Journal articles on the topic 'AFG3L2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'AFG3L2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Koppen, Mirko, Florian Bonn, Sarah Ehses, and Thomas Langer. "Autocatalytic Processing of m-AAA Protease Subunits in Mitochondria." Molecular Biology of the Cell 20, no. 19 (October 2009): 4216–24. http://dx.doi.org/10.1091/mbc.e09-03-0218.
Full textKoppen, Mirko, Metodi D. Metodiev, Giorgio Casari, Elena I. Rugarli, and Thomas Langer. "Variable and Tissue-Specific Subunit Composition of Mitochondrial m-AAA Protease Complexes Linked to Hereditary Spastic Paraplegia." Molecular and Cellular Biology 27, no. 2 (November 13, 2006): 758–67. http://dx.doi.org/10.1128/mcb.01470-06.
Full textCesnekova, Jana, Marie Rodinova, Hana Hansikova, Jiri Zeman, and Lukas Stiburek. "Loss of Mitochondrial AAA Proteases AFG3L2 and YME1L Impairs Mitochondrial Structure and Respiratory Chain Biogenesis." International Journal of Molecular Sciences 19, no. 12 (December 7, 2018): 3930. http://dx.doi.org/10.3390/ijms19123930.
Full textEhses, Sarah, Ines Raschke, Giuseppe Mancuso, Andrea Bernacchia, Stefan Geimer, Daniel Tondera, Jean-Claude Martinou, Benedikt Westermann, Elena I. Rugarli, and Thomas Langer. "Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1." Journal of Cell Biology 187, no. 7 (December 28, 2009): 1023–36. http://dx.doi.org/10.1083/jcb.200906084.
Full textTulli, Susanna, Andrea Del Bondio, Valentina Baderna, Davide Mazza, Franca Codazzi, Tyler Mark Pierson, Alessandro Ambrosi, et al. "Pathogenic variants in the AFG3L2 proteolytic domain cause SCA28 through haploinsufficiency and proteostatic stress-driven OMA1 activation." Journal of Medical Genetics 56, no. 8 (March 25, 2019): 499–511. http://dx.doi.org/10.1136/jmedgenet-2018-105766.
Full textDuvezin-Caubet, Stéphane, Mirko Koppen, Johannes Wagener, Michael Zick, Lars Israel, Andrea Bernacchia, Ravi Jagasia, et al. "OPA1 Processing Reconstituted in Yeast Depends on the Subunit Composition of the m-AAA Protease in Mitochondria." Molecular Biology of the Cell 18, no. 9 (September 2007): 3582–90. http://dx.doi.org/10.1091/mbc.e07-02-0164.
Full textAlmomen, MM, KA Martens, A. Hanson, L. Korngut, and G. pfeffer. "P.071 Novel mutations in SPG7 identified from patients with late-onset spasticity." Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques 45, s2 (June 2018): S35. http://dx.doi.org/10.1017/cjn.2018.173.
Full textAtorino, Luigia, Laura Silvestri, Mirko Koppen, Laura Cassina, Andrea Ballabio, Roberto Marconi, Thomas Langer, and Giorgio Casari. "Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia." Journal of Cell Biology 163, no. 4 (November 17, 2003): 777–87. http://dx.doi.org/10.1083/jcb.200304112.
Full textCharif, Majida, Arnaud Chevrollier, Naïg Gueguen, Céline Bris, David Goudenège, Valérie Desquiret-Dumas, Stéphanie Leruez, et al. "Mutations in the m-AAA proteases AFG3L2 and SPG7 are causing isolated dominant optic atrophy." Neurology Genetics 6, no. 3 (May 20, 2020): e428. http://dx.doi.org/10.1212/nxg.0000000000000428.
Full textSacco, Tiziana, Enrica Boda, Eriola Hoxha, Riccardo Pizzo, Claudia Cagnoli, Alfredo Brusco, and Filippo Tempia. "Mouse brain expression patterns of Spg7, Afg3l1, and Afg3l2 transcripts, encoding for the mitochondrial m-AAA protease." BMC Neuroscience 11, no. 1 (2010): 55. http://dx.doi.org/10.1186/1471-2202-11-55.
