Academic literature on the topic 'Ag nanoparticles films'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Ag nanoparticles films.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Ag nanoparticles films"

1

Macieja, Szymon, Bartosz Środa, Beata Zielińska, Swarup Roy, Artur Bartkowiak, and Łukasz Łopusiewicz. "Bioactive Carboxymethyl Cellulose (CMC)-Based Films Modified with Melanin and Silver Nanoparticles (AgNPs)—The Effect of the Degree of CMC Substitution on the In Situ Synthesis of AgNPs and Films’ Functional Properties." International Journal of Molecular Sciences 23, no. 24 (December 8, 2022): 15560. http://dx.doi.org/10.3390/ijms232415560.

Full text
Abstract:
Green synthesis of nanoparticles for use in food packaging or biomedical applications is attracting increasing interest. In this study, the effect of the degree of substitution (0.7, 0.9 and 1.2) of a carboxymethylcellulose polymer matrix on the synthesis and properties of silver nanoparticles using melanin as a reductant was investigated. For this purpose, the mechanical, UV–Vis barrier, crystallinity, morphology, antioxidant and antimicrobial properties of the films were determined, as well as the color and changes in chemical bonds. The degree of substitution effected noticeable changes in the color of the films (the L* parameter was 2.87 ± 0.76, 5.59 ± 1.30 and 13.45 ± 1.11 for CMC 0.7 + Ag, CMC 0.9 + Ag and CMC 1.2 + Ag samples, respectively), the UV–Vis barrier properties (the transmittance at 280 nm was 4.51 ± 0.58, 7.65 ± 0.84 and 7.98 ± 0.75 for CMC 0.7 + Ag, CMC 0.9 + Ag and CMC 1.2 + Ag, respectively) or the antimicrobial properties of the films (the higher the degree of substitution, the better the antimicrobial properties of the silver nanoparticle-modified films). The differences in the properties of films with silver nanoparticles synthesized in situ might be linked to the increasing dispersion of silver nanoparticles as the degree of CMC substitution increases. Potentially, such films could be used in food packaging or biomedical applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Lian, Xinxin, Yuanjiang Lv, Haoliang Sun, David Hui, and Guangxin Wang. "Effects of Ag contents on the microstructure and SERS performance of self-grown Ag nanoparticles/Mo–Ag alloy films." Nanotechnology Reviews 9, no. 1 (August 30, 2020): 751–59. http://dx.doi.org/10.1515/ntrev-2020-0058.

Full text
Abstract:
AbstractAg nanoparticles/Mo–Ag alloy films with different Ag contents were prepared on polyimide by magnetron sputtering. The effects of Ag contents on the microstructure of self-grown Ag nanoparticles/Mo–Ag alloy films were investigated using XRD, FESEM, EDS and TEM. The Ag content plays an important role in the size and number of uniformly distributed Ag nanoparticles spontaneously formed on the Mo–Ag alloy film surface, and the morphology of the self-grown Ag nanoparticles has changed significantly. Additionally, it is worth noting that the Ag nanoparticles/Mo–Ag alloy films covered by a thin Ag film exhibits highly sensitive surface-enhanced Raman scattering (SERS) performance. The electric field distributions were calculated using finite-difference time-domain analysis to further prove that the SERS enhancement of the films is mainly determined by “hot spots” in the interparticle gap between Ag nanoparticles. The detection limit of the Ag film/Ag nanoparticles/Mo–Ag alloy film for Rhodamine 6G probe molecules was 5 × 10−14 mol/L. Therefore, the novel type of the Ag film/Ag nanoparticles/Mo–Ag alloy film can be used as an ideal SERS-active substrate for low-cost and large-scale production.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Mei-Xian, Yu Ren, Dasom Lee, and Sung-Woong Choi. "Crystallization Behavior and Electrical Properties of Nanoparticle-Reinforced Poly(lactic Acid)-Based Films." Polymers 14, no. 1 (January 2, 2022): 177. http://dx.doi.org/10.3390/polym14010177.

Full text
Abstract:
Graphene oxide (GO) and multiwalled carbon nanotubes with silver particles (MWNT-Ag) of different concentrations were used as nanofillers to prepare poly(lactic acid) (PLA) nanoparticle films through the solvent casting method. In this study, the effects of nanoparticles on the crystallization behavior, relationships between the dispersion and electrical properties, and hydrolytic degradation behaviors were investigated for the PLA/MWNT-Ag and PLA/rGO films. Differential scanning calorimetry was used to evaluate the crystallization behaviors of the PLA/MWNT-Ag and PLA/reduced GO (rGO) films. Electron probe microanalysis was performed to characterize the dispersion of MWNT-Ag, and X-ray diffraction and Raman spectroscopy were used to determine the degree of dispersion of rGO in the PLA matrix. The results showed that nanoparticles enhanced the crystallization kinetics of PLA as well as the hydrolytic degradation rate. From the measurement of electrical properties, the electrical conductivity of PLA/MWNT-Ag 1.0 wt% was much higher than that of the pure PLA and PLA/rGO films, showing that MANT and Ag nanoparticles contribute greatly to enhancing the electrical conductivity of the PLA/MWNT-Ag films.
APA, Harvard, Vancouver, ISO, and other styles
4

Photiphitak, Chanu, Pattana Rakkwamsuk, Pennapa Muthitamongkol, and Chanchana Thanachayanont. "A Combined Effect of Plasmon Energy Transfer and Recombination Barrier in a Novel TiO2/MgO/Ag Working Electrode for Dye-Sensitized Solar Cells." International Journal of Photoenergy 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/795138.

Full text
Abstract:
Novel TiO2/MgO/Ag composite electrodes were applied as working electrodes of dye-sensitized solar cells (DSSCs). The TiO2/MgO/Ag composite films were prepared by dip coating method for MgO thin films and photoreduction method for Ag nanoparticles. The MgO film thicknesses and the Ag nanoparticle sizes were in ranges of 0.08–0.46 nm and 4.4–38.6 nm, respectively. The TiO2/MgO/Ag composite films were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The TiO2/MgO/Ag composite electrodes were sensitized by immersing in a 0.3 mM of N719 dye solution and fabricated for conventional DSSCs.J-Vcharacteristics of the TiO2/MgO/Ag DSSCs showed that the MgO film thickness of 0.1 nm and the Ag nanoparticle size of 4.4 nm resulted in maximum short circuit current density and efficiency of 8.6 mA/cm2and 5.2%, respectively. Electrochemical Impedance Spectroscopy showed that such values of short circuit current density and efficiency were optimal values obtained from plasmon energy transfer by 4.4 nm Ag nanoparticles and recombination barrier by the ultrathin MgO film.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Kwang Se, Isheunesu Phiri, Sang Hern Kim, Kyeongkeun Oh, and Jang Myoun Ko. "Preparation and Electrical Properties of Silicone Composite Films Based on Silver Nanoparticle Decorated Multi-Walled Carbon Nanotubes." Materials 14, no. 4 (February 17, 2021): 948. http://dx.doi.org/10.3390/ma14040948.

