Academic literature on the topic 'Affine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Affine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Affine"

1

Song, Su Luo. "The Structure and Properties of a Class of Affine Subspaces and Applications in Mechatronics Science." Applied Mechanics and Materials 321-324 (June 2013): 2385–88. http://dx.doi.org/10.4028/www.scientific.net/amm.321-324.2385.

Full text
Abstract:
Information science focuses on understanding problems from the perspective of the stakeholders involved and then applying information and other technologies as needed. We show that every affine subspace is the orthogonal direct sum of at most three purely non-reducing subspaces. This result is obtained through considering the basicquestion as to when the orthogonal complement of an afffine subspace in another one is still affine subspace. Motivated by the fundamental question as to whethor every affine subspace is singly-generated wavelet frame, we prove that every affine sub -space can be decomposed into the direct sum of a singly-generated afffine subspace.
APA, Harvard, Vancouver, ISO, and other styles
2

Mazėtis, Edmundas. "Apie Kavagučio erdvių geometriją." Lietuvos matematikos rinkinys 41 (December 17, 2001): 239–43. http://dx.doi.org/10.15388/lmr.2001.34498.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mazėtis, Edmundas. "Apie trečios eilės liestinių sluoksniuočių geometriją." Lietuvos matematikos rinkinys 40 (December 18, 2000): 155–60. http://dx.doi.org/10.15388/lmr.2000.35083.

Full text
Abstract:
Diese Arbcit ist der Theorie der lineare und affine Zussanunenhängen in Tangentbündeln der dritter Ordnung gewidmet. Beweisst man, dass linear Zussammenhang drei Objekte affiner Zus­sammenhängen induziert, findet man die strukturische Gleichungen und Krümmungsobjekten die­ser Bündeln.
APA, Harvard, Vancouver, ISO, and other styles
4

Karger, Adolf. "Affine Darboux motions." Czechoslovak Mathematical Journal 35, no. 3 (1985): 355–72. http://dx.doi.org/10.21136/cmj.1985.102026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dillen, Franki, and Luc Vrancken. "Affine Surfaces which are Both Affine Harmonic and Affine Maximal." Results in Mathematics 27, no. 1-2 (March 1995): 35–40. http://dx.doi.org/10.1007/bf03322267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Podestá, Fabio. "Affine Transformations in Affine Differential Geometry." Results in Mathematics 16, no. 1-2 (August 1989): 155–61. http://dx.doi.org/10.1007/bf03322651.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tsemo, Aristide. "Affine Anosov Diffeomorphims of Affine Manifolds." International Journal of Mathematics and Mathematical Sciences 2008 (2008): 1–5. http://dx.doi.org/10.1155/2008/673534.

Full text
Abstract:
We show that a compact affine manifold endowed with an affine Anosov transformation is finitely covered by a complete affine nilmanifold. This is a partial answer of a conjecture of Franks for affine manifolds.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Shi Heng. "Semi-Orthogonal Parseval Wavelets Frames on Local Fields and Applications in Manufacturing Science." Advanced Materials Research 712-715 (June 2013): 2464–68. http://dx.doi.org/10.4028/www.scientific.net/amr.712-715.2464.

Full text
Abstract:
Manufacturing science focuses on understanding problems from the perspective of the stakeholders involved and then applying manufacturing science as needed. We investigate semi-orthogonal frame wavelets and Parseval frame wavelets in with a dilation factor. We show that every affine subspace is the orthogonal direct sum of at most three purely non-reducing subspaces. This result is obtained through considering the basicquestion as to when the orthogonal complement of an afffine subspace in another one is still affine subspace.The definition of multiple pseudofames for subspaces with integer translation is proposed. The notion of a generalized multiresolution structure of is also introduced. The construction of a generalized multireso-lution structure of Paley-Wiener subspaces of is investigated.
APA, Harvard, Vancouver, ISO, and other styles
9

Švec, Alois. "On the affine normal." Czechoslovak Mathematical Journal 40, no. 2 (1990): 332–42. http://dx.doi.org/10.21136/cmj.1990.102385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

ZHAO, CHANG-JIAN. "The affine Orlicz log-Minkowki inequality." Carpathian Journal of Mathematics 39, no. 1 (July 30, 2022): 293–302. http://dx.doi.org/10.37193/cjm.2023.01.20.

Full text
Abstract:
In this paper, we establish an affine Orlicz log-Minkowki inequality for the affine quermassintegrals by introducing new concepts of affine measures and Orlicz mixed affine measures, and using the newly established Orlicz affine Minkowski inequality for the affine quermassintegrals. The affine Orlicz log-Minkowski inequality in special case yields $L_{p}$-affine log-Minkowski inequality. The affine log-Minkowski inequality is also derived.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Affine"

1

Chen, Zongbin. "Pureté des fibres de Springer affines pour GL_4." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112266/document.

Full text
Abstract:
La thèse consiste de deux parties. Dans la première partie, on montre la pureté des fibres de Springer affines pour $\gl_{4}$ dans le cas non-ramifié. Plus précisément, on construit une famille de pavages non standard en espaces affines de la grassmannienne affine, qui induisent des pavages en espaces affines de la fibre de Springer affine. Dans la deuxième partie, on introduit une notion de $\xi$-stabilité sur la grassmannienne affine $\xx$ pour le groupe $\gl_{d}$, et on calcule le polynôme de Poincaré du quotient $\xx^{\xi}/T$ de la partie $\xi$-stable $\xxs$ par le tore maximal $T$ par une processus analogue de la réduction de Harder-Narasimhan
This thesis consists of two parts. In the first part, we prove the purity of affine Springer fibers for $\gl_{4}$ in the unramified case. More precisely, we have constructed a family of non standard affine pavings for the affine grassmannian, which induce an affine paving for the affine Springer fiber. In the second part, we introduce a notion of $\xi$-stability on the affine grassmannian $\xx$ for the group $G=\gl_{d}$, and we calculate the Poincaré polynomial of the quotient $\xx^{\xi}/T$ of the stable part $\xxs$ by the maximal torus $T$ by a process analogue to the Harder-Narasimhan reduction
APA, Harvard, Vancouver, ISO, and other styles
2

Azam, Saeid. "Extended affine Lie algebras and extended affine Weyl groups." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ27440.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Yiqiang. "Affine canonical bases /." Search for this dissertation online, 2006. http://wwwlib.umi.com/cr/ksu/main.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Deconchy, Vincent. "Géométrie affine symplectique." Montpellier 2, 1999. http://www.theses.fr/1999MON20076.

Full text
Abstract:
La geometrie affine symplectique consiste en l'etude des invariants des hypersurfaces de l'espace symplectique standard sous l'action du groupe affine symplectique. On peut considerer qu'il s'agit d'une generalisation aux dimensions superieures de la geometrie equiaffine des courbes dans le plan, en notant que dans ce cas le groupe symplectique et le groupe special lineaire coincident. Sachant qu'il existe sur une hypersurface d'un espace symplectique un champ de droites privilegie, on construit un champ transverse adapte (le vecteur normal (affine) symplectique) dont on donne une interpretation geometrique, et une serie d'autres invariants affines symplectiques qui caracterisent les hypersurfaces a transformations affines symplectiques pres. Le vecteur normal affine symplectique induit sur l'hypersurface une forme volume permettant de calculer son volume symplectique. Apres avoir traite une serie d'exemple dont les spheres symplectiques, on etudie l'existence eventuelle d'une inegalite isoperimetrique en geometrie affine symplectique, en s'interessant aux variations successives du volume symplectique. L'etude de la variation seconde pour les spheres symplectiques montre que tres certainement il n'y a pas d'inegalite isoperimetrique en geometrie affine symplectique.
APA, Harvard, Vancouver, ISO, and other styles
5

Kohl, Stefan. "Restklassenweise affine Gruppen." [S.l. : s.n.], 2005. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB12168144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fring, A. "Affine Toda field theory." Thesis, Imperial College London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.295149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Holtom, Paul Andrew. "Affine-invariant symmetry sets." Thesis, University of Liverpool, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Moakes, Matthew George. "On quantum affine algebras." Thesis, King's College London (University of London), 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.406170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Andrei, Octavian. "3D affine coordinate transformations." Thesis, KTH, Geodesi och satellitpositionering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199846.

Full text
Abstract:
This thesis investigates the three-dimensional (3D) coordinate transformation from a globalgeocentric coordinate system to a national terrestrial coordinate system. Numerical studies arecarried out using the Swedish geodetic data SWEREF 93 and RT90/RH70. Based on theHelmert transformation model with 7-parameters, two new models have been studied: firstly ageneral 3D affine transformation model has been developed using 9-parameters (threetranslations, three rotations and three scale factors) and secondly the model with 8-parameters(three translations, three rotations and two scale factors) has been derived. To estimate the 3Dtransformation parameters from given coordinates in the two systems, the linearizedobservation equations were derived. Numerical tests were carried out using a local (North,East, Up) topocentric coordinate system derived from the given global geocentric system. Thetransformation parameters and the residuals of the coordinates of the common points werecomputed. The investigation shows the horizontal scale factor is significantly different by thevertical scale factor. The residuals of the control points were expressed in a separate (North,East, Up) coordinate system for each control point. Some investigations on the weightingprocess between horizontal and vertical components were also carried out, and an optimalweighting model was derived in order to reduce the residuals in horizontal componentswithout changing the coordinates.
APA, Harvard, Vancouver, ISO, and other styles
10

Welch, Amanda Renee. "Double Affine Bruhat Order." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89366.

Full text
Abstract:
Given a finite Weyl group W_fin with root system Phi_fin, one can create the affine Weyl group W_aff by taking the semidirect product of the translation group associated to the coroot lattice for Phi_fin, with W_fin. The double affine Weyl semigroup W can be created by using a similar semidirect product where one replaces W_fin with W_aff and the coroot lattice with the Tits cone of W_aff. We classify cocovers and covers of a given element of W with respect to the Bruhat order, specifically when W is associated to a finite root system that is irreducible and simply laced. We show two approaches: one extending the work of Lam and Shimozono, and its strengthening by Milicevic, where cocovers are characterized in the affine case using the quantum Bruhat graph of W_fin, and another, which takes a more geometrical approach by using the length difference set defined by Muthiah and Orr.
Doctor of Philosophy
The Bruhat order is a way of organizing elements of the double affine Weyl semigroup so that we have a better understanding of how the elements interact. In this dissertation, we study the Bruhat order, specifically looking for when two elements are separated by exactly one step in the order. We classify these elements and show that there are only finitely many of them.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Affine"

1

Nomizu, Katsumi. Affine differential geometry: Geometry of affine immersions. Cambridge: Cambridge University Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergmann, Artur, and Erich Baumgartner. Affine Ebenen. München: Oldenbourg Wissenschaftsverlag Verlag, 2013. http://dx.doi.org/10.1524/9783486747102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Snapper, Ernst. Metric affine geometry. New York: Dover Publications, 1989.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gutierrez, Jaime, Vladimir Shpilrain, and Jie-Tai Yu, eds. Affine Algebraic Geometry. Providence, Rhode Island: American Mathematical Society, 2005. http://dx.doi.org/10.1090/conm/369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gao, Yun, Naihuan Jing, Michael Lau, and Kailash C. Misra, eds. Quantum Affine Algebras, Extended Affine Lie Algebras, and Their Applications. Providence, Rhode Island: American Mathematical Society, 2010. http://dx.doi.org/10.1090/conm/506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bennett, M. K. Affine and Projective Geometry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1995. http://dx.doi.org/10.1002/9781118032565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

van den Essen, Arno, ed. Automorphisms of Affine Spaces. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8555-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Shapiro, Larry S. Affine analysis of image sequences. New York: Cambridge University Press, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bobadilla, Javier Fernández de. Moduli spaces of polynomials in two variables. Providence, R.I: American Mathematical Society, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Russell, P., Daniel Daigle, Richard Ganong, and Mariusz Koras. Affine algebraic geometry: The Russell festschrift. Providence, R.I: American Mathematical Society, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Affine"

1

Behera, Biswaranjan, and Qaiser Jahan. "Affine, Quasi-affine and Co-affine Frames." In Wavelet Analysis on Local Fields of Positive Characteristic, 131–60. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7881-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Schmidt, Stefan E. "Affine Hüllensysteme und affine Liniensysteme." In Grundlegungen zu einer allgemeinen affinen Geometrie, 44–51. Basel: Birkhäuser Basel, 1995. http://dx.doi.org/10.1007/978-3-0348-9233-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Díaz-Caro, Alejandro, and Abuzer Yakaryılmaz. "Affine Computation and Affine Automaton." In Computer Science – Theory and Applications, 146–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34171-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pareigis, Bodo. "Affine Räume." In Analytische und projektive Geometrie für die Computer-Graphik, 35–51. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-91199-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Pareigis, Bodo. "Affine Teilräume." In Analytische und projektive Geometrie für die Computer-Graphik, 95–100. Wiesbaden: Vieweg+Teubner Verlag, 1990. http://dx.doi.org/10.1007/978-3-322-91199-5_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Roman, Steven. "Affine Geometry." In Advanced Linear Algebra, 315–28. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-2178-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Artmann, Benno. "Affine Geometrie." In Lineare Algebra, 297–323. Basel: Birkhäuser Basel, 1986. http://dx.doi.org/10.1007/978-3-0348-7674-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Artmann, Benno. "Affine Geometrie." In Lineare Algebra, 297–323. Basel: Birkhäuser Basel, 1989. http://dx.doi.org/10.1007/978-3-0348-7687-2_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reventós Tarrida, Agustí. "Affine Spaces." In Springer Undergraduate Mathematics Series, 1–46. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-710-5_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Artmann, Benno. "Affine Geometrie." In Lineare Algebra, 297–330. Basel: Birkhäuser Basel, 1991. http://dx.doi.org/10.1007/978-3-0348-8656-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Affine"

1

Li, An-Min, and Fang Jia. "Affine maximal hypersurfaces." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Maragos, Petros. "Affine morphology and affine signal models." In San Diego '90, 8-13 July, edited by Paul D. Gader. SPIE, 1990. http://dx.doi.org/10.1117/12.23574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Guo, Xifeng, En Zhu, Xinwang Liu, and Jianping Yin. "Affine Equivariant Autoencoder." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/335.

Full text
Abstract:
Existing deep neural networks mainly focus on learning transformation invariant features. However, it is the equivariant features that are more adequate for general purpose tasks. Unfortunately, few work has been devoted to learning equivariant features. To fill this gap, in this paper, we propose an affine equivariant autoencoder to learn features that are equivariant to the affine transformation in an unsupervised manner. The objective consists of the self-reconstruction of the original example and affine transformed example, and the approximation of the affine transformation function, where the reconstruction makes the encoder a valid feature extractor and the approximation encourages the equivariance. Extensive experiments are conducted to validate the equivariance and discriminative ability of the features learned by our affine equivariant autoencoder.
APA, Harvard, Vancouver, ISO, and other styles
4

DILLEN, FRANKI, MARTIN MAGID, and LUC VRANCKEN. "AFFINE HYPERSPHERES WITH CONSTANT AFFINE SECTIONAL CURVATURE." In Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dillen, Franki, and Luc Vrancken. "Improper affine spheres and δ-invariants." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Berny, Arnaud. "Affine OneMax." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449726.3459497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Quan, Long. "Affine Stereo Calibration for Relative Affine Shape Reconstruction." In British Machine Vision Conference 1993. British Machine Vision Association, 1993. http://dx.doi.org/10.5244/c.7.66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Furuhata, H. "Codazzi structures induced by minimal affine immersions." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Martínez, Antonio, and Francisco Milán. "Some results on projectively flat affine surfaces." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Li, H. Z. "Variational problems and PDEs in affine differential geometry." In PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2005. http://dx.doi.org/10.4064/bc69-0-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Affine"

1

Backus, David, Silverio Foresi, and Chris Telmer. Affine Models of Currency Pricing. Cambridge, MA: National Bureau of Economic Research, June 1996. http://dx.doi.org/10.3386/w5623.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Duffie, D., D. Filipovic, and W. Schachermayer. Affine Processes and Application in Finance. Cambridge, MA: National Bureau of Economic Research, September 2002. http://dx.doi.org/10.3386/t0281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bachelder, Ivan A., and Shimon Ullman. Contour Matching Using Local Affine Transformations. Fort Belvoir, VA: Defense Technical Information Center, April 1992. http://dx.doi.org/10.21236/ada259601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Soanes, Royce W. Thrice Differentiable Affine Conic Spline Interpolation. Fort Belvoir, VA: Defense Technical Information Center, September 1995. http://dx.doi.org/10.21236/ada304778.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hopcroft, John E., and Daniel P. Huttenlocher. On Planar Point Matching under Affine Transformation. Fort Belvoir, VA: Defense Technical Information Center, April 1989. http://dx.doi.org/10.21236/ada210106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dai, Qiang, and Kenneth Singleton. Specification Analysis of Affine Term Structure Models. Cambridge, MA: National Bureau of Economic Research, August 1997. http://dx.doi.org/10.3386/w6128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamilton, James, and Jing Cynthia Wu. Testable Implications of Affine Term Structure Models. Cambridge, MA: National Bureau of Economic Research, April 2011. http://dx.doi.org/10.3386/w16931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Clubok, Kenneth Sherman. Conformal field theory on affine Lie groups. Office of Scientific and Technical Information (OSTI), April 1996. http://dx.doi.org/10.2172/260974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bates, David. Maximum Likelihood Estimation of Latent Affine Processes. Cambridge, MA: National Bureau of Economic Research, May 2003. http://dx.doi.org/10.3386/w9673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Pati, Y. C., and P. S. Krishnaprasad. Affine Frames of rational Wavelets in H2(II+). Fort Belvoir, VA: Defense Technical Information Center, January 1992. http://dx.doi.org/10.21236/ada454952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography