Academic literature on the topic 'Afterpulsing effect'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Afterpulsing effect.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Afterpulsing effect"

1

Wang, Fang-Xiang, Wei Chen, Ya-Ping Li, De-Yong He, Chao Wang, Yun-Guang Han, Shuang Wang, Zhen-Qiang Yin, and Zheng-Fu Han. "Non-Markovian Property of Afterpulsing Effect in Single-Photon Avalanche Detector." Journal of Lightwave Technology 34, no. 15 (August 1, 2016): 3610–15. http://dx.doi.org/10.1109/jlt.2016.2577141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ishii, Kunihiko, and Tahei Tahara. "Correction of the afterpulsing effect in fluorescence correlation spectroscopy using time symmetry analysis." Optics Express 23, no. 25 (December 8, 2015): 32387. http://dx.doi.org/10.1364/oe.23.032387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yen, H. T., S. D. Lin, and C. M. Tsai. "A simple method to characterize the afterpulsing effect in single photon avalanche photodiode." Journal of Applied Physics 104, no. 5 (September 2008): 054504. http://dx.doi.org/10.1063/1.2968434.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yu, Chao, Tianyi Li, Xian-Song Zhao, Hai Lu, Rong Zhang, Feihu Xu, Jun Zhang, and Jian-Wei Pan. "Free-running 4H-SiC single-photon detector with ultralow afterpulse probability at 266 nm." Review of Scientific Instruments 94, no. 3 (March 1, 2023): 033101. http://dx.doi.org/10.1063/5.0137823.

Full text
Abstract:
Ultraviolet single-photon detector (UVSPD) provides a key tool for applications requiring ultraweak light detection in the wavelength band. Here, we report a 4H-SiC single-photon avalanche diode (SPAD) based free-running UVSPD with ultralow afterpulse probability. We design and fabricate the 4H-SiC SPAD with a beveled mesa structure, which exhibits the characteristic of ultralow dark current. We further develop a readout circuit of passive quenching and active reset with a tunable hold-off time setting to considerably suppress the afterpulsing effect. The nonuniformity of photon detection efficiency (PDE) across the SPAD active area with a diameter of ∼180 μm is investigated for performance optimization. The compact UVSPD is then characterized, exhibiting a typical performance of 10.3% PDE, 133 kcps dark count rate, and 0.3% afterpulse probability at 266 nm. Such performance indicates that the compact UVSPD could be used for practical ultraviolet photon-counting applications.
APA, Harvard, Vancouver, ISO, and other styles
5

Liu, Junliang, Yining Xu, Zheng Wang, Yongfu Li, Yi Gu, Zhaojun Liu, and Xian Zhao. "Reducing Afterpulsing in InGaAs(P) Single-Photon Detectors with Hybrid Quenching." Sensors 20, no. 16 (August 6, 2020): 4384. http://dx.doi.org/10.3390/s20164384.