Full text
Abstract:
The electrical properties of silicone composite films filled with silver (Ag) nanoparticle-decorated multi-walled carbon nanotubes (MWNT) prepared by solution processing are investigated. Pristine MWNT is oxidized and converted to the acyl chloride-functionalized MWNT using thionyl chloride, which is subsequently reacted with amine-terminated poly(dimethylsiloxane) (APDMS). Thereafter, APDMS-modified MWNT are decorated with Ag nanoparticles and then reacted with a poly(dimethylsiloxane) solution to form Ag-decorated MWNT silicone (Ag-decorated MWNT-APDMS/Silicone) composite. The morphological differences of the silicone composites containing Ag-decorated MWNT and APDMS-modified MWNT are observed by transmission electron microscopy (TEM) and the surface conductivities are measured by the four-probe method. Ag-decorated MWNT-APDMS/Silicone composite films show higher surface electrical conductivity than MWNT/silicone composite films. This shows that the electrical properties of Ag-decorated MWNT-APDMS/silicone composite films can be improved by the surface modification of MWNT with APDMS and Ag nanoparticles, thereby expanding their applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Shankar, S., L. Jaiswal, P. R. Selvakannan, K. S. Ham, and J. W. Rhim. "Gelatin-based dissolvable antibacterial films reinforced with metallic nanoparticles." RSC Advances 6, no. 71 (2016): 67340–52. http://dx.doi.org/10.1039/c6ra10620j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mohapatra, S., Y. K. Mishra, J. Ghatak, D. Kabiraj, and D. K. Avasthi. "Surface Plasmon Resonance of Ag Nanoparticles Embedded in Partially Oxidized Amorphous Si Matrix." Journal of Nanoscience and Nanotechnology 8, no. 8 (August 1, 2008): 4285–89. http://dx.doi.org/10.1166/jnn.2008.an30.

Full text
Abstract:
Nanocomposite films containing Ag nanoparticles embedded in partially oxidized amorphous Si matrix were deposited on silica glass substrates by co-sputtering of Ag and Si with 1.5 keV neutral Ar atoms. The Ag content and thickness of the nanocomposite films was determined by Rutherford backscattering spectrometry. Optical absorption studies revealed the presence of surface plasmon resonance (SPR) indicating the formation of Ag nanoparticles in the as-deposited films. The position, width and strength of SPR have been found to be strongly dependent on the Ag content of the films. For annealing in oxidizing atmosphere, a significant red shift in the SPR along with a drastic reduction in the resonant absorption has been observed. The amount of red shift has been found to be dependent on the Ag content of the films. Transmission electron microscopy was used to study the size distribution, shape and crystal structure of Ag nanoparticles in the nanocomposite films. TEM analysis of annealed sample revealed the formation of silver oxide nanoshells surrounding Ag nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
8

Puccetti, Matteo, Anna Donnadio, Maurizio Ricci, Loredana Latterini, Giulia Quaglia, Donatella Pietrella, Alessandro Di Michele, and Valeria Ambrogi. "Alginate Ag/AgCl Nanoparticles Composite Films for Wound Dressings with Antibiofilm and Antimicrobial Activities." Journal of Functional Biomaterials 14, no. 2 (February 1, 2023): 84. http://dx.doi.org/10.3390/jfb14020084.

Full text
Abstract:
Recently, silver-based nanoparticles have been proposed as components of wound dressings due to their antimicrobial activity. Unfortunately, they are cytotoxic for keratinocytes and fibroblasts, and this limits their use. Less consideration has been given to the use of AgCl nanoparticles in wound dressings. In this paper, a sustainable preparation of alginate AgCl nanoparticles composite films by simultaneous alginate gelation and AgCl nanoparticle formation in the presence of CaCl2 solution is proposed with the aim of obtaining films with antimicrobial and antibiofilm activities and low cytotoxicity. First, AgNO3 alginate films were prepared, and then, gelation and nanoparticle formation were induced by film immersion in CaCl2 solution. Films characterization revealed the presence of both AgCl and metallic silver nanoparticles, which resulted as quite homogeneously distributed, and good hydration properties. Finally, films were tested for their antimicrobial and antibiofilm activities against Staphylococcus epidermidis (ATCC 12228), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 15692), and the yeast Candida albicans. Composite films showed antibacterial and antibiofilm activities against the tested bacteria and resulted as less active towards Candida albicans. Film cytotoxicity was investigated towards human dermis fibroblasts (HuDe) and human skin keratinocytes (NCTC2544). Composite films showed low cytotoxicity, especially towards fibroblasts. Thus, the proposed sustainable approach allows to obtain composite films of Ag/AgCl alginate nanoparticles capable of preventing the onset of infections without showing high cytotoxicity for tissue cells.
APA, Harvard, Vancouver, ISO, and other styles
9

Goyal, Alisha, Jyoti Rozra, Isha Saini, Pawan K. Sharma, and Annu Sharma. "Refractive Index Tailoring of Poly(methylmethacrylate) Thin Films by Embedding Silver Nanoparticles." Advanced Materials Research 585 (November 2012): 134–38. http://dx.doi.org/10.4028/www.scientific.net/amr.585.134.

Full text
Abstract:
Nanocomposite films of Poly (methylmethacrylate) with different concentration of silver nanoparticles were prepared by ex-situ method. Firstly, silver nanoparticles were obtained by reducing the aqueous solution of silver nitrate with sodium borohydride then Ag-PMMA films were prepared by mixing colloidal solution of silver nanoparticles with solution of polymer. Thin solid films were structurally characterized using UV-VIS spectroscopy and TEM. The appearance of surface plasmon resonance peak, characteristic of silver nanoparticles at 420 nm in UV-VIS absorption spectra of Ag-PMMA films confirms the formation of Ag-PMMA nanocomposite. TEM showed Ag nanoparticles of average size 8 nm embedded in PMMA matrix. Analysis of absorption and reflection data indicates towards the reduction in optical band gap and increase in refractive index of the resulting nanocomposite. The synthesized Ag-PMMA nanocomposite has been found to be more conducting than PMMA as ascertained using I-V studies. The decrease in band gap and increase in conductivity can be correlated due to the formation of localized electronic states in PMMA matrix due to insertion of Ag nanoparticles. The PMMA thin films with dispersed silver nanoparticles may be useful for nanophotonic devices.
APA, Harvard, Vancouver, ISO, and other styles
10

Lang, Jianghua, Kazuma Takahashi, Masaru Kubo, and Manabu Shimada. "Ag-Doped TiO2 Composite Films Prepared Using Aerosol-Assisted, Plasma-Enhanced Chemical Vapor Deposition." Catalysts 12, no. 4 (March 23, 2022): 365. http://dx.doi.org/10.3390/catal12040365.

Full text
Abstract:
TiO2 is a promising photocatalyst, but its large bandgap restricts its light absorption to the ultraviolet region. The addition of noble metals can reduce the bandgap and electron-hole recombination; therefore, we prepared TiO2-Ag nanoparticle composite films by plasma-enhanced chemical vapor deposition (PECVD) using a mixture of aerosolized AgNO3, which was used as a Ag nanoparticle precursor, and titanium tetraisopropoxide, which acted as the TiO2 precursor. Notably, the use of PECVD enabled a low process temperature and eliminated the need for pre-preparing the Ag nanoparticles, thereby increasing the process efficiency. The structures and morphologies of the deposited films were characterized by ultraviolet (UV)—visible spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy, and the effects of the AgNO3 concentration on the photocatalytic activity of the deposited films were determined by assessing the degradation of methylene blue under UV light irradiation. The Ag ions were successfully reduced to metallic nanoparticles and were embedded in the TiO2 film. The best photocatalytic activity was achieved for a 1 wt% Ag-loaded TiO2 composite film, which was 1.75 times that of pristine TiO2.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Ag nanoparticles films"

1

Matsushita, Alan Fernando Yoshiaki. "PREPARAÇÃO E CARACTERIZAÇÃO DE NANOPARTÍCULAS de Ag e ZnO E INCORPORAÇÃO EM FIBRAS DE TECIDOS DE ALGODÃO." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2014. http://tede2.uepg.br/jspui/handle/prefix/2128.

Full text
Abstract:
Made available in DSpace on 2017-07-24T19:38:13Z (GMT). No. of bitstreams: 1 Alan Fernando Matsushita.pdf: 4074465 bytes, checksum: 5a6766b6dfd2ff1e7de5f241b872a175 (MD5) Previous issue date: 2014-03-07
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
The fabrics are used for various applications in our daily life, and particularly natural fabrics such as cotton are susceptible to bacterial growth due to moisture that it can accumulate which facilitates this process and also the fibers themselves may serve as nutrients for the growth of microorganisms. In this work, the synthesis of silver and zinc oxide particles was carried out for their and corporation into cotton fibers by the Layer-by-layer method. The silver nanoparticles provide high biocidal activity when incorporated into fabrics textiles and zinc oxide particles promote a block against ultraviolet radiation and also provide the self-cleaning properties for the fabric by the oxidation of compounds on its surface. Therefore the aim of this work was to promote these characteristics in a cotton fabric. The synthesis of silver nanoparticles and zinc oxide were performed using polyelectrolytes as suspension stabilizers. The syntheses were carried out using four ratios related to the metal concentration and polyelectrolyte (1, 2, 5 and 10%). For silver nanoparticles, the 3-n-propylpyridinium silsesquioxane chloride (SiPy+Cl-) was used as stabilizer obtaining nanoparticles of 5 nm in diameter and for ZnO nanoparticles it was used the poly(dialildimethylamonium chloride) PDDA, obtaining in this case particles with sizes larger than 400 nm. These nanocomposites were used to obtain a thin coating on the cotton fibers. For the construction of the films on the cotton fibers, it was used the LbL technique, where it was necessary to perform a prior chemical treatment on the fabric in order to provide an interaction between the cotton fabric surface and the polyelectrolytes. The bilayers were grown in fabrics with the use of polystyrenesulfonate (PSS) as polyanion. Characterization of the fabrics coated with Ag/SiPy+Cl- nanocomposites was performed by varying the number of bilayers. From the SEM images, it was observed the LbL coating on the fabric surface and EDS analysis enabled to estimate the amount of AgNps adsorbed on fabrics. The antibacterial tests for these fabrics showed good results for E. coli and S. aureus bacteria indicating a bactericidal and bacteriostatic character. From the color analysis and UV- Vis spectra of cotton fabrics, it was possible to estimate its homogeneity. Studies of the release of silver nanoparticles were performed by atomic absorption analysis of the washing solution up to 15 washing cycles of the fabric, indicating a high stability of the nanocomposite coating. SEM characterization of the fabrics coated with the nanocomposite ZnO/PDDA showed the growth of the bilayers as well as increase of the ZnO amount on the cotton fiber by the EDS analysis. Through TEM images observed nanoparticles with sizes between 2-10 nm. The analysis of the UV protection factor of these fabrics showed a 60% blockage of UVA and UVB radiations. Studies of photocatalytic degradation of methylene blue dye showed good results degradando totalmente o corante em 8 horas para tecidos revestidos com poucas bicamadas, which increased with the number of bilayers in the fabric. It was observed that in presence of silver nanoparticles, the degradation of the dye becomes more pronounced. The analysis of the shedding of particles of zinc oxide was also performed by atomic absorption analysis of the wash solution until 15 washing cycles. The results for this nanocomposite coated on the fabric also showed satisfactory results.
Os tecidos são utilizados para várias aplicações em nosso dia a dia, e principalmente os tecidos naturais como o algodão são suscetíveis ao crescimento bacteriano devido ao fato de acumularem umidade o que facilita esse processo, além das próprias fibras servirem como nutrientes para o crescimento de microorganismos. Neste trabalho foi realizada a síntese de nanopartículas de prata e óxido de zinco para incorporação em fibras de algodão através do método Layer-by-layer. As nanopartículas de prata conferem alta atividade biocida quando incorporada em tecidos e as nanopartículas de óxido de zinco promovem um bloqueio contra radiação ultra-violeta e também pode tornar o tecido auto limpante através da oxidação de compostos na sua superfície. Portanto o objetivo deste trabalho foi promover essas características em um tecido de algodão. A síntese das nanopartículas de prata e óxido de zinco foram realizadas utilizando-se polieletrólitos como estabilizantes da suspensão. As sínteses foram realizadas em 4 proporções (1, 2, 5 e 10%) do metal em relação a concentração do polieletrólito. Para as nanopartículas de prata utilizou-se o cloreto de 3-n-propilpiridínio silsesquioxano (SiPy+Cl-) como estabilizante obtendo-se nanopartículas de 5 nm de diâmetro enquanto que para o ZnO utilizou-se o Poli(cloreto de dialildimetilamônio) PDDA, obtendo-se neste caso nanopartículas com tamanhos maiores que 400 nm. Esses nanocompósitos foram utilizados para realizar um revestimento sobre fibras de algodão. Para isto utilizou-se a técnica LbL, onde se foi necessário realizar um tratamento químico prévio no tecido para haver uma interação entre a superfície do tecido e os polieletrólitos. As bicamadas foram crescidas no tecido com a utilização do poliestireno sulfonado (PSS) como poliânion. A caracterização dos tecidos revestidos com os nanocompósitos Ag/SiPy+Cl- foi realizada variando-se o número de bicamadas. A partir de imagens de MEV observou-se o revestimento crescido sobre a superfície do tecido e a análise de EDS foi utilizada como tentativa de estimar a quantidade de prata adsorvida nos tecidos. Através de imagens de TEM observou-se nanopartículas com tamanhos entre 2 – 10 nm. Os testes antibacterianos para estes tecidos apresentaram bons resultados para as bactérias E. coli e S. aureus indicando um caráter bactericida e bacteriostático. Também realizou-se a análise de cor através do método CieLab e espectros UV-Vis dos tecidos para estimar a sua homogeneidade. A análise de desprendimento de partículas de prata foi realizada através da análise de absorção atômica da solução de lavagem até um ciclo de 15 lavagens do tecido, resultado que indicou uma alta estabilidade do nanocompósito revestido sobre o tecido. A caracterização dos tecidos revestidos com o nanocompósito ZnO/PDDA foi realizada através das imagens de MEV, onde observou-se o crescimento das bicamadas bem como o aumento da quantidade de ZnO nos tecidos visto pela análise de EDS. A análise do fator de proteção UV destes tecidos apresentou um resultado de até 60% do bloqueio das radiações UVA e UVB. Os testes de degradação fotocatalítica do corante azul de metileno apresentaram bons resultados degradando totalmente o corante em 8 horas para tecidos revestidos com poucas bicamadas, aumentando esse efeito à medida que aumentou-se o número de bicamadas no tecido e na presença de nanopartículas de prata a degradação do corante apresentou-se mais acentuada. A análise de desprendimento de partículas de zinco também foi realizada através da análise de absorção atômica da solução de lavagem até um ciclo de 15 lavagens do tecido, o resultado para este nanocompósito revestido sobre o tecido também apresentou resultados satisfatórios.
APA, Harvard, Vancouver, ISO, and other styles
2

Pugliara, Alessandro. "Elaboration of nanocomposites based on Ag nanoparticles embedded in dielectrics for controlled bactericide properties." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30324/document.