Full textRichter, Uwe, Kah Ying Ng, Fumi Suomi, Paula Marttinen, Taina Turunen, Christopher Jackson, Anu Suomalainen, et al. "Mitochondrial stress response triggered by defects in protein synthesis quality control." Life Science Alliance 2, no. 1 (January 25, 2019): e201800219. http://dx.doi.org/10.26508/lsa.201800219.
Full textDing, Bojian, Dwight W. Martin, Anthony J. Rampello, and Steven E. Glynn. "Dissecting Substrate Specificities of the Mitochondrial AFG3L2 Protease." Biochemistry 57, no. 28 (June 22, 2018): 4225–35. http://dx.doi.org/10.1021/acs.biochem.8b00565.
Full textBettegazzi, Barbara, Ilaria Pelizzoni, Floramarida Salerno Scarzella, Lisa Michelle Restelli, Daniele Zacchetti, Francesca Maltecca, Giorgio Casari, Fabio Grohovaz, and Franca Codazzi. "Upregulation of Peroxiredoxin 3 Protects Afg3l2-KO Cortical Neurons In Vitro from Oxidative Stress: A Paradigm for Neuronal Cell Survival under Neurodegenerative Conditions." Oxidative Medicine and Cellular Longevity 2019 (October 31, 2019): 1–13. http://dx.doi.org/10.1155/2019/4721950.
Full textAlmajan, Eva R., Ricarda Richter, Lars Paeger, Paola Martinelli, Esther Barth, Thorsten Decker, Nils-Göran Larsson, Peter Kloppenburg, Thomas Langer, and Elena I. Rugarli. "AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival." Journal of Clinical Investigation 122, no. 11 (October 8, 2012): 4048–58. http://dx.doi.org/10.1172/jci64604.
Full textMaltecca, F., A. Aghaie, D. G. Schroeder, L. Cassina, B. A. Taylor, S. J. Phillips, M. Malaguti, et al. "The Mitochondrial Protease AFG3L2 Is Essential for Axonal Development." Journal of Neuroscience 28, no. 11 (March 12, 2008): 2827–36. http://dx.doi.org/10.1523/jneurosci.4677-07.2008.
Full textSmets, K., T. Deconinck, J. Baets, A. Sieben, J. J. Martin, I. Smouts, S. Wang, et al. "Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28." Neurology 82, no. 23 (May 9, 2014): 2092–100. http://dx.doi.org/10.1212/wnl.0000000000000491.
Full textBanfi, Sandro, Maria Teresa Bassi, Grazia Andolfi, Anna Marchitiello, Stefania Zanotta, Andrea Ballabio, Giorgio Casari, and Brunella Franco. "Identification and Characterization of AFG3L2, a Novel Paraplegin-Related Gene." Genomics 59, no. 1 (July 1999): 51–58. http://dx.doi.org/10.1006/geno.1999.5818.
Full textJoerg, H., J. Muntwyler, M. L. Glowatzki-Mullis, E. Ahrens, M. Asai-Coakwell, and G. Stranzinger. "Bovine spinal muscular atrophy: AFG3L2 is not a positional candidate gene." Journal of Animal Breeding and Genetics 122, s1 (April 2005): 103–7. http://dx.doi.org/10.1111/j.1439-0388.2005.00489.x.
Full textCaporali, Leonardo, Stefania Magri, Andrea Legati, Valentina Del Dotto, Francesca Tagliavini, Francesca Balistreri, Alessia Nasca, et al. "ATPase Domain AFG3L2 Mutations Alter OPA1 Processing and Cause Optic Neuropathy." Annals of Neurology 88, no. 1 (April 21, 2020): 18–32. http://dx.doi.org/10.1002/ana.25723.
Full textChiang, Han-Lin, Jong-Ling Fuh, Yu-Shuen Tsai, Bing-Wen Soong, Yi-Chu Liao, and Yi-Chung Lee. "Expanding the phenotype of AFG3L2 mutations: Late-onset autosomal recessive spinocerebellar ataxia." Journal of the Neurological Sciences 428 (September 2021): 117600. http://dx.doi.org/10.1016/j.jns.2021.117600.
Full textDi Bella, Daniela, Federico Lazzaro, Alfredo Brusco, Massimo Plumari, Giorgio Battaglia, Annalisa Pastore, Adele Finardi, et al. "Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28." Nature Genetics 42, no. 4 (March 7, 2010): 313–21. http://dx.doi.org/10.1038/ng.544.
Full textQu, Jane, Connie K. Wu, José Rafael P. Zuzuárregui, and Anna D. Hohler. "A novel AFG3L2 mutation in a Somalian patient with spinocerebellar ataxia type 28." Journal of the Neurological Sciences 358, no. 1-2 (November 2015): 530–31. http://dx.doi.org/10.1016/j.jns.2015.10.003.
Full textSzpisjak, Laszlo, Viola L. Nemeth, Noemi Szepfalusi, Denes Zadori, Zoltan Maroti, Tibor Kalmar, Laszlo Vecsei, and Peter Klivenyi. "Neurocognitive Characterization of an SCA28 Family Caused by a Novel AFG3L2 Gene Mutation." Cerebellum 16, no. 5-6 (June 28, 2017): 979–85. http://dx.doi.org/10.1007/s12311-017-0870-9.
Full textMaltecca, F., D. De Stefani, L. Cassina, F. Consolato, M. Wasilewski, L. Scorrano, R. Rizzuto, and G. Casari. "Respiratory dysfunction by AFG3L2 deficiency causes decreased mitochondrial calcium uptake via organellar network fragmentation." Human Molecular Genetics 21, no. 17 (June 7, 2012): 3858–70. http://dx.doi.org/10.1093/hmg/dds214.
Full textEskandrani, Alaa, Amal AlHashem, El-Sayed Ali, Saad AlShahwan, Kalthoum Tlili, Khaled Hundallah, and Brahim Tabarki. "Recessive AFG3L2 Mutation Causes Progressive Microcephaly, Early Onset Seizures, Spasticity, and Basal Ganglia Involvement." Pediatric Neurology 71 (June 2017): 24–28. http://dx.doi.org/10.1016/j.pediatrneurol.2017.03.019.
Full textMusova, Zuzana, Michaela Kaiserova, Eva Kriegova, Regina Fillerova, Peter Vasovcak, Alena Santava, Katerina Mensikova, et al. "A Novel Frameshift Mutation in the AFG3L2 Gene in a Patient with Spinocerebellar Ataxia." Cerebellum 13, no. 3 (November 23, 2013): 331–37. http://dx.doi.org/10.1007/s12311-013-0538-z.
Full textRichter, Uwe, Taina Lahtinen, Paula Marttinen, Fumi Suomi, and Brendan J. Battersby. "Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness." Journal of Cell Biology 211, no. 2 (October 26, 2015): 373–89. http://dx.doi.org/10.1083/jcb.201504062.
Full textKondadi, A. K., S. Wang, S. Montagner, N. Kladt, A. Korwitz, P. Martinelli, D. Herholz, et al. "Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation." EMBO Journal 33, no. 9 (March 28, 2014): 1011–26. http://dx.doi.org/10.1002/embj.201387009.
Full textCagnoli, Claudia, Giovanni Stevanin, Alessandro Brussino, Marco Barberis, Cecilia Mancini, Russell L. Margolis, Susan E. Holmes, et al. "Missense mutations in the AFG3L2 proteolytic domain account for ∼1.5% of European autosomal dominant cerebellar ataxias." Human Mutation 31, no. 10 (September 7, 2010): 1117–24. http://dx.doi.org/10.1002/humu.21342.
Full textTsai, Chen-Wei, Yujiao Wu, Ping-Chieh Pao, Charles B. Phillips, Carole Williams, Christopher Miller, Matthew Ranaghan, and Ming-Feng Tsai. "Proteolytic control of the mitochondrial calcium uniporter complex." Proceedings of the National Academy of Sciences 114, no. 17 (April 10, 2017): 4388–93. http://dx.doi.org/10.1073/pnas.1702938114.
Full textMancini, Cecilia, Eriola Hoxha, Luisa Iommarini, Alessandro Brussino, Uwe Richter, Francesca Montarolo, Claudia Cagnoli, et al. "Mice harbouring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity." Neurobiology of Disease 124 (April 2019): 14–28. http://dx.doi.org/10.1016/j.nbd.2018.10.018.