Full text
Abstract:
High detection efficiency appears to be associated with a high afterpulse probability for InP-based single-photon avalanche diodes. In this paper, we present a new hybrid quenching technique that combines the advantages of both fast active quenching and high-frequency gated-passive quenching, with the aim of suppressing higher-order afterpulsing effects. Our results showed that the hybrid quenching method contributed to a 10% to 85% reduction of afterpulses with a gate-free detection efficiency of 4% to 10% at 1.06 μm, with 40 ns dead time, compared with the counter-based hold-off method. With the improvement of the afterpulsing performance of high-frequency gated single-photon detectors, especially at relatively high average detection efficiencies with wide gate widths, the proposed method enables their use as high-performance free-running detectors.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Chen, Jingyuan Wang, Zhiyong Xu, Jianhua Li, Rong Wang, Jiyong Zhao, and Yimei Wei. "Afterpulsing effects in SPAD-based photon-counting communication system." Optics Communications 443 (July 2019): 202–10. http://dx.doi.org/10.1016/j.optcom.2019.03.039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xudong Jiang, M. A. Itzler, R. Ben-Michael, K. Slomkowski, M. A. Krainak, S. Wu, and Xiaoli Sun. "Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes." IEEE Journal of Quantum Electronics 44, no. 1 (January 2008): 3–11. http://dx.doi.org/10.1109/jqe.2007.906996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bronzi, Danilo, Simone Tisa, Federica Villa, Simone Bellisai, Alberto Tosi, and Franco Zappa. "Fast Sensing and Quenching of CMOS SPADs for Minimal Afterpulsing Effects." IEEE Photonics Technology Letters 25, no. 8 (April 2013): 776–79. http://dx.doi.org/10.1109/lpt.2013.2251621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Enne, R., B. Steindl, M. Hofbauer, and H. Zimmermann. "Fast Cascoded Quenching Circuit for Decreasing Afterpulsing Effects in 0.35- $\mu$ m CMOS." IEEE Solid-State Circuits Letters 1, no. 3 (March 2018): 62–65. http://dx.doi.org/10.1109/lssc.2018.2827881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DSouza, Ian, Jean-Philippe Bourgoin, Brendon L. Higgins, Jin Gyu Lim, Ramy Tannous, Sascha Agne, Brian Moffat, Vadim Makarov, and Thomas Jennewein. "Repeated radiation damage and thermal annealing of avalanche photodiodes." EPJ Quantum Technology 8, no. 1 (May 17, 2021). http://dx.doi.org/10.1140/epjqt/s40507-021-00103-0.

Full text
Abstract:
AbstractAvalanche photodiodes (APDs) are well-suited for single-photon detection on quantum communication satellites as they are a mature technology with high detection efficiency without requiring cryogenic cooling. They are, however, prone to significantly increased thermal noise caused by in-orbit radiation damage. Previous work demonstrated that a one-time application of thermal annealing reduces radiation-damage-induced APD thermal noise. Here we examine the effect of cyclical proton irradiation and thermal annealing. We use an accelerated testing environment which emulates a realistic two-year operating profile of a satellite in low-Earth-orbit. We show that repeated thermal annealing is effective at maintaining thermal noise of silicon APDs within a range suitable for quantum key distribution throughout the nominal mission life, and beyond. We examine two strategies—annealing at a fixed period of time, and annealing only when the thermal noise exceeds a pre-defined limit. We find both strategies exhibit similar thermal noise at end-of-life, with a slight overall advantage to annealing conditionally. We also observe that afterpulsing probability of the detector increases with cumulative proton irradiation. This knowledge helps guide design and tasking decisions for future space-borne quantum communication applications.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Afterpulsing effect"

1

Lozza, Valentina. "Low energy low background photon counter for wisp search experiments." Doctoral thesis, Università degli studi di Trieste, 2010. http://hdl.handle.net/10077/3719.