Full text
Abstract:
Les nanoparticules (NPs) d'Ag sont très utilisées dans le secteur de la santé, dans l'industrie alimentaire et dans les produits de consommation pour leurs propriétés antimicrobiennes. Le grand rapport surface sur volume des NPs d'Ag permet une augmentation importante du relargage d'Ag comparé au matériau massif et donc une toxicité accrue vis à vis des micro-organismes sensibles à cet élément. Ce travail de thèse présente une évaluation des propriétés antimicrobiennes de petites NPs d'Ag (<20 nm) enrobées dans des matrices de silice sur la photosynthèse d'algues vertes. Deux techniques d'élaboration par voie physique ont été utilisées pour fabriquer ces nanocomposites: (i) l'implantation ionique à basse énergie et (ii) la pulvérisation d'Ag couplée avec la polymérisation plasma. Les propriétés structurales et optiques de ces nanostructures ont été étudiées par microscopie électronique à transmission, réflectivité et ellipsométrie. Cette dernière technique, couplée à un modèle basé sur l'approximation quasi-statique de type Maxwell-Garnett, a permis la détection de petites variations dans la taille et la densité des NPs d'Ag. Le relargage d'argent de ces NPs d'Ag enrobées dans des diélectriques a été mesuré par spectrométrie de masse après immersion dans de l'eau tamponnée. La toxicité à court terme de l'Ag sur la photosynthèse d'algues vertes, Chlamydomonas reinhardtii, a été évaluée par fluorométrie. L'enrobage des nanoparticules dans un diélectrique réduit leur interaction avec l'environnement, et les protège d'une oxydation rapide. La libération d'Ag bio-disponible (impactant sur la photosynthèse des algues) est contrôlée par la profondeur à laquelle se trouvent les NPs d'Ag dans la matrice hôte de silice. Cette étude permet d'envisager le design de revêtements à effet biocide contrôlé. En couplant les propriétés antimicrobiennes de ces NPs d'Ag enrobées à leur qualité d'antenne plasmonique, ces nanocomposites peuvent être utilisés pour détecter et prévenir les premières étapes de la formation de biofilms sur des surfaces. Ainsi, une dernière partie de ce travail est dédiée à l'étude de la stabilité et de l'adsorption de protéines fluorescentes Discosoma rouges recombinantes (DsRed) sur ces surfaces diélectriques avec la perspective du développement de dispositifs SERS
Silver nanoparticles (AgNPs) because of their strong biocide activity are widely used in health-care sector, food industry and various consumer products. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the biocide properties on algal photosynthesis of small (<20 nm) AgNPs embedded in silica layers. Two physical approaches were used to elaborate these nanocomposites: (i) low energy ion beam synthesis and (ii) combined silver sputtering and plasma polymerization. These techniques allow elaboration of a single layer of AgNPs embedded in silica films at defined nanometer distances (from 0 to 7 nm) beneath the free surface. The structural and optical properties of the nanocomposites were studied by transmission electron microscopy, reflectance spectroscopy and ellipsometry. This last technique, coupled to modelling based on the quasi-static approximation of the classical Maxwell-Garnett formalism, allowed detection of small variations over the size and density of the embedded AgNPs. The silver release from the nanostructures after immersion in buffered water was measured by inductively coupled plasma mass spectrometry. The short-term toxicity of Ag to the photosynthesis of green algae, Chlamydomonas reinhardtii, was assessed by fluorometry. Embedding AgNPs reduces their interactions with the buffered water, protecting the AgNPs from fast oxidation. The release of bio-available silver (impacting on the algal photosynthesis) is controlled by the depth at which AgNPs are located for the given host silica matrix. This provides a procedure to tailor the biocide effect of nanocomposites containing AgNPs. By coupling the controlled antimicrobial properties of the embedded AgNPs and their quality as plasmonic antenna, these coatings can be used to detect and prevent the first stages of biofilm formation. Hence, the last part of this work is dedicated to a study of the structural stability and adsorption properties of Discosoma recombinant red (DsRed) fluorescent proteins deposited on these dielectric surfaces with perspectives of development of SERS devices
APA, Harvard, Vancouver, ISO, and other styles
3

Jouanin, Anthony. "Extraction de la lumière par des nanoparticules métalliques enterrées dans des films minces." Phd thesis, Palaiseau, Institut d'optique théorique et appliquée, 2014. http://pastel.archives-ouvertes.fr/pastel-01061272.

Full text
Abstract:
L'essor des procédés de micro et nano-fabrications rend aujourd'hui accessible la synthèse contrôlée de nanoparticules métalliques (typiquement de 3 à 200nm) offrant de larges résonances d'absorption et de diffusion dont les fréquences peuvent être contrôlées finement en variant judicieusement leur géométrie et leur composition. Dans ce travail de thèse relevant de l'électrodynamique classique établit par Maxwell, nous étudions numériquement l'intérêt de ces particules pour la problématique du (dé)couplage de la lumière piégée dans un film mince diélectrique - une géométrie de référence permettant de rendre compte du phénomène de piégeage qui limite considérablement l'efficacité de dispositifs électroluminescents et de certaines cellules solaires. Pour ce faire, nous proposons quelques règles de conception de nanoparticules capables d'extraire efficacement la lumière piégée. Pour un émetteur seul, environ 20% de la lumière émise est rayonnée hors du guide (rad~0.2). L'ajout d'une monocouche (~50nm d'épaisseur) composée d'un ensemble de particules " optimisées " et aléatoirement positionnées autour de l'émetteur permet d'accroître cette efficacité jusqu'à 70% en moyenne statistique sur le désordre. D'intéressants effets de cohérences liés à la nature du désordre au sein de ladite couche sont également mis en évidence.
APA, Harvard, Vancouver, ISO, and other styles
4

Pal, Y. O., and I. P. Studenyak. "Optical properties of sandwich structure "(Ag[3]AsS[3])[0.6](As[2]S[3])[0.4] thin films - gold nanoparticles" prepared by pulse laser deposition." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/64948.

Full text
Abstract:
Among silver-containing chalcogenides Ag-As-S ternary system are take the remarkable place. Glasses and composites of Ag–As–S system are promising materials for creation of solid electrolytes, electrochemical sensors, electrochromic displays etc. In the recent years surface plasmon resonance has been used to enhance photostructural changes due to the laser light. Therefore, it was of a certain interest to obtain and examine such effects in the new investigated Ag-As-S thin films.
APA, Harvard, Vancouver, ISO, and other styles
5

LIMA, LEONARDO MELO DE. "SYNTHESIS OF CDTE AND AG NANOPARTICLES IN MICROFLUIDIC SYSTEMS AIMING A QUALITATIVE STUDY OF INTERACTION IN FLOW AND THE PREPARATION OF THIN FILMS OF THESE NANOMATERIALS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33714@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Materiais nanoestruturados como nanocristais semicondutores de telureto de cádmio (QDs de CdTe) e nanopartículas metálicas de prata (NPsAg) têm sido utilizados como nanosondas analíticas, explorando suas propriedades de luminescência e de ressonância de superfície plasmônica localizada (LSPR), respectivamente, sejam em dispersão coloidal ou em filmes finos. Em função das suas configurações experimentais, sistemas microfluídicos podem ser utilizados tanto para síntese de materiais nanoestruturados quanto para análise de analitos de interesses biológicos. No presente estudo, QDs-CdTe encapados com ácido tioglicólico (TGA) foram sintetizados em batelada e em regime de fluxo contínuo a partir da injeção dos precursores de cádmio e telúrio por bombas-seringas para um sistema de tubos de aço passando por fornos tubulares horizontais com controladores de temperatura (110-140 graus Celsius). Para otimizar os parâmetros experimentais foram variados a taxa de vazão volumétrica (0,15 - 0,03 mL min(-1)) e a razão molar de Cd:Te (1:0,3 - 1:1,5). Os resultados demonstraram que o efeito da razão molar na síntese de QDs apresentou ser mais significativo em comparação à variação da temperatura, obtendo QDs com FWHM de 64 – 86 nm. Filmes luminescentes poliméricos de PVA e PDMS foram desenvolvidos pelas técnicas de impregnação, mistura de QDs na matriz polimérica e por spin coating. Pela técnica de spin coating foram produzidos filmes de 58,7 nm. Filmes de QDs sobre substrato de vidro foram obtidos pelo processo de silanização da superfície do vidro. Todos os filmes apresentaram instabilidade de luminescência ao longo do tempo. Dispersões coloidais de NPsAg revestidas com ligantes orgânicos citrato e tartarato, nas razões Ag+:ligante (1:1 e 1:0,5), foram sintetizadas a partir da injeção dos ligantes e nitrato de prata por bombas-seringas em um microrreator tubular polimérico. As NPsAg-citrato e NPsAg-tartarato apresentaram cargas superficiais negativas e tamanhos médios de 12,5 nm. As bandas LSPR foram observadas para monitorar a interação entre as nanosonda de prata e os fármacos aminoglicosidico em fluxo contínuo mediante um fotômetro acoplado a uma cela de fluxo. Nas concentrações iguais ou maior que 2 × 10(-7) mol L(-1), produziu uma mudança no perfil espectral da nanosonda de NPsAg, com o decaimento do sinal no comprimento de onda 404 nm e o surgimento de uma nova banda em 480 nm, resultante da aglomeração das nanopartículas. Além disso, as NPsAg-tartarato foram depositadas sobre substrato de vidro para realização de filmes fino com objetivo de desenvolver, em parceria com a Universidade Federal de Pernambuco (UFPE), um biosensor baseado na ressonância plasmônica localizada (LSPR) para determinação do antígeno Candida albicans.
Nanostructured materials such as cadmium telluride semiconductor nanocrystals (QDs-CdTe) and silver nanoparticles (NPsAg) have been used as analytical nanoprobes, exploiting their luminescence properties and localized plasmonic surface resonance (LSPR), respectively, both in colloidal suspension or on thin solid films. Due to their experimental set-up, microfluidic systems can be used, both, for synthesis of nanostructured materials and for the analytic detection of biological and pharmaceutical compounds. In the present study, thioglycolic acid (TGA) coated QDs-CdTe were synthesized in batch and in a continuous flow regime from the injection of cadmium and tellurium precursors by syringe pumps into a steel tubes through horizontal tubular furnaces with temperature controllers (110 - 140 Celsius degrees). To optimize the experimental conditions, we modulate the volumetric flow rate (0.15 - 0.03 mL min(-1)) and the Cd:Te molar ratio (1:0.3 - 1:1.5). The results showed that the effect of the molar ratio on the synthesis of QDs was more significant compared to the temperature variation, obtaining QDs with FWHM of 64 - 86 nm. Polimeric luminescent films with PDMS e PVA were developed with impregnation, mixing QDs-TGA in PDMS and PVA and spin coating techniques. By the spin coating technique we produced luminescent film of 58.7 nm thickness. QDs-TGA film on glass substrate were obtained by means of surface silanization.All the film showed luminescence instability over time. Colloidal dispersions of NPsAg coated with the organic citrate and tartrate ligands in the Ag+/ligand ratios (1:1 and 1:0.5) were synthesized from the injection of organic ligands and silver nitrate by syringe pumps into a polymeric tubular micro-reactor. NPsAg-citrate and NPsAg-tartrate presented negative surface charges and average sizes of 12.5. The SPR band was monitored to follow the interation between the silver nanoprobe with kanamycin and neomycin drugs by means of a flow cell coupled to a photometry. At concentrations equal or greater than 2 × 10(-7) mol L(-1) the LSPR band changed its spectral profile. LSPR maximum band, centered at 404 nm, decaied and appeared a new band at 480 nm resulting from the agglomeration of the nanoparticles. Moreover, in a partnership with the Federal University of Pernambuco (UFPE), NPsAg-tartarate were deposited on glass for the realization of thin film with the object to development a biosensor based on localized plasmon resonance (LSPR) for determination of Candida albicans antigen.
APA, Harvard, Vancouver, ISO, and other styles
6

Devarajan, Supriya. "Nanostructured Assemblies Based On Metal Colloids And Monolayers: Preparation, Characterisation And Studies Towards Novel Applications." Thesis, Indian Institute of Science, 2005. http://hdl.handle.net/2005/176.

Full text
Abstract:
Nanoscience dominates virtually every field of science and technology in the 21st century. Nanoparticles are of fundamental interest since they possess unique size- dependent properties (optical, electrical, mechanical, chemical, magnetic etc.), which are quite different from the bulk and the atomic state. Bimetallic nanoparticles are of particular interest since they combine the advantages of the individual monometallic counterparts. The present study focuses on bimetallic nanoparticles containing gold as one of the constituents. Au-Pd, Au-Pt and Au-Ag bimetallic/alloy nanoparticles have been prepared by four different synthetic methods, and characterised by a variety of techniques, with an emphasis on Au-Ag alloy systems in the solution phase as well as in the form of nanostructured films on solid substrates. Au- Ag alloy nanoparticles have been used to demonstrate two different applications. The first is the use of Au-Ag monolayer protected alloy clusters in demonstrating single electron charging events in the solution phase as well as in the dry state. Single electron transfer events involving nanosized particles are being probed extensively due to their potential applications in the field of electronics. The second is an analytical application, involving the use of trisodium citrate capped Au-Ag alloy hydrosols as substrates for surface enhanced Raman and resonance Raman scattering [SE(R)RS] studies. The sols have been used for single molecule detection purposes. Various organic molecules such as quinones, phthalocyanines and methyl violet have been self- assembled in a stepwise manner on the nanoparticulate as well as bulk Au, Ag and Au-Ag surfaces, and characterised extensively by spectroscopic, electrochemical and spectroelectrochemical techniques.
APA, Harvard, Vancouver, ISO, and other styles
7

Soliveri, G. "PATTERNING AND MODULATION OF OXIDE SURFACE PROPERTIES." Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/329471.

Full text
Abstract:
Most of the topics dealt with in this thesis belong to surface science. The starting point was the fundamental understanding of phenomena at the oxide-gas interface and the effect of its modification. Such knowhow was then used to solve (or, at least, to attempt to solve) issues of critical impact in everyday life: the increasing lifetime of building materials employed in low-impact smart houses; the fouling prevention in electroanalytical sensors for neurotransmitter detection; the unspecialized laboratories accessibility to microlithography, critical to device miniaturization. These challenges might seem not related, but they actually share deep scientific and technological foundations. The physicochemical modification of oxide surfaces, the creation of organic/inorganic hybrids and the exploiting / the enhancing of semiconductor peculiar properties allowed us, starting from the foundation, the realization of proof-of-concept protocols and devices, ready for the pre-commercial development. The Leitmotif of my research was the synthesis and the modification of titanium dioxide surfaces. TiO2 has been the main character in physico, physicochemical and material science researches of the last 50 years. Biocompatibility and low cost make it engaging for many applications. Its (near-UV active) semiconductor features, well known and abundantly investigated by the scientific community, are acquiring central interest also in many markets with the development of self cleaning coatings, windows and asphalts, anti-fogging mirrors and self-sterilizing surgery rooms and instrumentations. New generation batteries and solar cells are going to be developed as commercial prototypes. One of the biggest challenges in the titania fundamental research is the enhancement of activity in the solar spectrum. First, the most recent aspects in titania doping and promotion were touched. While, in the last twenty years, great effort has been made in the mono-atomic doping of titania and in the understanding of the influence of the dopant position in the titania lattice and its electronic behavior, the most recent literature describes the co-promotion of the material by two (or more) atoms doping. The metal/non-metal codoping seems especially promising; the synergetic effect of the two atoms in the TiO2 lattice was both theoretically and experimentally proved. In this contest, the N/Nb codoping was analyzed, investigating the effect of the atoms in the lattice from morphological (surface area, porosity and crystallographic structure) and electronic point of view (EXAFS, UV-Vis absorption and EPR analyses). N/Nb codoping was compared with N/Ta co-doped samples, synthesized by two different procedures. The photoactivity of the two sample families was tested by a model reaction (the degradation of ethanol, throughout acetaldehyde intermediate) both under UV and solar simulated irradiation. Then, a different approach in the modification of surfaces was tested. The assembly of organic/inorganic hybrids was tested; thanks to the formation of organic mono- or multi-layers at the surface,they can tune the chemistry, the polarity and the adhesion properties of the interface. Siloxanes were used as active agents, thanks to their compatibility with oxide materials and, especially, for the ability to self-assemble at the surface to form a monolayer. Siloxanes are able to react with the -OH groups at the surface, chemisorbing and polymerizing at the interface in such a way to form a monolayer with tunable functionalities. Many different silanes were tested and their dipole momenta were related to their wettability properties. Such siloxanes chemisorb strongly both from the gas phase and the liquid phase. Their reactivity, both on smooth and rough surfaces, was tested vs the temperature of functionalization in gas phase. Many characterization techniques were adopted to understand the behavior of such molecules from a molecular point of view: magnetic (solid state NMR), microscopic (SEM, TEM, AFM), optical and electrochemical (CV and EIS). The science of adhesion and wettability was also adopted for the development of superhydrophobic coatings. Titanium dioxide particles with engineered morphology were used as the best candidate to create superhydrophobic/superhydrophilic patch-wise surfaces, exploiting their photoactivity (photolithograpy). The core of the thesis was the synthesis, modification and application of transparent photoactive thin films. A procedure for the synthesis of smooth, transparent and photoactive TiO2 thin layers was developed, and used to produce highly applicative devices and protocols. Such synthetic strategy is highly tunable and reproducible; the obtained films are robust and active and, most of all, require simple instrumentation (sol-gel procedure), which is highly appealing for the market. The films were properly characterized both form the morphological/mechanical and photochemical point of view. Apart their transparency and their thickness, the films were highly crystalline (pure anatase phase). Such procedure was firstly designed as a proof-of-concept for self-cleaning windows, but, thanks to its versatility and the high activity of the films, it leads the path towards highly applicative procedures and devices. The smoothness and the photoactivity brought me to the field of photolithograpy, especially in the direction of microlithography. The high activity of the titania allowed the use of safe and low-energetic lamps. No collimation was required to obtain a resolution lower than 5 µm. First of all, I tested the lithography on siloxane monolayer films, as a proof-of-concept of resolution and efficiency. But siloxanes, as many other self-assembled monolayer molecules, can be the pillars for 3D fabrication. Such monolayers were used as polymerization initiators for polymer brushes. If the initiators of polymerization are patterned, patterned polymer brushes will be obtained. That was the first report of polymer-brushes lithography exploiting the photoactivity of TiO2. Remote photocatalytic lithography makes this procedure extremely versatile. Exploiting the remote photocatalysis, in principle, any material can be used as a support for patterned polymer brushes growth (provided that the initiator are able to graft the surface). The developed protocol for the synthesis of TiO2 thin films was also used to design and engineer complex electrodes for cyclovoltammetric analyses of biological samples. Electrochemistry seems to be the best candidate for the development of an analytical option with sensitivity comparable with present analytical procedures but reduced time-per-analysis and cost. Unfortunately, catecholamines chemisorb and polymerize on metal and oxide electrodes quickly, making the device useless. Covering the electrode by a homogeneous, nano-porous thin layer of titania makes the surface photoactive. That is the first example in literature of self-cleaning nano-engineered electrodes for cyclic voltammetry. After the detection, also in simulated human serum and liquor, a fast and simple irradiation of the device, under non-hazardous UV-A lamp, degrades all the fouling on the surface without altering its features. The sensor, after each UV treatment, recovers its pristine performances, with full recovery in terms of selectivity and sensitivity. Irradiation trials were also performed directly in the analytical mixture, as a proof of concept for on-site application. Modern era requires flexible and light materials for the building industry. Polymers are acquiring more and more interest thanks to their increasing performances and their smart properties. The drawbacks of such materials are connected to the low resistance to the UV light, the softness and the difficulties in cleaning procedure. The use of organic/inorganic hybrid, or better the coverage of plastic materials with an oxidic thin layer, can solve many of these problems, lengthening the lifetime of such materials. If the covering oxide is also photoactive, the material can be self-cleaned when exposed to solar light. That is a big chemical challenge, because of many synthetic problems. Two different approaches were tested to solve this relevant issue. On one side, the hydrophobicity of ionic liquid modified SPES (sulfonated polyether sulfone) was combined with designed morphological features to confer superhydrophobicity. On the other side, the polymeric surface was covered with a transparent titania layer active in the near UV-region, able to mineralize organic molecules chemisorbed at the surface. Eventually, a different approach to modify oxidic (and not only) surfaces is the creation of a homogeneous layer of Ag nanoparticles by an innovative microwave procedure. That simple and accessible strategy allowed us to produce plasmonic surfaces (thanks to the dimension and the homogeneity of the Ag particles) with countless applications. The layer was shown to be a very active substrate for surface enhancement Raman spectroscopy (SERS). Thanks to the versatility of the synthetic method, all shapes and dimensions can be covered. That makes it a perfect candidate for the production of new generation of SERS sensors. The sensitivity towards molecules of environmental and biomedical interest was proved.
APA, Harvard, Vancouver, ISO, and other styles
8

Kitenge, Denis. "Optical detection of CO and H2 based on surface plasmon resonance with Ag-YSZ, Au and Ag-Cu nanoparticle films." Scholar Commons, 2009. http://scholarcommons.usf.edu/etd/2047.