Full textAlmontashiri, Naif A. M., Hsiao-Huei Chen, Ryan J. Mailloux, Takashi Tatsuta, Allen C. T. Teng, Ahmad B. Mahmoud, Tiffany Ho, et al. "SPG7 Variant Escapes Phosphorylation-Regulated Processing by AFG3L2, Elevates Mitochondrial ROS, and Is Associated with Multiple Clinical Phenotypes." Cell Reports 7, no. 3 (May 2014): 834–47. http://dx.doi.org/10.1016/j.celrep.2014.03.051.
Full textMaltecca, F., R. Magnoni, F. Cerri, G. A. Cox, A. Quattrini, and G. Casari. "Haploinsufficiency of AFG3L2, the Gene Responsible for Spinocerebellar Ataxia Type 28, Causes Mitochondria-Mediated Purkinje Cell Dark Degeneration." Journal of Neuroscience 29, no. 29 (July 22, 2009): 9244–54. http://dx.doi.org/10.1523/jneurosci.1532-09.2009.
Full textLöbbe, Anna Mareike, Jun-Suk Kang, Rüdiger Hilker, Holger Hackstein, Ulrich Müller, and Dagmar Nolte. "A Novel Missense Mutation in AFG3L2 Associated with Late Onset and Slow Progression of Spinocerebellar Ataxia Type 28." Journal of Molecular Neuroscience 52, no. 4 (November 29, 2013): 493–96. http://dx.doi.org/10.1007/s12031-013-0187-1.
Full textPierson, Tyler Mark, David Adams, Florian Bonn, Paola Martinelli, Praveen F. Cherukuri, Jamie K. Teer, Nancy F. Hansen, et al. "Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases." PLoS Genetics 7, no. 10 (October 13, 2011): e1002325. http://dx.doi.org/10.1371/journal.pgen.1002325.
Full textCalandra, Cristian R., Guadalupe Buda, Sebastian A. Vishnopolska, Jaen Oliveri, Federico A. Olivieri, María I. Pérez Millán, German Biagioli, Luis A. Miquelini, Alejandro L. Pellene, and Marcelo A. Marti. "Spastic ataxia with eye-of-the-tiger-like sign in 4 siblings due to novel compound heterozygous AFG3L2 mutation." Parkinsonism & Related Disorders 73 (April 2020): 52–54. http://dx.doi.org/10.1016/j.parkreldis.2020.03.020.
Full textPuchades, Cristina, Bojian Ding, Albert Song, R. Luke Wiseman, Gabriel C. Lander, and Steven E. Glynn. "Unique Structural Features of the Mitochondrial AAA+ Protease AFG3L2 Reveal the Molecular Basis for Activity in Health and Disease." Molecular Cell 75, no. 5 (September 2019): 1073–85. http://dx.doi.org/10.1016/j.molcel.2019.06.016.
Full textTunc, Sinem, Marija Dulovic-Mahlow, Hauke Baumann, Magdalena Khira Baaske, Magdalena Jahn, Johanna Junker, Alexander Münchau, Norbert Brüggemann, and Katja Lohmann. "Spinocerebellar Ataxia Type 28—Phenotypic and Molecular Characterization of a Family with Heterozygous and Compound-Heterozygous Mutations in AFG3L2." Cerebellum 18, no. 4 (May 20, 2019): 817–22. http://dx.doi.org/10.1007/s12311-019-01036-2.
Full textPareek, Gautam, and Leo J. Pallanck. "Inactivation of the mitochondrial protease Afg3l2 results in severely diminished respiratory chain activity and widespread defects in mitochondrial gene expression." PLOS Genetics 16, no. 10 (October 19, 2020): e1009118. http://dx.doi.org/10.1371/journal.pgen.1009118.
Full textMagri, Stefania, Valentina Fracasso, Massimo Plumari, Enrico Alfei, Daniele Ghezzi, Cinzia Gellera, Paola Rusmini, et al. "Concurrent AFG3L2 and SPG7 mutations associated with syndromic parkinsonism and optic atrophy with aberrant OPA1 processing and mitochondrial network fragmentation." Human Mutation 39, no. 12 (October 10, 2018): 2060–71. http://dx.doi.org/10.1002/humu.23658.
Full textSvenstrup, Kirsten, Troels Tolstrup Nielsen, Frederik Aidt, Nina Rostgaard, Morten Duno, Flemming Wibrand, Tua Vinther-Jensen, et al. "SCA28: Novel Mutation in the AFG3L2 Proteolytic Domain Causes a Mild Cerebellar Syndrome with Selective Type-1 Muscle Fiber Atrophy." Cerebellum 16, no. 1 (February 11, 2016): 62–67. http://dx.doi.org/10.1007/s12311-016-0765-1.
Full textŠkorja Milić, Nives, Klemen Dolinar, Katarina Miš, Urška Matkovič, Maruša Bizjak, Mojca Pavlin, Matej Podbregar, and Sergej Pirkmajer. "Suppression of Pyruvate Dehydrogenase Kinase by Dichloroacetate in Cancer and Skeletal Muscle Cells Is Isoform Specific and Partially Independent of HIF-1α." International Journal of Molecular Sciences 22, no. 16 (August 10, 2021): 8610. http://dx.doi.org/10.3390/ijms22168610.
Full textEdener, Ulf, Janine Wöllner, Ute Hehr, Zacharias Kohl, Stefan Schilling, Friedmar Kreuz, Peter Bauer, Veronica Bernard, Gabriele Gillessen-Kaesbach, and Christine Zühlke. "Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation." European Journal of Human Genetics 18, no. 8 (March 31, 2010): 965–68. http://dx.doi.org/10.1038/ejhg.2010.40.
Full textCanafoglia, Laura, Silvana Franceschetti, Antonio Gambardella, Pasquale Striano, Anna Teresa Giallonardo, Paolo Tinuper, Carlo Di Bonaventura, et al. "Progressive Myoclonus Epilepsies." Neurology Genetics 7, no. 6 (November 12, 2021): e641. http://dx.doi.org/10.1212/nxg.0000000000000641.
Full textBaviera-Muñoz, Raquel, Lidón Carretero-Vilarroig, Juan Francisco Vázquez-Costa, Carlos Morata-Martínez, Marina Campins-Romeu, Nuria Muelas, Isabel Sastre-Bataller, et al. "Diagnostic Efficacy of Genetic Studies in a Series of Hereditary Cerebellar Ataxias in Eastern Spain." Neurology Genetics 8, no. 6 (November 14, 2022): e200038. http://dx.doi.org/10.1212/nxg.0000000000200038.
Full textlv, Yue, Chun-hui Yuan, Lu-yao Han, Gao-ru Huang, Ling-ce Ju, Ling-hui Chen, Hai-ying Han, Chong Zhang, and Ling-hui Zeng. "The Overexpression of SLC25A13 Predicts Poor Prognosis and Is Correlated with Immune Cell Infiltration in Patients with Skin Cutaneous Melanoma." Disease Markers 2022 (May 14, 2022): 1–15. http://dx.doi.org/10.1155/2022/4091978.
Full textNewton, J. L., R. A. Kenny, R. Frearson, and R. M. Francis. "A prospective evaluation of bone mineral density measurement in females who have fallen." Age and Ageing 32, no. 5 (September 1, 2003): 497–502. http://dx.doi.org/10.1093/ageing/afg062.
Full textHwang, H. F., W. M. Liang, Y. N. Chiu, and M. R. Lin. "Suitability of the WHOQOL-BREF for community-dwelling older people in Taiwan." Age and Ageing 32, no. 6 (November 1, 2003): 593–600. http://dx.doi.org/10.1093/ageing/afg102.
Full textStarr, J. M., H. Martin, J. McCoubrey, G. Gibson, and I. R. Poxton. "Risk factors for Clostridium difficile colonisation and toxin production." Age and Ageing 32, no. 6 (November 1, 2003): 657–60. http://dx.doi.org/10.1093/ageing/afg112.
Full textConroy, Simon, Sophie Moulias, and Wassif S. Wassif. "Primary hyperparathyroidism in the older person." Age and Ageing 32, no. 6 (November 2003): 571–78. http://dx.doi.org/10.1093/ageing/afg122.
Full text