Full text
Abstract:
2008/2009
Remarkable interest has recently arisen about the search for Weakly Inter- acting Sub-eV Particles (WISPs), such as axions, Axion Like Particles (ALPs), Minicharged and chameleon particles, all of which are not included in the Stan- dard Model. Precision experiments searching for WISPs probe energy scales as high as 10^6 TeV and are complementary to accelerator experiments, where the energy scale is a few TeV. The axion, in particular, is the oldest studied and has the strongest theoretical motivation, having its origin in Quantum Chromodynamics. It was introduced for the first time in 1973 by Peccei and Quinn to solve the strong CP problem, while later on the cosmological implications of its postulated existence also became clear: it is a good candidate for the cold dark matter, and it is necessary to fully explain the evolution of galaxies. Among the different interactions of axions, the most promising for its detection, from an experimental point of view, is the coupling to two photons (Primakoff effect). Using this coupling, several bounds on the axion mass and energy scale have been set by astrophysical observations, by laboratory experiments and by the direct observation of celestial bodies, such as the Sun. Most of these considerations, as was recently recognized, not only constrain the mass and coupling of the axion, but are more generally applicable to all ALPs. The current best limits on the coupling, over a wide range of ALP masses, come from the the CAST (Cern Axion Solar Telescope) experiment at Cern, which looks for ALPs produced in the solar core. The experiment is based on the Primakoff effect in a high magnetic field, where solar ALPs can be reconverted in photons. The CAST magnet, a 10 T, 10 m long LHC superconducting dipole, is placed on a mobile platform in order to follow the Sun twice a day, during sunrise and sunset, and has two straight bores instrumented with X-ray detectors at each end. The re- generated photon flux is, in fact, expected to be peaked at a few keV. On the other hand, there are suggestions that the problem of the anomalous temperature profile of the solar corona could be solved by a mechanism which could enhance the low energy tail of the regenerated photon spectrum. A low energy photon counter has, for this reason, been designed and built to cover one of the CAST ports, at least temporarily. Low energy, low background photon counters such as the one just mentioned, are also crucial for most experiments searching for WISPs. The low energy photon counting system initially developed to be coupled to CAST will be applicable, with proper upgrades, to other WISPs search experiments. It consists of a Galilean telescope to match the CAST magnet bore cross section to an optical fiber leading photons to the sensors, passing first through an optical switch. This last device allows one to share input photons between two different detectors, and to acquire light and background data simultaneously. The sensors at the end of this chain are a photomultiplier tube and an avalanche photodiode operated in Geiger mode. Each detector was preliminary characterized on a test bench, then it was coupled to the optical system. The final integrated setup was subsequently mounted on one of the CAST magnet bores. A set of measurements, including live sun tracking, was carried out at Cern during 2007-2008. The background ob- tained there was the same measured in the test bench measurements, around 0.4 Hz, but it is clear that to progress from these preliminary measurements a lower background sensor is needed. Different types of detectors were considered and the final choice fell on a Geiger mode avalanche photodiode (G-APD) cooled at liquid nitrogen temperature. The aim is to drastically reduce the dark count rate, al- though an increase in the afterpulsing phenomenon is expected. Since the detector is designed to be operated in a scenario where a very low rate of signal photons is predicted, the afterpulsing effect can be accepted and corrected by an increase in the detector dead time. First results show that a reduction in background of a factor better than 10^4 is obtained, with no loss in quantum e ciency. In addition, an optical system based on a semitransparent mirror (transparent to X-rays and re ective for 1-2 eV photons) has been built. This setup, covering the low energy spectrum of solar ALPs, will be installed permanently on the CAST beamline. Current work is centered on further tests on the liquid nitrogen cooled G-APD concept involving different types of sensors and different layouts of the front-end read-out electronics, with a particular attention to the quenching cir- cuit, whether active or passive. Once these detector studies are completed, the final low background sensor will be installed on the CAST experiment. It is important to note that the use of a single photon counter for low energy photons having a good enough background (<1 Hz at least) is not limited to the CAST case, but is of great importance for most WISPs experimental searches, with special regard for photon regeneration experi- ments, and, in general, for the field of precision experiments in particle physics.
Negli ultimi tempi è riemerso un notevole interesse nel campo della ricerca di particelle leggere debolmenti interagenti (Weakly Interacting Sub-eV Particles - WISPs), come ad esempio assioni, particelle con comportamenti simili agli assioni (Axion Like Particles - ALPs), particelle con carica frazionaria e particelle camaleonte; tutti tipi di particelle non inclusi nel Modello Standard. Vista la loro natura debolmente interagente, la scala di energia coinvolta è dell'ordine dei 10^6 TeV, queste particelle non sono visibili nelle collisioni realizzabili negli attuali acceleratori e possono invece essere studiate in esperimenti di precisione, che, sotto questo punto di vista, diventano complementari agli esperimenti su acceleratori. L'assione in particolare è la prima particella, da un punto di vista cronologico, ad essere stata ipotizzata, ed inoltre la sua esistenza è supportata da forti basi teoriche: la sua origine va infatti ricercata all'interno della Cromodinamica Quantistica (QCD). L'assione fu introdotto per la prima volta nel 1973 da Peccei e Quinn come soluzione del problema di violazione di CP nelle interazioni forti, mentre le sue implicazioni cosmologiche risultarono chiare solo in seguito. L'assione infatti può essere considerato un buon candidato per la materia oscura fredda e la sua introduzione è necessaria per spiegare l'evoluzione delle galassie. Tra le diverse interazione degli assioni con la materia e la radiazione, la più interessante da un punto di vista sperimentale è l'accoppiamento con due fotoni (effetto Primakoff). Usando questo tipo di accoppiamento numerosi limiti, sia sulla massa dell'assione che sulle scale di energia coinvolte, possono essere ottenuti da osservazioni astrofisiche e da esperimenti di laboratorio così come dalla diretta osservazione di oggetti celesti tipo il Sole. Queste considerazioni possono essere applicate non solo all'assione ma più in generale a tutte le ALPs. Attualmente i limiti migliori sulla costante di accoppiamento, su un largo spettro di masse di ALPs, si sono ottenuti dall'esperimento CAST (Cern Axion Solar Tele- scope) al Cern, che guarda agli ALPs prodotti nel Sole. L'esperimento è basato sull'effetto Primakoff in un campo magnetico elevato, dove gli ALPs solari sono riconvertiti in fotoni. Il magnete dell'esperimento CAST è costituito da un prototipo per un dipolo superconduttore di LHC, lungo 10 m e con un campo magnetico totale di 10 T. Il magnete è posto su di un affusto mobile per poter seguire il sole durante le fasi di alba e tramonto. Alle due estremità del magnete sono disposti quattro rivelatori sensibili nel campo degli X molli. Il picco del usso di fotoni rigenerato è infatti atteso a pochi keV. Tuttavia, ci sono suggerimenti che il prob- lema ancora aperto del profilo di temperatura della corona solare può essere risolto tramite un meccanismo che contemporaneamente incrementerebbe le code a bassa energia dell'atteso usso di fotoni rigenerati. A questo scopo un contatore di fotoni sensibile nell'intervallo del visibile è stato progettato ed assemblato per coprire una delle quattro porte del magnete di CAST, almeno temporaneamente. I contatori di fotoni studiati hanno un largo campo di applicazione e possono essere usati in altri tipi di esperimenti per la ricerca di WISPs. Il sistema inizialmente sviluppato per CAST consiste in un telescopio Galileiano per accoppiare una fibra ottica all'apertura del magnete di CAST, la fibra ottica è quindi collegata ad un interruttore ottico che permette di utilizzare due rivelatori contemporaneamente. La fibra in ingresso è infatti collegata alternativamente a due fibre in uscita, in questo modo ciascun rivelatore acquisisce per metà del tempo segnale e per metà del tempo fondo, lasciando inalterato il tempo totale di integrazione. I sensori utilizzati fino ad ora al termine della catena ottica sono un tubo fotomoltiplicatore e un avalanche photodiode operato in modalità Geiger. Ciascun rivelatore è stato preliminarmente caratterizzato su un banco di prova e quindi collegato al sistema ottico. Il sistema finale è stato quindi installato su CAST. Una serie di misure, che includono reali prese dati, sono state condotte al Cern durante il 2007-2008. La misura del fondo ottenuta a CAST è stata la stessa misurata durante i test di prova a Trieste, circa 0.4 Hz, ma risulta chiaro che il vero sviluppo futuro è basato su un sensore a fondo molto più basso. A questo scopo sono stati considerati diversi tipi di sensore e la scelta finale è ricaduta su di un avalanche photodiode operato in modalità Geiger e raffreddato all'azoto liquido. Lo scopo è quello di ridurre drasticamente i conteggi di fondo, sebbene a queste temperature sia atteso un incremento del rateo di afterpulses. Tuttavia il rivelatore è pensato per essere utilizzato in un applicazione a basso rateo e quindi il fenomeno degli afterpulses può essere ridotto agendo direttamente sul tempo morto del rivelatore, cioè aumentandolo. I primi test condotti sul rivelatore mostrano un decremento del fondo pari ad un fattore meglio di 10^4, senza rilevabili variazioni in efficienza. In aggiunta a questo sistema, per ottenere un'installazione permanente sul fascio di CAST, è stato realizzato uno specchio semitrasparente, che lascia pressocchè inalterato il fascio di raggi X e invece de ette il fascio di fotoni con energia nel visibile. Il lavoro attuale è incentrato sullo sviluppo del rivelatore a basso fondo raffreddato all'azoto liquido, includendo anche lo studio di diversi tipi di sensore e diversi tipi di elettronica di lettura, con particolare attenzione all'elettronica di quenching del circuito con le varianti attiva e passiva. Una volta terminati gli studi sui diversi tipi di rivelatori, l'apparato finale sarà installato su CAST. E' comunque importante notare che l'uso di un rivelatore a singolo fotone sensibile tra 1-2 eV con un fondo sufficientemente basso (<1 Hz almeno) non è limitato all'uso su CAST ma in tutti gli altri esperimenti per la ricerca di WISPs, con particolare riguardo agli esperimenti di rigenerazione risonante, e in generale, nel campo di applicazione degli esperimenti di precisione alla fisica delle particelle.
1982
APA, Harvard, Vancouver, ISO, and other styles
2

Tzou, Bo-Wei, and 鄒柏威. "Analysis of Afterpulsing Effect in Single Photon Avalanche Diode." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/43346478818196393716.

Full text
Abstract:
碩士
國立交通大學
電子工程學系 電子研究所
104
In this work, the afterpulsing effect in single photon avalanche diodes (SPADs) fabricated by TSMC 25HV (high voltage) CMOS process are studied. A new method for evaluating afterpulsing effect has been proposed and demonstrated. Different from conventional method requiring photon correlation measurement and short-pulsed light source, the proposed scheme is simply a measurement of dark count rate (DCR) distribution. Because the afterpulsing events correlate with their parent breakdowns, the DCR distribution deviates from the original Poisson one, which can be used to evaluate afterpulsing probability (APP). To demonstrate the validity of our method, we established a system to measure the temperature-dependent DCRs of a SPAD and analyzed their distribution. At low temperature, as the afterpulsing effect worsens, a clear non-Poisson distribution of DCRs is observed. A quantitative simulation has been performed to find out the relation between the DCR distribution and the APP. Our method is useful for evaluating APPs either in single SPADs or in circuit-integrated SPAD arrays.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Afterpulsing effect"

1

Contini, D., A. Dalla Mora, L. Di Sieno, R. Cubeddu, A. Tosi, G. Boso, and A. Pifferi. "Memory effect in gated single-photon avalanche diodes: a limiting noise contribution similar to afterpulsing." In SPIE OPTO, edited by Bernd Witzigmann, Marek Osinski, Fritz Henneberger, and Yasuhiko Arakawa. SPIE, 2013. http://dx.doi.org/10.1117/12.2005013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ben-Michael, R., M. A. Itzler, and B. Nyman. "Afterpulsing Effects in 1.5 μm Single Photon Avalanche Photodetectors." In 2006 IEEE LEOS Annual Meeting Conference. IEEE, 2006. http://dx.doi.org/10.1109/leos.2006.279001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Niclass, Cristiano, and Mineki Soga. "A miniature actively recharged single-photon detector free of afterpulsing effects with 6ns dead time in a 0.18µm CMOS technology." In 2010 IEEE International Electron Devices Meeting (IEDM). IEEE, 2010. http://dx.doi.org/10.1109/iedm.2010.5703360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography