Journal articles on the topic 'Affinity sensor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Affinity sensor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Qian, Xiang, Xiaowei Niu, and Karl L. Magleby. "Intra- and Intersubunit Cooperativity in Activation of BK Channels by Ca2+." Journal of General Physiology 128, no. 4 (2006): 389–404. http://dx.doi.org/10.1085/jgp.200609486.
Full textTlili, Chaker, Sushmee Badhulika, Thien-Toan Tran, Ilkeun Lee, and Ashok Mulchandani. "Affinity chemiresistor sensor for sugars." Talanta 128 (October 2014): 473–79. http://dx.doi.org/10.1016/j.talanta.2014.05.055.
Full textGlad, Cristina, Karin Sjödin, and Bo Mattiasson. "Streaming potential—a general affinity sensor." Biosensors 2, no. 2 (1986): 89–100. http://dx.doi.org/10.1016/0265-928x(86)80012-8.
Full textHuang, Xian, Charles Leduc, Yann Ravussin, et al. "A differential dielectric affinity glucose sensor." Lab Chip 14, no. 2 (2014): 294–301. http://dx.doi.org/10.1039/c3lc51026c.
Full textLabouesse, Marie A., Reto B. Cola, and Tommaso Patriarchi. "GPCR-Based Dopamine Sensors—A Detailed Guide to Inform Sensor Choice for In Vivo Imaging." International Journal of Molecular Sciences 21, no. 21 (2020): 8048. http://dx.doi.org/10.3390/ijms21218048.
Full textEfremenko, Yulia, and Vladimir M. Mirsky. "Electrical Control of the Receptor Affinity." Engineering Proceedings 6, no. 1 (2021): 3. http://dx.doi.org/10.3390/i3s2021dresden-10084.
Full textYin, Ruixue, Jizhong Xin, Dasheng Yang, et al. "High-Linearity Hydrogel-Based Capacitive Sensor Based on Con A–Sugar Affinity and Low-Melting-Point Metal." Polymers 14, no. 20 (2022): 4302. http://dx.doi.org/10.3390/polym14204302.
Full textRamanavicius, Simonas, Arunas Jagminas, and Arunas Ramanavicius. "Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review)." Polymers 13, no. 6 (2021): 974. http://dx.doi.org/10.3390/polym13060974.
Full textTuccitto, Nunzio, Luca Spitaleri, Giovanni Li Destri, Andrea Pappalardo, Antonino Gulino, and Giuseppe Trusso Sfrazzetto. "Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles." Molecules 25, no. 23 (2020): 5731. http://dx.doi.org/10.3390/molecules25235731.
Full textBrown, Victoria, Jessica A. Sexton, and Mark Johnston. "A Glucose Sensor in Candida albicans." Eukaryotic Cell 5, no. 10 (2006): 1726–37. http://dx.doi.org/10.1128/ec.00186-06.
Full textShahrezaei, Vahid, and Kerry R. Delaney. "Brevity of the Ca2+ Microdomain and Active Zone Geometry Prevent Ca2+-Sensor Saturation for Neurotransmitter Release." Journal of Neurophysiology 94, no. 3 (2005): 1912–19. http://dx.doi.org/10.1152/jn.00256.2005.
Full textTrull, Keelan J., Piper Miller, Kiet Tat, S. Ashley Varney, Jason M. Conley, and Mathew Tantama. "Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP." Sensors 19, no. 15 (2019): 3253. http://dx.doi.org/10.3390/s19153253.
Full textSchuderer, J., A. Akkoyun, A. Brandenburg, U. Bilitewski, and E. Wagner. "Development of a Multichannel Fluorescence Affinity Sensor System." Analytical Chemistry 72, no. 16 (2000): 3942–48. http://dx.doi.org/10.1021/ac000222f.
Full textFalter, J., R. Medina, and H. L. Schmidt. "Concepts of artifical affinity systems for sensor development." Sensors and Actuators B: Chemical 19, no. 1-3 (1994): 694–97. http://dx.doi.org/10.1016/0925-4005(93)01132-n.
Full textXia, Haiyang, Song Zha, Jijun Huang, and Jibin Liu. "Radio environment map construction by adaptive ordinary Kriging algorithm based on affinity propagation clustering." International Journal of Distributed Sensor Networks 16, no. 5 (2020): 155014772092248. http://dx.doi.org/10.1177/1550147720922484.
Full textBradberry, Mazdak M., Huan Bao, Xiaochu Lou та Edwin R. Chapman. "Phosphatidylinositol 4,5-bisphosphate drives Ca2+-independent membrane penetration by the tandem C2 domain proteins synaptotagmin-1 and Doc2β". Journal of Biological Chemistry 294, № 28 (2019): 10942–53. http://dx.doi.org/10.1074/jbc.ra119.007929.
Full textTay, Li-Lin, Shawn Poirier, Ali Ghaemi, and John Hulse. "Inkjet-printed paper-based surface enhanced Raman scattering (SERS) sensors for the detection of narcotics." MRS Advances 7, no. 9 (2022): 190–96. http://dx.doi.org/10.1557/s43580-022-00257-8.
Full textYang, Wen, Jing Yu, Xiangtai Xi, et al. "Preparation of Graphene/ITO Nanorod Metamaterial/U-Bent-Annealing Fiber Sensor and DNA Biomolecule Detection." Nanomaterials 9, no. 8 (2019): 1154. http://dx.doi.org/10.3390/nano9081154.
Full textThompson, Channing C., and Rebecca Y. Lai. "Threonine Phosphorylation of an Electrochemical Peptide-Based Sensor to Achieve Improved Uranyl Ion Binding Affinity." Biosensors 12, no. 11 (2022): 961. http://dx.doi.org/10.3390/bios12110961.
Full textHilton, John P., Thai Huu Nguyen, Renjun Pei, Milan Stojanovic, and Qiao Lin. "A microfluidic affinity sensor for the detection of cocaine." Sensors and Actuators A: Physical 166, no. 2 (2011): 241–46. http://dx.doi.org/10.1016/j.sna.2009.12.006.
Full textWannapob, Rodtichoti, Proespichaya Kanatharana, Warakorn Limbut, et al. "Affinity sensor using 3-aminophenylboronic acid for bacteria detection." Biosensors and Bioelectronics 26, no. 2 (2010): 357–64. http://dx.doi.org/10.1016/j.bios.2010.08.005.
Full textSchlatter, D., R. Barner, Ch Fattinger, et al. "The difference interferometer: application as a direct affinity sensor." Biosensors and Bioelectronics 8, no. 2 (1993): 109–16. http://dx.doi.org/10.1016/0956-5663(93)80059-x.
Full textLiebscher, Thilo, Franziska Glös, Andrea Böhme, et al. "Affinity Viscosimetry Sensor for Enzyme Free Detection of Glucose in a Micro-Bioreaction Chamber." Materials Science Forum 879 (November 2016): 1135–40. http://dx.doi.org/10.4028/www.scientific.net/msf.879.1135.
Full textLIEBERZEIT, PETER A., ABDUL REHMAN, SADAF YAQUB, and FRANZ L. DICKERT. "NANOSTRUCTURED PARTICLES AND LAYERS FOR SENSING CONTAMINANTS IN AIR AND WATER." Nano 03, no. 04 (2008): 205–8. http://dx.doi.org/10.1142/s1793292008001015.
Full textChang, Albert, Hsin-Yi Li, I.-Nan Chang, and Yen-Ho Chu. "Affinity Ionic Liquids for Chemoselective Gas Sensing." Molecules 23, no. 9 (2018): 2380. http://dx.doi.org/10.3390/molecules23092380.
Full textBian, Zhancun, Guiqian Fang, Ran Wang, Dongxue Zhan, Qingqiang Yao, and Zhongyu Wu. "A water-soluble boronic acid sensor for caffeic acid based on double sites recognition." RSC Advances 10, no. 47 (2020): 28148–56. http://dx.doi.org/10.1039/d0ra00980f.
Full textBajaj, Aabha, Jakob Trimpert, Ibrahim Abdulhalim, and Zeynep Altintas. "Synthesis of Molecularly Imprinted Polymer Nanoparticles for SARS-CoV-2 Virus Detection Using Surface Plasmon Resonance." Chemosensors 10, no. 11 (2022): 459. http://dx.doi.org/10.3390/chemosensors10110459.
Full textChen, Ren-Shiang, Yanyan Geng, and Karl L. Magleby. "Mg2+ binding to open and closed states can activate BK channels provided that the voltage sensors are elevated." Journal of General Physiology 138, no. 6 (2011): 593–607. http://dx.doi.org/10.1085/jgp.201110707.
Full textZaree, Pouya, Ilhan Tomris, Sander D. de Vos, et al. "Facile electrochemical affinity measurements of small and large molecules." RSC Advances 13, no. 14 (2023): 9756–60. http://dx.doi.org/10.1039/d3ra01029e.
Full textDi Bartolo, Ary Lautaro, and Diego Masone. "Synaptotagmin-1 C2B domains cooperatively stabilize the fusion stalk via a master-servant mechanism." Chemical Science 13, no. 12 (2022): 3437–46. http://dx.doi.org/10.1039/d1sc06711g.
Full textQin, Yanru, Jingfan Xie, Shuting Li, et al. "A boronate affinity MIP-based resonance light scattering sensor for sensitive detection of glycoproteins." Analytical Methods 10, no. 42 (2018): 5112–17. http://dx.doi.org/10.1039/c8ay01053f.
Full textLiu, Chin-Wei, Chi-Chang Lin, Li-Chia Chen, Shih-Kang Fan, and Hsien-Chang Chang. "AN AFFINITY SENSOR IMPROVED BY EWOD ACTUATOR-BASED MICROFLUIDIC CHIP." Biomedical Engineering: Applications, Basis and Communications 21, no. 06 (2009): 461–65. http://dx.doi.org/10.4015/s1016237209001659.
Full textZhang, Ke, Guang Zhang, Xiuwu Yu, Shaohua Hu, and Moxiao Li. "Clustering the sensor networks based on energy-aware affinity propagation." Computer Networks 207 (April 2022): 108853. http://dx.doi.org/10.1016/j.comnet.2022.108853.
Full textSchultz, Jerome S. "Thirty-Fifth Anniversary of the Optical Affinity Sensor for Glucose." Journal of Diabetes Science and Technology 9, no. 1 (2014): 153–55. http://dx.doi.org/10.1177/1932296814552477.
Full textMinunni, Maria, Petr Skládal, and Marco Mascini. "A Piezoelectric Quartz Crystal Biosensor as a Direct Affinity Sensor." Analytical Letters 27, no. 8 (1994): 1475–87. http://dx.doi.org/10.1080/00032719408006383.
Full textMarvin, Jonathan S., Benjamin Scholl, Daniel E. Wilson, et al. "Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR." Nature Methods 15, no. 11 (2018): 936–39. http://dx.doi.org/10.1038/s41592-018-0171-3.
Full textCaldwell, Stuart T., Andrew G. Cairns, Marnie Olson, et al. "Synthesis of an azido-tagged low affinity ratiometric calcium sensor." Tetrahedron 71, no. 51 (2015): 9571–78. http://dx.doi.org/10.1016/j.tet.2015.10.052.
Full textBetty, C. A., R. Lal, D. K. Sharma, J. V. Yakhmi, and J. P. Mittal. "Macroporous silicon based capacitive affinity sensor—fabrication and electrochemical studies." Sensors and Actuators B: Chemical 97, no. 2-3 (2004): 334–43. http://dx.doi.org/10.1016/j.snb.2003.09.008.
Full textXian Huang, Siqi Li, J. Schultz, Qian Wang, and Qiao Lin. "A Capacitive MEMS Viscometric Sensor for Affinity Detection of Glucose." Journal of Microelectromechanical Systems 18, no. 6 (2009): 1246–54. http://dx.doi.org/10.1109/jmems.2009.2034869.
Full textYan, Xinhao, Jin Ju Kim, Hye Sun Jeong, et al. "Low-Affinity Zinc Sensor Showing Fluorescence Responses with Minimal Artifacts." Inorganic Chemistry 56, no. 8 (2017): 4332–46. http://dx.doi.org/10.1021/acs.inorgchem.6b02786.
Full textDiem, Peter, Lucas Kalt, Ulrich Haueter, et al. "Clinical Performance of a Continuous Viscometric Affinity Sensor for Glucose." Diabetes Technology & Therapeutics 6, no. 6 (2004): 790–99. http://dx.doi.org/10.1089/dia.2004.6.790.
Full textBeyer, U., D. Schäfer, A. Thomas, et al. "Recording of subcutaneous glucose dynamics by a viscometric affinity sensor." Diabetologia 44, no. 4 (2001): 416–23. http://dx.doi.org/10.1007/s001250051637.
Full textLenain, Pieterjan, Sarah De Saeger, Bo Mattiasson, and Martin Hedström. "Affinity sensor based on immobilized molecular imprinted synthetic recognition elements." Biosensors and Bioelectronics 69 (July 2015): 34–39. http://dx.doi.org/10.1016/j.bios.2015.02.016.
Full textChen, Shiyu, Xiuxiao Yuan, Wei Yuan, Jiqiang Niu, Feng Xu, and Yong Zhang. "Matching Multi-Sensor Remote Sensing Images via an Affinity Tensor." Remote Sensing 10, no. 7 (2018): 1104. http://dx.doi.org/10.3390/rs10071104.
Full textLin, Hai, Zhihong Chen, and June Li. "Affinity propagation-based interference-free clustering for wireless sensor networks." International Journal of Communication Systems 33, no. 5 (2019): e4273. http://dx.doi.org/10.1002/dac.4273.
Full textAkgönüllü, Semra, Seçkin Kılıç, Cem Esen, and Adil Denizli. "Molecularly Imprinted Polymer-Based Sensors for Protein Detection." Polymers 15, no. 3 (2023): 629. http://dx.doi.org/10.3390/polym15030629.
Full textYang, Shaoming, Chaopeng Bai, Yu Teng, et al. "Study of horseradish peroxidase and hydrogen peroxide bi-analyte sensor with boronate affinity-based molecularly imprinted film." Canadian Journal of Chemistry 97, no. 12 (2019): 833–39. http://dx.doi.org/10.1139/cjc-2019-0134.
Full textCohen-Armon, Malka. "Are Voltage Sensors Really Embedded in Muscarinic Receptors?" International Journal of Molecular Sciences 24, no. 8 (2023): 7538. http://dx.doi.org/10.3390/ijms24087538.
Full textPuiu, Mihaela, Lucian-Gabriel Zamfir, Valentin Buiculescu, Angela Baracu, Cristina Mitrea, and Camelia Bala. "Significance Testing and Multivariate Analysis of Datasets from Surface Plasmon Resonance and Surface Acoustic Wave Biosensors: Prediction and Assay Validation for Surface Binding of Large Analytes." Sensors 18, no. 10 (2018): 3541. http://dx.doi.org/10.3390/s18103541.
Full textPesavento, Maria, Simone Marchetti, Letizia De Maria, Luigi Zeni, and Nunzio Cennamo. "Sensing by Molecularly Imprinted Polymer: Evaluation of the Binding Properties with Different Techniques." Sensors 19, no. 6 (2019): 1344. http://dx.doi.org/10.3390/s19061344.
Full text