acids in the leaching process as alternatives to the mineral acids, and the use of a diglycolamide (N,N,N′,N′‐Tetraoctyl diglycolamide - TODGA) as the extracting molecule as an alternative to organophosphorus compounds.Multiparametric studies were realized in order to evaluate the selective recovery of REEs from other elements present in these magnets, in particular iron.Thus, from the results obtained, two alternative methods are proposed.The first process consists in an oxidative roasting of the NdFeB magnet powder followed by two selective leaching steps that allow, after the steps of precipitation and calcination, the separation of Didymium oxide (Nd2O3. Pr2O3), dysprosium oxide (Dy2O3) and iron oxide (Fe2O3) which is non-leachable in acetic acid. The feasibility of this process has been demonstrated on synthetic mixtures of oxides having the same composition as an oxidized NdFeB magnet powder (leaching> 95%, oxide purity> 99.8%). However, the oxidative roasting conditions must be further optimized in order to reproduce the same results on the real NdFeB magnet powder.The second process starts with the complete leaching of the non-roasted NdFeB magnet powder followed by a solvent extraction step using the extracting molecule TODGA. Thereby, a two-stage solvent extraction allowed the extraction of all REEs (Nd, Pr and Dy) with excellent selectivity against other elements present in the acetic acid leachate (Fe, B, Co and Ni). The quantitative stripping of all extracted REEs was possible using an EDTA solution. In addition, a multi-stage solvent extraction, using TODGA, followed by a stripping step using water allowed the separation of Didymium and dysprosium
Maât, Nicolas. "Développement d'un procédé écologique pour le recyclage des aimants permanents Nd-Fe-B : voie hydrothermale, broyage." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMR016/document.
Full textRare earth supplying is a very current topic, linked to the rare earth crisis of 2010. « Urban mining » is a promising path for recycling rare earths included in waste daily generated by industralized countries. In this work, we focus on recycling Nd-Fe-B permanent magnets, because they are a very interesting deposit for Neodymium, but also for Dysprosium and Praseodymium. More precisely, permanent magnets included in hard disks drives have been considered. The objective of this work is to set up environmentally friendly and low cost recycling processes for rare earths. First, we investigated hydrothermal treatment of Nd-Fe-B permanent magnets, We developed a new and environmentally friendly approach for recycling Ni−Cu coated Nd-Fe−B permanent magnets included in computer hard disk drives. In a closed reactor, the coated magnets are heated at 250 °C in water mixed with sodium chloride for up to 18 h. First, the hydrothermal treatment induces the removal of the metallic coating that can be recovered by sieving. Then, the Nd-rich phase reacts with water, leading to the formation of Nd(OH)3. Atomic hydrogen is absorbed by the Nd2Fe14B phase, leading to the formation of Nd2Fe14BHx. The volume expansion of the intergranular phase, in relation to the formation of Nd(OH)3, together with the lattice expansion of the Nd2Fe14BHx phase causes the disintegration of the magnets. Finally, Nd2Fe14BHx is oxidized by water into Fe3O4 and Nd(OH)3. The Nd(OH)3 crystals can be isolated from the Fe3O4 crystals by magnetic separation. This process is thus an easy way to extract rare earths from permanent magnets found in WEEE. It uses green chemistry design principles and can be applied to large amounts of magnetic wastes. Mechanical milling of Nd-Fe-B permanent magnets has also been investigated, and, in the study presented here, the milling effect on the magnetic properties of the Nd2Fe14B intermetallic was investigated using SQUID measurements, Mössbauer spectrometry and atom probe tomography (APT). Mechanical milling of the Nd2Fe14B alloy leads to its decomposition and its nanostructuration. This transformation induces first the formation of an amorphous, disordered phase Nd-Fe-B, with an enrichment in Neodymium; then to the formation of a mixture of -Fe and Nd-rich regions. The corresponding microstructure is very characteristic, with the formation of pure iron particles, with a hundred of nanometers in size, surrounded by an amorphous shell enriched in Neodymium and in Boron. Finally, intermixing of these phases is observed. Thanks to this work, we determine the behavior and the transformations of Nd-Fe-B permanent magnets during two very different processes: hydrothermal treatment and mechanical milling. Results obtained with hydrothermal treatment are very promising for recycling rare earths at the industrial scale
Li, Ziwei. "Dimensionnement de machines électriques à flux radial facilitant le recyclage des aimants permanents : application aux véhicules hybrides ou électriques." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT021/document.
Full textNowadays it is imperative to reduce the CO2 emission of automotives due to the climate changes. One of the essential strategies is to use new energy vehicles, such as Hybrid and pure Electrical Vehicles ((H)EVs). However, no matter what the energy storage devices (H)EVs have, they always need electrical machines to transfer electrical energy into mechanical energy. Permanent Magnet (PM) electrical machines seem to be the best candidates for (H)EV applications in terms of their outstanding performances. However, the supply and cost of PMs are essential for PM machines. The strongest rare earth PM is Neodymium-Iron-Boron (Nd2Fe14B) type magnet, or simply written as NdFeB. Commonly, in order to improve the temperature stability as well as resistant demagnetization of magnets, small portion of heavy rare earth element, Dysprosium (Dy) or Terbium (Tb), is added to the alloy. However, with a high demand of high grade NdFeB magnets, the supplies of these rare earth elements, including Neodymium (Nd), face serious challenge, especially for Europe. In this case, one of the possible solutions for Europe to tackle the rare earth supply risks is to recycle rare earth magnets. Demeter -European Training Network for the Design and Recycling of Rare-Earth Permanent Magnet Motors and Generators in Hybrid and Full Electric Vehicles, is an Europe Union registered project. DEMETER envisaged three routes for the recovery of rare earth PM from these devices, which are so called direct re-use, direct recycling and indirect recycling. Valeo and G2Elab are the principal partners in this project, and they mainly focus on the route of PM direct re-use. This doctor thesis is supervised by Valeo and G2Elab, and mainly focuses on radial flux type PM electrical machines, which are the most widely used type of electrical machines nowadays. The applications include Mild Hybrid Electric Vehicles (MHEV) or small Electric Vehicles (EV). The new motor design not only needs to be recycle friendly for PMs, but also needs to meet all the strict requirements for the applications.With thorough literature studies, FEM optimization and thermal/mechanical analysis, it was found that an IPMSM design can fairly fulfill all the requirements and constraints. Then new magnet materials and assembly methods were implemented for the magnet recycling - a kind of bonded magnet was used for the IPMSM. This bonded magnet was made from a Hydrogen Decrepitation Deabsorbation Recombination (HDDR) anisotropic NdFeB magnet powder, with Sulfide (PPS) binder. It has the possibility to directly assemble the magnet into the rotor by injection molding. Thus the assembly of the magnets would not be constraint by their shapes. The disassembly of the magnets became easy as well – it is possible to heated up the rotors so that the bonded magnets can be melted down for extraction. Then they can be mixed with a certain percent of virgin magnets compound to make new bonded magnets without remarkable changes on performances. In summary, the entire recycling process is relatively easy and ecologically sustainable. Thus, based on this new concept, an IPMSM with bonded NdFeB magnets were fabricated. Series benchmark tests were carried out, for instance measurements of back-EMF, torque, efficiency, short circuit current and stator temperatures. In this thesis, apart from new design ideas of electrical machines, another goal is to evaluate e-machines with respect to the recyclability. The recyclability is quantified by two indexes, together they can be named Weighted Index of Recycling and Energy (WIRE). By using WIRE, the recyclability between different machines can be comparable, even with different dimension or performances. It was found that by using WIRE to evaluate the new designed PM machine, promising results can be obtained. The magnet reuse and recycling approach can gain environment benefit without economic losses
Upadhayay, Pranshu. "Conceptions de machines électriques à trajectoires de flux 3D pour application automobiles considerant la réutilisation et le recyclage des aimants." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT103/document.
Full textThe research work presented in this thesis aims at developing a permanent magnet based claw-pole machine for automotive application with permanent magnet reuse and recycle concept. The aforesaid research is under the aegis of Project DEMETER which is in the framework of European Union’s Horizon 2020 Marie Sklodowska-Curie actions. The project focuses on the recovery of rare earth permanent magnets utilized in automotive applications due to the prevailing problems of price fluctuations and supply-demand issues of these permanent magnets.The claw-pole machine is employed in almost all of the automobiles in the world for alternator application. With the increase in power demands, the claw-pole machine is also being developed as a motor-generator utilized in the hybrid electric vehicles. At present the permanent magnet based claw-pole machine is being used in mild hybrid electric vehicles for energy savings. The literature is replete with various configurations of claw-pole machines that can be developed to achieve better performances. However, easy assembly and disassembly of various parts of the machine is also important for the reuse and recycle of magnets. In this research work two concepts have been developed; first, the direct reuse concept i.e. easy assembly/disassembly of the rotor and magnets, so as to easily take out the magnets for direct reuse or recycle and; second, the direct recycle concept i.e. utilization of recycled magnets in the machine to achieve the desired performance.In the course of this research the base design of the claw-pole machine was developed, analyzed and optimized so as to attain best torque versus magnet-weight ratio. This helped in the reduction of magnet cost for almost the same torque. The optimization was carried out using 3-D numerical analysis. The optimized model was developed in a way that the assembly process of the magnets and claw-poles remained the same. However, during disassembly the magnets can easily be withdrawn without disassembling the complete rotor; therefore utilizing these magnets for direct reuse in other applications or sent for recycling. In the direct recycle concept, the magnets used in the machine are recycled magnets with deteriorated performance. The type of recycling process is a strong determinant of the deterioration in performance of these recycled magnets. The aim of the direct recycle concept was to analyze the machine with virgin and recycled magnets, and evaluate the energy consumption of the machine under different drive cycles. It was observed that with utilization of recycled magnets in the claw-pole machine, the energy consumption was almost same as that of the machine with virgin magnets. Thus it can be concluded that for the permanent magnet based claw-pole machine, the utilization of recycled magnets is more sustainable for the environment as it can lead to consequential limits on the mining of rare earth materials. The price fluctuations and supply-demand problems can also be reduced with the increase in utilization of recycled magnets, albeit policy and norms are effectuated.The prototype of the machine with virgin magnets have been developed and tested for performance. It has been observed that the experimental results match fairly well with the design analysis results, hence validating the design process and methodology
Jha, Amit Kumar. "Conception d'une machine à rotor externe de type Halbach pour l'électromobilité considérant la réutilisation et le recyclage des aimants permanents." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT014/document.
Full textElectric vehicles (EVs) or Hybrid electric vehicles (HEVs) offer many advantages over the conventional IC engine vehicles. According to recent trends, the demand for efficient (H)EVs is expected to grow significantly. For a high-power range, permanent magnet based motor technology has been the preferred choice for motors deployed in (H)EVs. Growing demand of highly efficient motors is in direct correlation to the demand of strong magnets (NdFeB or SmCo), which uses rare earth elements (REE). The availability and supply of REEs specially heavy REEs is very critical. Therefore, the aim of this doctoral thesis is to design an outer rotor Halbach motor for a (H)EV application with easy recycling and reuse of the magnet. Further, the project aims to investigate and propose the manufacturing of a Halbach magnet used in a high power motor EV applications.Firstly, the manufacturing of Halbach magnet using a sintered and a bonded NdFeB magnet was investigated. The study shows that the manufacturing of Halbach array using a bonded magnet is much easier and more cost effective than the sintered magnet. The characterisation of a bonded NdFeB magnet used for manufacturing a Halbach magnet was also performed. Various recycling routes for both sintered and bonded magnets were analysed and it can be inferred that bonded magnets are much easier to recycle in a cost effective and environment friendly manner. The thesis also proposes the recycling route for the bonded magnet used in the motor.Secondly, a motor with bonded Halbach magnet was designed using 2D and 3D FEM. To achieve a highly efficient and compact motor, fractional slot tooth coil winding was used. The properties of Halbach magnet was calculated using FEM model and benchmarked against the analytical model. The results obtained from the two approaches were in close agreement. Further, the impact of slot pole combinations on motor losses and the subsequent torque were investigated, specifically eddy loss (considering all the design constraints). Different strategies to use recycled magnet with lower remanence is also presented. It is shown that using a recycled magnet with increased axial length of the motor could be the best choice considering different factors, specially manufacturing of the Halbach magnet. Based on different parametric studies a design of the motor was proposed and prototype was built. It was demonstrated that a high power Halbach magnet could be built economically using a bonded NdFeB magnet. The airgap flux density of the rotor, measured on the prototype is in close agreement with the calculated values.Additionally, WIRE (Weighted Index of Recycling and Energy) methodology was presented to benchmark different motor designs on the basis of performance and recy- clability. The method developed produces two indices based on:• Ease of motor recyclability considering material, assembly and disassembly of magnets.• Impact of a recycled magnet on the energy consumption of a motor during its operational lifetime.Using both the above indices, one can easily analyse the pros and cons of different motor designs on the basis of recyclability and energy efficiency. The proposed motor design was evaluated using the developed method and it is shown that the motor is easy to assemble and disassemble. In addition, the motor assembly (glue free) enables easy magnet extraction and direct reuse. The evaluated energy index of the motor shows the impact of using a recycled magnet and its viability for EV applications in different scenarios
Bonnaud, Céline. "Vers une méthode de recyclage et de valorisation des aimants permanents à base de terres rares par électrochimie en milieux liquides ioniques." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAI039/document.
Full textRare earth elements (REE) are currently essential for new technologies development; from everyday life objects to green energies devices, they are especially used in permanent magnets. NdFeB and SmCo permanent magnets represent more than 50% of the REE market and offer a high recycling opportunity. The present study focuses on their recycling, mainly via electrochemistry in ionic liquid medium (IL), which enables to reach the reduction potentials of REE (< -2 V vs. ENH).Samarium, neodymium, dysprosium, praseodymium and cobalt were successfully electrodeposited in [C1C4Pyrr] [Tf2N] according to a potentiometric method at 25 ° C and on a glassy carbon electrode.Two general recycling methods are finally proposed and have been applied to industrial permanent magnets. The first uses only electrochemistry and is based on a first magnet electrodissolution step in the IL followed by a selective electroplating to recover the transition metals. Electrodeposition of REE could then be possible. The second method starts by an acid leaching of the magnet in order to efficiently separate the transition metals from REE via the formation of phosphate salts. Dissolution of the salts obtained in LI would then enable to electrodeposit the metal ions
Luo, Jianjun. "Development of anisotropic Nd-Fe-B powders from sintered magnets by hydrogen decrepitation/desorption process." Grenoble 1, 2009. http://www.theses.fr/2009GRE10250.
Full textThe purpose of this thesis was to study the Hydrogen Decrepitation (HD) process as a way to recycle waste scraps of Nd-Fe-B sintered magnets into highly coercitive and anisotropic powders, for the industry of bonded magnets. The process consists in a first hydrogenation, the bulk material being reduced into powder, as a result of the large volume expansion of the lattice. Then Hydrogen Desorption and annealing treatments are requested to restore the initial characteristics of the precursor (coercivity and anisotropy). Starting with sintered (NdDy)2-(FeCoNbCu)14-B magnets as a precursor, the different steps of the HD process have been studied. Differential Scanning Calorimetry (DSC) and Hydrogenation Kinetics measurements were used to investigate the hydrogen absorption and desorption characteristics. Thermal-magnetization measurement was used to investigate the effect of the residual hydrogen content on magnetic properties of the anisotropic (NdDy)-(FeCoNbCu)-B powders. The thesis focuses on the effect of the applied experimental conditions such as hydrogen decrepitation temperature, twice hydrogen decrepitation cycle, hydrogen desorption temperature, magnetic field during hydrogen desorption, annealing temperature etc. . . On magnetic properties of (NdDy)-(FeCoNbCu)-B powders. Among these factors, hydrogen absorption temperature, hydrogen desorption temperature and annealing temperature play important roles on the magnetic properties. Twice hydrogen decrepitation improves the size distribution of the powders. Hydrogen desorption under magnetic field reduces the residual hydrogen content of the anisotropic powders, resulting in raising their remanence (Br). After optimization of the successive steps of the process, anisotropic powders with good properties have been achieved: Br = 10. 29 kGs (1. 029 T), Hcj = 14. 3 kOe (1138 kA/m), (BH)max = 21. 67 MGOe (172. 5 kJ/m3). It corresponds respectively to 93%, 46% and 74% of the magnetic properties of the precursor sintered (NdDy)-(FeCoNbCu)-B permanent magnets
Adibi, Naeem. "Développement d’un indicateur d’évaluation d’impacts de la consommation des ressources : cas d'application à une extraction des matériaux versus un recyclage." Thesis, Ecole centrale de Lille, 2016. http://www.theses.fr/2016ECLI0013/document.
Full textIncrease in resource demand raises concerns over their availability. In the recent years, national and international institutions have targeted sustainable resource supply and new economy models (e.g. circular economy, etc.) as a goal of their short- and long-term strategies. In this context, different methodological approaches under Life Cycle Assessment (LCA) framework are used to address the impact of resource depletion. However, they provide partial visions, based on limited available data, and do not reflect society challenges related to the resources. The newly developed factors and the LCIA method provide a more exhaustive vision through the availability of resources and may be used in Life Cycle Assessment or circular economy approaches. This work is done in partnership with the cd2e and Team2 cluster. It is also carried out in collaboration with CYCLeco Life Cycle Assessment Experts
Mery, Mickaël. "Développement d'un procédé électrochimique pour le recyclage du néodyme à partir de déchets électroniques." Thesis, Bourgogne Franche-Comté, 2018. http://www.theses.fr/2018UBFCA026/document.
Full textNeodymium belongs to the lanthanide’s serie of the period system and is the key component of the permanent magnets Nd2Fe14B which are implemented in electronic devices and “green” technologies like wind turbines or electric cars and bicycles. Nowadays, only one percent of the neodymium in electronic scraps is recycled. Due to the geopolitical considerations and a strong increase of the use of permanent magnets, there is an impoverishment of the raw material resources leading to an instable market.Since some decades, few recycling processes have been developed on a lab scale without any upscaling to the industrial scale. The existing processes have several drawbacks like multiple steps to obtain the final desired product. This means that these methods have a long process time or use a large amount of chemical productsThe aim of this research was the development of a pyrochemical process, which could be an alternative to the existing recycling processes in order to extract neodymium from electronic scraps with less steps, a smaller amount of chemical products and a higher recovery rate of the rare neodymium. For this purpose a special reaction chamber has been created which resists to the severe experimental conditions induced by the use of high temperatures and corrosive molten salts. Moreover the electrochemical behaviour of neodymium in different chloride- and fluoride-based molten salts was studied in order to find the most appropriated setup.We could prove that the pyrochemical method could be the solution to recover neodymium from the old permanent magnets under its metallic form in just one single reaction step during an electrolysis