Full text
Abstract:
Silver, gold, and copper metallic nanoparticle films have been utilized in various MEMS devices due to not only their electrical but also their optical properties. The focus of this research is to study the detection at room temperature of carbon monoxide (CO) and hydrogen (H2) via Surface Plasmon Resonance (SPR) phenomenon of silver-embedded Yttrium Stabilized Zirconium (Ag-YSZ) nanocomposite film, gold (Au) nanoparticle film, and an alloy film of silver-copper (Ag-Cu) , grown by the Pulsed Laser Deposition (PLD). To determine the appropriate film materials for quick and accurate CO and H2 detection at room temperature with the PLD technique, the growth process was done repeatedly. Optical tools such as X-Ray Diffraction, Alpha Step 200 Profilometer, Atomic Force Microscopy, and Scanning Electron Microscopy were used to characterize thin films. The gas sensing performance was studied by monitoring the SPR band peak behavior via UV/vis spectrophotometer when the films were exposed to CO and H2 and estimating the percent change in wavelength. The metallic nanoparticle films were tested for concentration of CO (100 to 1000 ppm) and H2 (1 to 10%). Silver based sensors were tested for the cross-selectivity of the gases. Overall the sensors have a detection limit of 100 ppm for CO and show a noticeable signal for H2 in the concentration range as low as 1%. The metallic films show stable sensing over a one-hour period at room temperature. The SPR change by UV/vis spectrophotometer shows a significant shift of 623 nm wavelength between 100 ppm CO gas and dry air at room temperature for the alloy films of Ag-Cu with a wider curve as compared to silver and gold films upon their exposure to CO and H2 indicating an improvement in accuracy and quick response. The results indicate that in research of CO and H2 detection at room temperature, optical gas sensors rather than metal oxide sensors are believed to be effective due to not only the absence of chemical involvement in the process but also the sensitivity improvement and accuracy, much needed characteristics of sensors when dealing with such hazardous gases.
APA, Harvard, Vancouver, ISO, and other styles
9

Kitenge, Denis. "Optical detection of CO and H₂ based on surface plasmon resonance with Ag-YSZ, Au and Ag-Cu nanoparticle films." [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Besson, Sophie Marie Catherine. "Films organisés de silice mésoporeuse : Synthèse, caractérisation structurale et utilisation pour la croissance de nanoparticules." Palaiseau, Ecole polytechnique, 2001. http://www.theses.fr/2002EPXX0012.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Ag nanoparticles films"

1

Kavetskyy, T. S., M. M. Kravtsiv, G. M. Telbiz, V. I. Nuzhdin, V. F. Valeev, and A. L. Stepanov. "Surface Plasmon Resonance Band of Ion-Synthesized Ag Nanoparticles in High Dose Ag:PMMA Nanocomposite Films." In NATO Science for Peace and Security Series B: Physics and Biophysics, 43–47. Dordrecht: Springer Netherlands, 2018. http://dx.doi.org/10.1007/978-94-024-1298-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Levchenko, Tetyana, Yuri Plyuto, and Nina Kovtyukhova. "Sol-Gel Template-Free and Template-Structured Silica Films Functionalisation with Methylene Blue Dye and Ag Nanoparticles." In Sol-Gel Methods for Materials Processing, 355–61. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8514-7_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sardana, Sanjay K., Sanjay K. Srivastava, and Vamsi K. Komarala. "Tunable Plasmonic Properties from Ag–Au Alloy Nanoparticle Thin Films." In Springer Proceedings in Physics, 415–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jung, Jung Kyu, Soo Hong Choi, Myoung Joon Jang, Jae Woo Joung, and Young Chang Joo. "Characteristic Microstructure Evolution of Polycrystalline Ag Films Prepared from Ink-Jetted Ag Nanoparticle Suspension." In Materials Science Forum, 1243–48. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.1243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yaremchuk, Iryna, A. Tamulevičiené, T. Tamulevičius, K. Šlapikas, M. Andrulevicius, and S. Tamulevičius. "Optical Properties Nanocomposite Composed of Ag Nanoparticles Embedded in a DLC Film." In NATO Science for Peace and Security Series B: Physics and Biophysics, 565–66. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9133-5_71.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Zhenguo, Fenlan Xu, Qichao Hou, Wei Yang, Woye Zhang, Lixin Mo, and Luhai Li. "Effect of Different Heat Treatment Methods on the Morphology and Electrical Conductivity of Ag Nanoparticle Films." In Lecture Notes in Electrical Engineering, 833–39. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7629-9_103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pan, Feng, Jun Ying Zhang, Hai Ying Liu, Tian Min Wang, and Wei Chang Hao. "Ag Nanoparticle Enhanced Photocatalytic Activity of Rutile TiO2 Films Prepared by Electrostatic Self-Assembly Method." In High-Performance Ceramics III, 293–96. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-959-8.293.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mohan, Jiya Ann, Bidyut Barman, Abhishek Verma, and Vinoth Kumar Jain. "Theoretical Analysis of Surface Plasmonic Ag Nanoparticles Embedded in C-, Pc-, a-Si Thin-Film Solar Cell, Using Mie Scattering." In Springer Proceedings in Physics, 293–300. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29096-6_39.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hasan Hamood Al-Masoodi, Abtisam, Boon Tong Goh, Ahmed H.H. Al-Masoodi, and Wan Haliza Binti Abd Majid. "Deposition of Silver Nanoparticles on Indium Tin Oxide Substrates by Plasma-Assisted Hot-Filament Evaporation." In Thin Films [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.94456.

Full text
Abstract:
Nanoparticles of noble metals have unique properties including large surface energies, surface plasmon excitation, quantum confinement effect, and high electron accumulation. Among these nanoparticles, silver (Ag) nanoparticles have strong responses in visible light region due to its high plasmon excitation. These unique properties depend on the size, shape, interparticle separation and surrounded medium of Ag nanoparticles. Indium tin oxide (ITO) is widely used as an electrode for flat panel devices in such as electronic, optoelectronic and sensing applications. Nowadays, Ag nanoparticles were deposited on ITO to improve their optical and electrical properties. Plasma-assisted hot-filament evaporation (PAHFE) technique produced high-density of crystalline Ag nanoparticles with controlling in the size and distribution on ITO surface. In this chapter, we will discuss about the PAHFE technique for the deposition of Ag nanoparticles on ITO and influences of the experimental parameters on the physical and optical properties, and electronic structure of the deposited Ag nanoparticles on ITO.
APA, Harvard, Vancouver, ISO, and other styles
10

De León Portilla, Paulina, Ana Lilia González Ronquillo, and Enrique Sánchez Mora. "Theoretical and Experimental Study on the Functionalization Effect on the SERS Enhancement Factor of SiO2-Ag Composite Films." In Silver Micro-Nanoparticles - Properties, Synthesis, Characterization, and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97028.

Full text
Abstract:
Herein we addressed a study to determine the enhancement factor (EF) of the Raman signal reached by composite films with two main components, Ag nanoparticles and SiO2 spheres. The study involves the synthesis, structural composition and optical response by using experimental techniques and theoretical-numerical modeling. A colloid with single NPs and agglomerates of them, with a tannic acid layer on its surface, was produced. Separately, porous SiO2 spheres were obtained. A mixture of both, Ag NPs and SiO2 particles was used to produce the films by solvent evaporation method. It is shown that single or agglomerated Ag NPs are preferentially located at the interstices of the SiO2 spheres. Using discrete dipole approximation, the SERS EF has been estimated considering the agglomeration and tannic acid layer. Both, the dielectric spheres and tannic acid layer diminish the electric field intensity and therefore the SERS EF. When a Ag NP with/without a dielectric shell is touching a SiO2 sphere, the EF is as high as 1 × 103, the zones where this value is reached are smaller when the dielectric layer is present. With a cluster of 3 nude Ag NPs surrounded by SiO2 spheres an EF of 2.4 × 103 is obtained.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Ag nanoparticles films"

1

Edwards, Matthew E., Ashok K. Batra, Ashwith K. Chilvery, Padmaja Guggilla, and Manmohan D. Aggarwal. "Characterization of polymeric composite films with MWCNT and Ag nanoparticles." In SPIE Optical Engineering + Applications, edited by Paul D. LeVan, Ashok K. Sood, Priyalal S. Wijewarnasuriya, and Arvind I. D'Souza. SPIE, 2012. http://dx.doi.org/10.1117/12.930277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Lingxiao, Xin Chen, Shan Lu, Weibo Xie, Liangke Wu, and Xiaojing Mu. "Piezoelectric PVDF Films Enhanced by Ag@SiO2 Nanoparticles for MEMS Transducer." In 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2020. http://dx.doi.org/10.1109/mems46641.2020.9056393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yokoyama, E., Y. Moriyama, H. Sakata, and M. Wakaki. "Sol-gel synthesis and characterization of Ag, Au nanoparticles in ZrO2 thin films." In Frontiers in Optics. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/fio.2007.fwi6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Xuan-Ming, Xiu-Di Xiao, Zi-Yi Cao, Yong-Jun Zhan, Hao-Liang Cheng, and Gang Xu. "Solution-Processed VO2@Ag Nanoparticles for Modification the Color of VO2 Smart Films." In 4th 2016 International Conference on Material Science and Engineering (ICMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmse-16.2016.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bai, Zongwu, Garth B. Wilks, Gyaneshwar P. Tandon, Brandon J. Yocum, and Ryan S. Justice. "Functional Silver Nanoink for Direct Write Applications." In ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/smasis2012-7922.

Full text
Abstract:
Direct write (DW) technology offers a simple method of rapid manufacturing technology for printing electronic, optoelectronic devices, and complex functional devices. The key component of DW technology is the functional inks, which are colloidal suspensions of functional nanoparticles in various solvents such as aerosol or liquid form. With a DW approach, patterns or structures can be easily deposited on flexible substrates such as paper, plastics, and composites, once the solvent volatilizes or is driven off via conventional, laser, or microwave sintering. In this work, polymer-assisted silver (Ag) nanoinks were synthesized by silver salt and polymer in the water solution at relatively high silver precursor concentrations and relatively low concentration of polymers. The silver nanoparticle dispersion and morphology was examined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The results showed that the size of Ag nanoparticles was in nanoscale (∼20 nm) with a narrow distribution of Ag nanoparticle sizes. The viscosity and thermal properties of synthesized silver nanoinks were characterized to determine their applicability and the lifetime. It has been shown that the synthesized silver nanoink can be printed on a flexible plastic substrate or glass substrate. The morphology of the Ag nanoink line printed on the substrate was observed by optical microscopy and scanning electron microscopy (SEM) to understand the relationship between the microstructure and wettability. Uniaxial tension tests of silver nanoink line on a Kapton film indicate that the ink can be stretched ∼20% without failure. The resistance of silver nanoink line printed on the Kapton films was also measured by four probe conductivity measurement system to assess the electrical performance. The resistivity is about 7.5 × 10−5 Ω-cm by thermal treatment at 250°C for 30 min, which is about half that of bulk silver (1.6 × 10−6 Ω-cm). Overall, the performance of the synthesized silver nanoink is comparable to a commercially available ink with lower Ag weight content at relatively low cost.
APA, Harvard, Vancouver, ISO, and other styles
6

NICHICK, M. N., S. A. VOROBYOVA, A. I. LESNIKOVICH, A. V. KUKHTA, and E. E. KOLESNIK. "PREPARATION AND SOME FEATURES OF COLLOIDAL DISPERSIONS AND THIN FILMS CONTAINING Ag-Au NANOPARTICLES." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Narayan, R. J. "Novel Nanostructural Biomaterial Composites." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39374.

Full text
Abstract:
Hydrogen-free diamondlike carbon (DLC), with hardness values close to that of diamond, possess many desirable biocompatible properties for a variety of biomedical applications. The DLC coatings can be applied to joints prostheses, heart valves, and other medical devices. Unfortunately, hydrogen-free DLC coatings have a large compressive stresses which result in poor adhesion and wear characteristics. In this paper, we present results on silver doping of DLC to alleviate internal stresses as well as create DLC-Ag nanocomposites where Ag is in the form of nanoparticles. The Ag nanoparticles are expected to impart antimicrobial properties by providing sources of electrons. In the second part of the paper, we have created DLC and nanotube composites where nanotubes grow normal to the surface. This novel architecture not only alleviates internal stresses, but DLC + Nanotube composites have enhanced hardness and unique antimicrobial properties. Finally, we discuss novel multilayer DLC and hydroxyapatite (HA) composite where HA and DLC films are deposited sequentially at room temperature. The HA films with composites close to that of bone is considered very desirable for biocompatibility and integration with base structures. We discuss novel processing, characterization, hardness and bioeompatible properties of all these composites in detail.
APA, Harvard, Vancouver, ISO, and other styles
8

Tamulevičius, Tomas, Domantas Peckus, Asta Tamulevičiene, Andrius Vasiliauskas, Arvydas Čiegis, Šarūnas Meškinis, and Sigitas Tamulevičius. "Dynamic optical properties of amorphous diamond-like carbon nanocomposite films doped with Cu and Ag nanoparticles." In SPIE NanoScience + Engineering, edited by Allan D. Boardman. SPIE, 2014. http://dx.doi.org/10.1117/12.2061197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sharif, Ayesha, Nazar Farid, Peter McGlynn, and Gerard M. O’Connor. "Ultrashort laser sintering of printed Ag and Au nanoparticle thin tracks on heat sensitive substrates." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.atu4c.5.

Full text
Abstract:
We propose an efficient sintering method for metal nanoparticles films on flexible heat sensitive substrate using femtosecond laser. Sheet resistance measurements and SEM micrographs reveal significant improvements in conductivity and grain size after laser sintering.
APA, Harvard, Vancouver, ISO, and other styles
10

Sato, S., E. Yokoyama, T. Noguchi, T. Shibuya, and M. Wakaki. "Optical properties of MgF2 composite films dispersed with Au or Ag nanoparticles synthesized by sol-gel method." In Frontiers in Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/fio.2013.jw3a.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography