Journal articles on the topic 'Aerosols'

To see the other types of publications on this topic, follow the link: Aerosols.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Aerosols.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Menezes, Jorge Almeida de, Rafael Da Silva Palácios, Evanízio Marinho Menezes Júnior, Amazonino Soares Júnior, and José De Souza Nogueira. "CARACTERIZAÇÃO ESPECTRAL DE PROPRIEDADES ÓPTICAS DE AEROSSÓIS EM REGIÃO DE FLORESTA TROPICAL." Nativa 6, no. 5 (September 4, 2018): 451. http://dx.doi.org/10.31413/nativa.v6i5.5669.

Full text
Abstract:
Aerossóis atmosféricos desempenham um papel importante no equilíbrio de energia do sistema Terra-atmosfera. Medidas de aerossóis foram realizadas em área de floresta tropical utilizando fotômetro solar da rede global AERONET. Dados de 4 anos permitiram classificar as propriedades óticas dos aerossóis, definindo a climatologia para área de floresta tropical. Neste trabalho a profundidade óptica de aerossol (AOD) e expoente Ångström, α(440-870), foram utilizados para a análise espectral de aerossol. Médias de AOD(440nm) de 0,22 (±0,40), com média correspondente de α 1,27(±0,39). A AOD(440nm) mostra picos distintos para estação seca e chuvosa, sendo que podem estar relacionados com padrões sazonais de aerossóis característicos dessas regiões. O α (440-870) apresentou modos de frequência que se relacionam com os principais tipos de aerossóis presentes em regiões de Floresta. Um cenário principal de aerossóis foi definido como aerossóis oriundos de queima de biomassa, com forte influência de fontes locais de aerossóis poluídos. Mistura de aerossóis estão presentes, enquanto que poeira em suspensão tem uma ocorrência pouco relevante.Palavras-chave: AOD, expoente Ångström, climatologia. SPECTRAL CHARACTERIZATION OF OPTICAL PROPERTIES OF AEROSOLS IN FOREST REGION ABSTRACT:Atmospheric aerosols play an important role in the energy balance of the Earth-atmosphere system. Aerosol measurements were performed in rainforest area, Manaus_Embrapa site using solar photometer from the AERONET global network. Data from 4 years allowed to classify the optical properties of the aerosols, defining the climatology for the site. In this work, the aerosol optical depth (AOD) and Ångström exponent, α (440-870), were used for aerosol spectral analysis. Mean AOD (440nm) of 0,22 (± 0.40), with corresponding mean of α 1,27 (± 0.39). AOD (440nm) shows distinct peaks for dry and rainy season, and may be related to seasonal aerosol patterns characteristic of these regions. The α (440-870) presented frequency modes that relate to the main types of aerosols present in Forest regions. A major aerosol scenario was defined as biomass-based aerosols, with strong influence from local sources of polluted aerosols. Mixtures of aerosols are present, while suspended dust has a slightly relevant occurrence.Keywords: AOD, Ångström exponent, climatology.
APA, Harvard, Vancouver, ISO, and other styles
2

Choi, Wonei, Hyeongwoo Kang, Dongho Shin, and Hanlim Lee. "Satellite-Based Aerosol Classification for Capital Cities in Asia Using a Random Forest Model." Remote Sensing 13, no. 13 (June 24, 2021): 2464. http://dx.doi.org/10.3390/rs13132464.

Full text
Abstract:
Aerosol types in Asian capital cities were classified using a random forest (RF) satellite-based aerosol classification model during 2018–2020 in an investigation of the contributions of aerosol types, with or without Aerosol Robotic Network (AERONET) observations. In this study, we used the recently developed RF aerosol classification model to detect and classify aerosols into four types: pure dust, dust-dominated aerosols, strongly absorbing aerosols, and non-absorbing aerosols. Aerosol optical and microphysical properties for each aerosol type detected by the RF model were found to be reasonably consistent with those for typical aerosol types. In Asian capital cities, pollution-sourced aerosols, especially non-absorbing aerosols, were found to predominate, although Asian cities also tend to be seasonally affected by natural dust aerosols, particularly in East Asia (March–May) and South Asia (March–August). No specific seasonal effects on aerosol type were detected in Southeast Asia, where there was a predominance of non-absorbing aerosols. The aerosol types detected by the RF model were compared with those identified by other aerosol classification models. This study indicates that the satellite-based RF model may be used as an alternative in the absence of AERONET sites or observations.
APA, Harvard, Vancouver, ISO, and other styles
3

Penning de Vries, M., S. Beirle, and T. Wagner. "UV aerosol indices from SCIAMACHY: introducing the SCattering Index (SCI)." Atmospheric Chemistry and Physics Discussions 9, no. 3 (June 19, 2009): 13569–92. http://dx.doi.org/10.5194/acpd-9-13569-2009.

Full text
Abstract:
Abstract. The Absorbing Aerosol Index (AAI) is a useful tool for detecting aerosols that absorb UV radiation – especially in cases where other aerosol retrievals fail, such as over bright surfaces (e.g. desert) and in the presence of clouds. The AAI does not, however, consider contributions from "scattering" (hardly absorbing) aerosols and clouds: they cause negative AAI values and are usually discarded. In this paper, we demonstrate the use of the AAI's negative counterpart, the SCattering Index (SCI) to detect "scattering" aerosols. Maps of seasonally averaged SCI show significantly enhanced values in summer in Southeast USA and Southeast Asia, pointing to high production of "scattering" aerosols (presumably mainly sulphate aerosols and organic aerosols) in this season. The application of a cloud filter makes the presence of "scattering" aerosols even more clear. In a comparison of AOT from AERONET and our Aerosol Indices from SCIAMACHY, good agreement was found for two AERONET stations in Southeast USA, and two stations in Africa. This fact confirms the suitability of SCI as a tool to detect "scattering" aerosols. The combination of the UV Aerosol Indices AAI and SCI provides the unique possibility to characterise absorbing properties of aerosols from space. Accurate knowledge about aerosol absorption is crucial for the correct determination of the contribution of aerosols to the radiative budget.
APA, Harvard, Vancouver, ISO, and other styles
4

Pan, Li, Partha S. Bhattacharjee, Li Zhang, Raffaele Montuoro, Barry Baker, Jeff McQueen, Georg A. Grell, et al. "Analysis of the GEFS-Aerosols annual budget to better understand aerosol predictions simulated in the model." Geoscientific Model Development 17, no. 1 (January 16, 2024): 431–47. http://dx.doi.org/10.5194/gmd-17-431-2024.

Full text
Abstract:
Abstract. In September 2020, a global aerosol forecasting model was implemented as an ensemble member of the National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Ensemble Forecasting System (GEFS) v12.0.1 (hereafter referred to as “GEFS-Aerosols”). In this study, GEFS-Aerosols simulation results from 1 September 2019 to 30 September 2020 were evaluated using an aerosol budget analysis. These results were compared with results from other global models as well as reanalysis data. From this analysis, the global average lifetimes of black carbon (BC), organic carbon (OC), dust, sea salt, and sulfate are 4.06, 4.29, 4.59, 0.34, and 3.3 d, respectively, with the annual average loads of 0.14, 1.29, 4.52, 6.80, and 0.51 Tg. Compared with the National Aeronautics and Space Administration (NASA) Goddard Earth Observing System–Goddard Chemistry Aerosol and Radiation Transport (GEOS4-GOCART) model, the aerosols in GEFS-Aerosols have a relatively short lifetime because of the faster removal processes in GEFS-Aerosols. Meanwhile, in GEFS-Aerosols, aerosol emissions are the determining factor for the mass and composition of aerosols in the atmosphere. The size (bin) distribution of aerosol emissions is as important as its total emissions, especially in simulations of dust and sea salt. Moreover, most importantly, the strong monthly and interannual variations in natural sources of aerosols in GEFS-Aerosols suggest that improving the accuracy of the prognostic concentrations of aerosols is important for applying aerosol feedback to weather and climate predictions.
APA, Harvard, Vancouver, ISO, and other styles
5

Chung, Chul E., Jung-Eun Chu, Yunha Lee, Twan van Noije, Hwayoung Jeoung, Kyung-Ja Ha, and Marguerite Marks. "Global fine-mode aerosol radiative effect, as constrained by comprehensive observations." Atmospheric Chemistry and Physics 16, no. 13 (July 4, 2016): 8071–80. http://dx.doi.org/10.5194/acp-16-8071-2016.

Full text
Abstract:
Abstract. Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol–radiation interactions) are −0.35 ± 0.5 W m−2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is −0.46 W m−2 (−0.54 to −0.39 W m−2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (−0.44 to −0.26 W m−2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes −0.11 (−0.28 to +0.05) W m−2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than −0.35 W m−2.
APA, Harvard, Vancouver, ISO, and other styles
6

Abd Jalal, Khairunnisa, Arnis Asmat, and Noordin Ahmad. "Retrievals of Aerosol Optical Depth and Angstrom Exponent for Identification of Aerosols at Kuching, Sarawak." Advanced Materials Research 518-523 (May 2012): 5734–37. http://dx.doi.org/10.4028/www.scientific.net/amr.518-523.5734.

Full text
Abstract:
Anthropogenic and natural aerosols are important atmospheric constituents that significantly contribute to the Earth’s radiation budget but remain uncertainties due to the poor understanding of aerosol properties and its direct effects on scattering and absoprtion of solar radiation and the ability of aerosols to stay in atmosphere for a very short time. Different types of aerosols, representing biomass burning, urban or continental aerosols, maritime aerosols and dust particles will give different characterization and classification of aerosol properties. The data used in this study was obtained from Aerosol Robotic Network (AERONET).Two parameters were used for aerosol analysis which are Aerosol Optical Depth (AOD) at four wavelengths (440, 500, 675 and 870nm) and Angstrom exponent (α) derived from a multispectral log linear.
APA, Harvard, Vancouver, ISO, and other styles
7

Bréon, F. M. "Aerosol extinction to backscatter ratio derived from passive satellite measurements." Atmospheric Chemistry and Physics Discussions 13, no. 1 (January 22, 2013): 2351–70. http://dx.doi.org/10.5194/acpd-13-2351-2013.

Full text
Abstract:
Abstract. Spaceborne reflectance measurements from the POLDER instrument are used to study the specific directional signature close to the backscatter direction. The data analysis makes it possible to derive the extinction to backscatter ratio (EBR) which is the invert of the scattering phase function for an angle of 180° and is needed for a quantitative interpretation of lidar observations (active measurements). In addition, the multi-directional measurements are used to quantify the scattering phase function variations close to backscatter, which also provide some indication of the aerosol particle size and shape. The spatial distributions of both parameters show consistent patterns that are consistent with the aerosol type distributions. Pollution aerosols have an EBR close to 70, desert dust values are on the order of 50, while marine aerosol's is close to 25. The scattering phase function shows an increase with the scattering angle close to backscatter. The relative increase ∂lnP/∂ γ is close to 0.01 for dust and pollution type aerosols and 0.06 for marine type aerosols. These values are consistent with those retrieved from Mie simulations.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, J., Y. N. Lee, P. H. Daum, J. Jayne, and M. L. Alexander. "Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect." Atmospheric Chemistry and Physics Discussions 8, no. 3 (May 28, 2008): 9783–818. http://dx.doi.org/10.5194/acpd-8-9783-2008.

Full text
Abstract:
Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at 0.22% supersaturation to those predicted based on size distribution and chemical composition using Köhler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization. For aerosols with organics volume fraction up to 70%, such as the marine boundary layer and free troposphere aerosols, CCN concentration and the corresponding first indirect aerosol effect are insensitive to the properties of organics, and can be accurately predicted with a constant hygroscopicity for all organic species. This simplification can facilitate the prediction of indirect aerosol effects using physically-based parameterizations in large scale models. However, for the aerosols within the thin layers above clouds, organics contributed up to 90% of the total aerosol volume, and a detailed knowledge of organic hygroscopicity is required to accurately predict CCN concentrations. Derivations of organic properties in future closure studies, when aerosols are dominated by organic species, would help constrain the descriptions of organics and aerosol-cloud parameterizations in large scale models.
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Qi-Xiang, Chun-Lin Huang, Yuan Yuan, Qian-Jun Mao, and He-Ping Tan. "Spatiotemporal Distribution of Major Aerosol Types over China Based on MODIS Products between 2008 and 2017." Atmosphere 11, no. 7 (July 1, 2020): 703. http://dx.doi.org/10.3390/atmos11070703.

Full text
Abstract:
Knowledge of aerosol-type distribution is critical to the evaluation of aerosol–climate effects. However, research on aerosol-type distribution covering all is limited. This study characterized the spatiotemporal distribution of major aerosol types over China by using MODerate resolution Imaging Spectroradiometer (MODIS) products from 2008 to 2017. Two aerosol-type classification methods were combined to achieve this goal. One was for relatively high aerosol load (AOD ≥ 0.2) using aerosol optical depth (AOD) and aerosol relative optical depth (AROD) and the other was for low aerosol load (AOD < 0.2) using land use and population density information, which assumed that aerosols are closely related to local emissions. Results showed that the dominant aerosol-type distribution has a distinct spatial and temporal pattern. In western China, background aerosols (mainly dust/desert dust and continent aerosol) dominate with a combined occurrence ratio over 70% and they have slight variations on seasonal scale. While in eastern China, the dominant aerosols show strong seasonal variations. Spatially, mixed aerosols dominate most parts of eastern China in spring due to the influence of long-range transported dust from Taklamakan and Gobi desert and urban/industry aerosols take place in summer due to strong photochemical reactions. Temporally, mixed and urban/industry aerosols co-dominate eastern China.
APA, Harvard, Vancouver, ISO, and other styles
10

Bridhikitti, Arika, Pakorn Petchpayoon, and Thayukorn Prabamroong. "Integrated Remote Sensing Observations of Radiative Properties and Sources of the Aerosols in Southeast Asia: The Case of Thailand." Remote Sensing 15, no. 22 (November 10, 2023): 5319. http://dx.doi.org/10.3390/rs15225319.

Full text
Abstract:
Aerosols in Southeast Asia (SEA) are entangled with complex land–sea–atmosphere–human interactions, and it is difficult for scientists to understand their dynamic behaviors. This study aims to provide an insightful understanding of aerosols across SEA with respect to their radiative properties using several lines of evidence obtained from remote sensing instruments, including those from onboard Earth observation satellites (MODIS/Terra and MODIS/Aqua, CALIOP/CALIPSO) and from ground-based observation (AERONET). The findings, obtained from cluster analysis of aerosol optical properties, showed seven aerosol types which were dominant across the country, exhibiting diverse radiative forcing potentials. The light-absorbing (prone to warm the atmosphere) aerosols were likely found in mainland SEA, both for background and high-aerosol events. The light-scattering aerosols were associated with aging processes and hygroscopic growth. The neutral potential, which comprised a mixture of oceanic and local anthropogenic aerosols, was predominant in background aerosols in insular SEA. Further studies should focus on carbonaceous aerosols (organic carbons, black carbon, and brown carbon), the aging processes, and the hygroscopic growth of these aerosols, since they play significant roles in the regional aerosol optical properties.
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, J., Y. N. Lee, P. H. Daum, J. Jayne, and M. L. Alexander. "Effects of aerosol organics on cloud condensation nucleus (CCN) concentration and first indirect aerosol effect." Atmospheric Chemistry and Physics 8, no. 21 (November 3, 2008): 6325–39. http://dx.doi.org/10.5194/acp-8-6325-2008.

Full text
Abstract:
Abstract. Aerosol microphysics, chemical composition, and CCN properties were measured on the Department of Energy Gulfstream-1 aircraft during the Marine Stratus/Stratocumulus Experiment (MASE) conducted over the coastal waters between Point Reyes National Seashore and Monterey Bay, California, in July 2005. Aerosols measured during MASE included free tropospheric aerosols, marine boundary layer aerosols, and aerosols with high organic concentration within a thin layer above the cloud. Closure analysis was carried out for all three types of aerosols by comparing the measured CCN concentrations at ~0.2% supersaturation to those predicted based on size distribution and chemical composition using Köhler theory. The effect of aerosol organic species on predicted CCN concentration was examined using a single hygroscopicity parameterization. For aerosols with organics volume fraction up to 70%, such as the marine boundary layer and free troposphere aerosols, CCN concentration and the corresponding first indirect aerosol effect are insensitive to the properties of organics, and can be accurately predicted with a constant hygroscopicity for all organic species. This simplification can facilitate the prediction of indirect aerosol effects using physically-based parameterizations in large scale models. However, for the aerosols within the thin layers above clouds, organics contributed up to 90% of the total aerosol volume, and an accurate knowledge of the overall organic hygroscopicity is required to accurately predict CCN concentrations. Derivations of organic properties in future closure studies, when aerosols are dominated by organic species, would help constrain the descriptions of organics and aerosol-cloud parameterizations in large scale models.
APA, Harvard, Vancouver, ISO, and other styles
12

Cerully, K. M., A. Bougiatioti, J. R. Hite, H. Guo, L. Xu, N. L. Ng, R. Weber, and A. Nenes. "On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosols in the southeastern United States." Atmospheric Chemistry and Physics 15, no. 15 (August 7, 2015): 8679–94. http://dx.doi.org/10.5194/acp-15-8679-2015.

Full text
Abstract:
Abstract. The formation of secondary organic aerosols (SOAs) combined with the partitioning of semivolatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity, and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD), and a high-resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition, and oxidation state. Particles were either sampled directly from ambient or through a particle-into-liquid sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosols exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally denuded aerosols was similar between ambient and PILS-generated aerosols and showed limited dependence on volatilization. Results of AMS three-factor positive matrix factorization (PMF) analysis for the PILS-generated aerosols showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosols. No clear relationship was found between organic hygroscopicity and the oxygen-to-carbon ratio; in fact, isoprene-derived organic aerosols (isoprene-OAs) were found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, isoprene-OA and more-oxidized oxygenated organic aerosols are the prime contributors to hygroscopicity and co-vary with less-oxidized oxygenated organic aerosols in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass burning organic aerosols contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhuang, Bingliang, Tijian Wang, Jane Liu, Huizheng Che, Yong Han, Yu Fu, Shu Li, et al. "The optical properties, physical properties and direct radiative forcing of urban columnar aerosols in the Yangtze River Delta, China." Atmospheric Chemistry and Physics 18, no. 2 (February 1, 2018): 1419–36. http://dx.doi.org/10.5194/acp-18-1419-2018.

Full text
Abstract:
Abstract. The optical and physical properties as well as the direct radiative forcings (DRFs) of fractionated aerosols in the urban area of the western Yangtze River Delta (YRD) are investigated with measurements from a Cimel sun photometer combined with a radiation transfer model. Ground-based observations of aerosols have much higher temporal resolutions than satellite retrievals. An initial analysis reveals the characteristics of the optical properties of different types of fractionated aerosols in the western YRD. The total aerosols, mostly composed of scattering components (93.8 %), have mean optical depths of 0.65 at 550 nm and refractive index of 1.44 + 0.0084i at 440 nm. The fine aerosols are approximately four times more abundant and have very different compositions from coarse aerosols. The absorbing components account for only ∼ 4.6 % of fine aerosols and 15.5 % of coarse aerosols and have smaller sizes than the scattering aerosols within the same mode. Therefore, fine particles have stronger scattering than coarse ones, simultaneously reflecting the different size distributions between the absorbing and scattering aerosols. The relationships among the optical properties quantify the aerosol mixing and imply that approximately 15 and 27.5 % of the total occurrences result in dust- and black-carbon-dominating mixing aerosols, respectively, in the western YRD. Unlike the optical properties, the size distributions of aerosols in the western YRD are similar to those found at other sites over eastern China on a climatological scale, peaking at radii of 0.148 and 2.94 µm. However, further analysis reveals that the coarse-dominated particles can also lead to severe haze pollution over the YRD. Observation-based estimations indicate that both fine and coarse aerosols in the western YRD exert negative DRFs, and this is especially true for fine aerosols (−11.17 W m−2 at the top of atmosphere, TOA). A higher absorption fraction leads directly to the negative DRF being further offset for coarse aerosols (−0.33 W m−2) at the TOA. Similarly, the coarse-mode DRF contributes to only 13.3 % of the total scattering aerosols but > 33.7 % to the total absorbing aerosols. A sensitivity analysis states that aerosol DRFs are not highly sensitive to their profiles in clear-sky conditions. Most of the aerosol properties and DRFs have substantial seasonality in the western YRD. The results further reveal the contributions of each component of the different size particles to the total aerosol optical depths (AODs) and DRFs. Additionally, these results can be used to improve aerosol modelling performance and the modelling of aerosol effects in the eastern regions of China.
APA, Harvard, Vancouver, ISO, and other styles
14

Ekman, A. M. L., C. Wang, J. Wilson, and J. Ström. "Explicit simulations of aerosol physics in a cloud-resolving model: a sensitivity study based on an observed convective cloud." Atmospheric Chemistry and Physics 4, no. 3 (May 18, 2004): 773–91. http://dx.doi.org/10.5194/acp-4-773-2004.

Full text
Abstract:
Abstract. The role of convection in introducing aerosols and promoting the formation of new particles to the upper troposphere has been examined using a cloud-resolving model coupled with an interactive explicit aerosol module. A baseline simulation suggests good agreement in the upper troposphere between modeled and observed results including concentrations of aerosols in different size ranges, mole fractions of key chemical species, and concentrations of ice particles. In addition, a set of 34 sensitivity simulations has been carried out to investigate the sensitivity of modeled results to the treatment of various aerosol physical and chemical processes in the model. The size distribution of aerosols is proved to be an important factor in determining the aerosols' fate within the convective cloud. Nucleation mode aerosols (here defined by 0≤d≤5.84 nm) are quickly transferred to the larger modes as they grow through coagulation of aerosols and condensation of H2SO4. Accumulation mode aerosols (here defined by d≥31.0 nm) are almost completely removed by nucleation (activation of cloud droplets) and impact scavenging. However, a substantial part (up to 10% of the boundary layer concentration) of the Aitken mode aerosol population (here defined by 5.84 nm≤d≤31.0 nm) reaches the top of the cloud and the free troposphere. These particles may continually survive in the upper troposphere, or over time form ice crystals, both that could impact on the atmospheric radiative budget. The sensitivity simulations performed indicate that critical processes in the model causing a substantial change in the upper tropospheric number concentration of Aitken mode aerosols are coagulation of aerosols, condensation of H2SO4, nucleation scavenging, nucleation of aerosols and the transfer of aerosol mass and number between different aerosol bins. In particular, for aerosols in the Aitken mode to grow to CCN size, coagulation of aerosols appears to be more important than condensation of H2SO4. Less important processes are dry deposition, impact scavenging and the initial vertical distribution and concentration of aerosols. It is interesting to note that in order to sustain a vigorous storm cloud, the supply of CCN must be continuous over a considerably long time period of the simulation. Hence, the treatment of the growth of particles is in general much more important than the initial aerosol concentration itself.
APA, Harvard, Vancouver, ISO, and other styles
15

Rodríguez Vega, Albeht, Juan Carlos Antuña-Marrero, David Barriopedro, Ricardo García-Herrera, Victoria E. Cachorro Revilla, Ángel de Frutos Baraja, and Juan Carlos Antuña-Sánchez. "Climatology of Aerosols over the Caribbean Islands: Aerosol Types, Synoptic Patterns, and Transport." Journal of Applied Meteorology and Climatology 61, no. 4 (April 2022): 369–91. http://dx.doi.org/10.1175/jamc-d-21-0015.1.

Full text
Abstract:
Abstract We present a climatological study of aerosols in four representative Caribbean Sea islands that is based on daily mean values of aerosol optical properties for the period 2008–16, using the aerosol optical depth (AOD) and Ångström exponent (AE) to classify the dominant aerosol type. A climatological assessment of the spatiotemporal distribution of the main aerosol types, their links with synoptic patterns, and the transport from different sources is provided. Maximum values of AOD occur in the rainy season, coinciding with the minimum in AE and an increased occurrence of dust, whereas the minimum of AOD occurs in the dry season, due to the predominance of marine aerosols. Marine and dust aerosol are more frequent in the easternmost islands and decrease westward because of an increase of continental and mixture dust aerosols. Therefore, the westernmost station displays the most heterogeneous composition of aerosols. Using a weather-type classification, we identify a quantifiable influence of the atmospheric circulation in the distribution of Caribbean aerosols. However, they can occur under relatively weak and/or diverse synoptic patterns, typically involving transient systems and specific configurations of the Azores high that depend on the considered station. Backward trajectories indicate that dry-season marine aerosols and rainy-season dust are transported by air parcels traveling within the tropical easterly winds. The main source region for both types of aerosols is the subtropical eastern Atlantic Ocean, except for Cuba, where the largest contributor to dry-season marine aerosols is the subtropical western Atlantic. Different aerosol types follow similar pathways, suggesting a key role of emission sources in determining the spatiotemporal distribution of Caribbean aerosols.
APA, Harvard, Vancouver, ISO, and other styles
16

Liao, Riwei, Wei Guo, Nan Zeng, Jun Guo, Yonghong He, Huige Di, Dengxin Hua, and Hui Ma. "Polarization Measurements and Evaluation Based on Multidimensional Polarization Indices Applied in Analyzing Atmospheric Particulates." Applied Sciences 11, no. 13 (June 28, 2021): 5992. http://dx.doi.org/10.3390/app11135992.

Full text
Abstract:
Online identification and characterization of suspended aerosols can provide a scientific basis for understanding aerosol transformations, quantitatively evaluating the impacts on air quality, public health, and the source apportionment of different atmospheric particulate matters. In this study, we confirm the validity of our developed high-throughput multi-angle polarized scattering vector detection of aerosols and multidimensional polarization scattering index systems. By observation of the mean values, variance, and Wilk’s Lambda of multidimensional polarization indices for different aerosol types, the polarization index shows unique characterization abilities for aerosol properties, and the optimal combination of polarization indices can always be found for a specific aerosol category with a high resolution and discrimination. Clearly, the multidimensional polarization indices of individual aerosols are more suitable for online and real-time aerosol identification and even help to explain the in situ microphysical characteristics of aerosols or evaluate the dynamic evolution of aerosols.
APA, Harvard, Vancouver, ISO, and other styles
17

Bhattacharjee, Partha S., Li Zhang, Barry Baker, Li Pan, Raffaele Montuoro, Georg A. Grell, and Jeffery T. McQueen. "Evaluation of Aerosol Optical Depth Forecasts from NOAA’s Global Aerosol Forecast Model (GEFS-Aerosols)." Weather and Forecasting 38, no. 2 (February 2023): 225–49. http://dx.doi.org/10.1175/waf-d-22-0083.1.

Full text
Abstract:
Abstract The NWS/NCEP recently implemented a new global deterministic aerosol forecast model named the Global Ensemble Forecast Systems Aerosols (GEFS-Aerosols), which is based on the Finite Volume version 3 GFS (FV3GFS). It replaced the operational NOAA Environmental Modeling System (NEMS) GFS Aerosol Component version 2 (NGACv2), which was based on a global spectral model (GSM). GEFS-Aerosols uses aerosol modules from the GOCART previously integrated in the WRF Model with Chemistry (WRF-Chem), FENGSHA dust scheme, and several other updates. In this study, we have extensively evaluated aerosol optical depth (AOD) forecasts from GEFS-Aerosols against various observations over a timespan longer than one year (2019–20). The total AOD improvement (in terms of seasonal mean) in GEFS-Aerosols is about 40% compared to NGACv2 in the fall and winter season of 2019. In terms of aerosol species, the biggest improvement came from the enhanced representation of biomass burning aerosol species as GEFS-Aerosols is able to capture more fire events in southern Africa, South America, and Asia than its predecessor. Dust AODs reproduce the seasonal variation over Africa and the Middle East. We have found that correlation of total AOD over large regions of the globe remains consistent for forecast days 3–5. However, we have found that GEFS-Aerosols generates some systematic positive biases for organic carbon AOD near biomass burning regions and sulfate AOD over prediction over East Asia. The addition of a data assimilation capability to GEFS-Aerosols in the near future is expected to address these biases and provide a positive impact to aerosol forecasts by the model. Significance Statement The purpose of this study is to quantify improvements associated with the newly implemented global aerosol forecast model at NWS/NCEP. The monthly and seasonal variations of AOD forecasts of various aerosol regimes are overall consistent with the observations. Our results provide a guide to downstream regional air quality models like CMAQ that will use GEFS-Aerosols to provide lateral boundary conditions.
APA, Harvard, Vancouver, ISO, and other styles
18

Chipade, Radhika A., and Mehul R. Pandya. "Theoretical derivation of aerosol lidar ratio using Mie theory for CALIOP-CALIPSO and OPAC aerosol models." Atmospheric Measurement Techniques 16, no. 22 (November 14, 2023): 5443–59. http://dx.doi.org/10.5194/amt-16-5443-2023.

Full text
Abstract:
Abstract. The extinction-to-backscattering ratio, popularly known as lidar (light detection and ranging) ratio of atmospheric aerosols is an important optical property, which is essential to retrieve the extinction profiles of atmospheric aerosols. Lidar satellite observations can provide the global coverage of atmospheric aerosols along with their vertical extent. NASA's Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is the only space-based platform available, so far, that provides the vertical profiles of extinction due to atmospheric aerosols. A physics-based theoretical approach is presented in the present paper that estimates lidar ratio values for CALIPSO aerosol models, which can be used as inputs to determine the extinction profiles of aerosols using CALIPSO data. The developed methodology was also qualified by comparing it with the lidar ratio values derived using AERONET (AErosol RObotic NETwork) datasets. Lidar ratio values for CALIPSO aerosol models were estimated in the range of 38.72 to 85.98 sr at 532 nm, whereas at 1064 nm lidar ratio varied between 20.11 to 71.11 sr depending upon the aerosol type and their size distributions. Aerosols are compositions of various particles; thus, the presence of water vapour in the atmosphere can affect the optical properties of the aerosols. Thus, the effect of relative humidity on lidar ratio was studied using Optical Properties of Aerosols and Clouds (OPAC) aerosol models, which are the standard aerosol models against the cluster-classified AERONET and CALIPSO aerosol models. Water-soluble particles contribute substantially in clean continental, clean marine, tropical marine and desert aerosol models and are hygroscopic in nature. Hygroscopic sulfate particles dominate the Antarctic aerosols during summertime. In the presence of relative humidity between 0 %–80 %, the lidar ratio values were observed to decrease from 53.59 to 47.13, from 53.66 to 47.15, from 53.70 to 47.16, and from 55.32 to 48.78 sr at 532 nm for clean continental, clean marine, tropical marine, and desert aerosols, respectively, whereas lidar ratio gradually increased from 47.13 to 51, from 47.15 to 51, from 47.16 to 51, and from 48.78 to 51.68 sr, respectively, for these aerosol models when relative humidity was between 80 %–99 %, due to constituent hygroscopic particles. In the case of Antarctic aerosols, the lidar ratio was observed to increase from 57.73 to 97.64 sr due to hygroscopic sulfate particles that backscattered heavily in the presence of water vapour at 532 nm. The soot particles dominate the polluted continental and polluted marine particles, causing an increase in lidar ratio over its corresponding clean counterpart. Similar results were observed at 1064 nm for OPAC aerosol models.
APA, Harvard, Vancouver, ISO, and other styles
19

Gharibzadeh, Maryam, Khan Alam, Yousefali Abedini, and Abbasali Aliakbari Bidokhti. "Classification of aerosols using multiple clustering techniques over Zanjan, Iran, during 2010-2014." E3S Web of Conferences 99 (2019): 02007. http://dx.doi.org/10.1051/e3sconf/20199902007.

Full text
Abstract:
A more detailed study and identification of aerosol types can help to better understand the sources and effects of aerosols. In the present study, a number of optical properties of aerosols have been investigated seasonal for discrimination of aerosol types during 2010-2014 over Zanjan, Iran. Also using AERosol RObotic NETwork (AERONET) data, aerosol was classified by multiple clustering techniques. Both fine and coarse modes particles were seen in seasonal averaged of Aerosol Volume Size Distribution (AVSD). Single Scattering Albedo (SSA) variations indicate the presence of scattering aerosol like dust in the spring, summer and fall, and dominance of absorbing type aerosols in the winter. The maximum value of the phase function was observed in the summer and in small scattering angle which can be due to presence of coarse mode dust particles. The scatter plot of Aerosol Optical Depth (AOD) versus Angstrom Exponent (AE) is one of the most effective methods to find aerosol types. Extinction Angstrom exponent (EAE) versus SSA and EAE versus absorption Angstrom exponent (AAE) are other ways to classification of aerosol types. Graphs show abundance of dust in the spring, summer and fall in Zanjan's atmosphere. Also presence of urban/industrial aerosols is in all seasons, especially in the fall and winter. In addition mixed aerosols exist in all seasons. On the other hand, no biomass burning aerosols found in Zanjan's atmosphere.
APA, Harvard, Vancouver, ISO, and other styles
20

Persad, Geeta G., David J. Paynter, Yi Ming, and V. Ramaswamy. "Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summertime Climate." Journal of Climate 30, no. 22 (November 2017): 8929–49. http://dx.doi.org/10.1175/jcli-d-16-0860.1.

Full text
Abstract:
East Asia has some of the largest concentrations of absorbing aerosols globally, and these, along with the region’s scattering aerosols, have both reduced the amount of solar radiation reaching Earth’s surface regionally (solar dimming) and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian summer monsoon (EASM). This study analyzes how atmospheric absorption and surface solar dimming compete in driving the response of regional summertime climate to anthropogenic aerosols, which dominates, and why—issues of particular importance for predicting how East Asian climate will respond to projected changes in absorbing and scattering aerosol emissions in the future. These questions are probed in a state-of-the-art general circulation model using a combination of realistic and novel idealized aerosol perturbations that allow analysis of the relative influence of absorbing aerosols’ atmospheric and surface-driven impacts on regional circulation and climate. Results show that even purely absorption-driven dimming decreases EASM precipitation by cooling the land surface, counteracting climatological land–sea contrast and reducing ascending atmospheric motion and onshore winds, despite the associated positive top-of-the-atmosphere regional radiative forcing. Absorption-driven atmospheric heating does partially offset the precipitation and surface evaporation reduction from surface dimming, but the overall response to aerosol absorption more closely resembles the response to its surface dimming than to its atmospheric heating. These findings provide a novel decomposition of absorbing aerosol’s impacts on regional climate and demonstrate that the response cannot be expected to follow the sign of absorption’s top-of-the-atmosphere or even atmospheric radiative perturbation.
APA, Harvard, Vancouver, ISO, and other styles
21

Peters, K., J. Quaas, and N. Bellouin. "Effects of absorbing aerosols in cloudy skies: a satellite study over the Atlantic Ocean." Atmospheric Chemistry and Physics Discussions 9, no. 5 (October 2, 2009): 20853–80. http://dx.doi.org/10.5194/acpd-9-20853-2009.

Full text
Abstract:
Abstract. Aerosol effects, direct as well as indirect, constitute one of the biggest sources of uncertainty when it comes to quantifying human forcing of climate change. Understanding these will thus increase the credibility of climate predictions. This study focuses on aerosol effects when absorbing aerosols reside in cloudy skies. In cloudfree conditions, aerosols usually exert a negative radiative forcing (RF) at the top of the atmosphere (TOA) due to their scattering properties. When located above clouds, absorbing aerosols can reduce the shortwave local planetary albedo α, resulting in an often significant local positive direct radiative forcing (DRF). A method for deriving the aerosol radiative effects of absorbing aerosols in cloudy situations from satellite retrievals is presented. Data of 2005 and 2006 from various sensors aboard satellites of the "A-Train" constellation, restricted to the tropical and subtropical Atlantic ocean, is used. A multiple linear regression is performed to identify the dependence of α in cloudy scenes on cloud liquid water path (LWP) and aerosol optical depth (AOD), using the OMI UV-Aerosolindex (UV-AI) as an indicator for absorbing aerosols. The results show an increase of α with increasing aerosol load, and a relative decrease of α with increasing amount of absorbing aerosols in cloudy scenes. This allows to derive the direct aerosol effect of absorbing aerosols above clouds, with the effect of aerosol absorption over clouds in the Atlantic contributing +0.08±1.2×10-3Wm-2 to the global TOA RF.
APA, Harvard, Vancouver, ISO, and other styles
22

Renard, J. B., S. N. Tripathi, M. Michael, A. Rawal, G. Berthet, M. Fullekrug, R. G. Harrison, C. Robert, M. Tagger, and B. Gaubicher. "In situ detection of electrified aerosols in the upper troposphere and stratosphere." Atmospheric Chemistry and Physics 13, no. 22 (November 18, 2013): 11187–94. http://dx.doi.org/10.5194/acp-13-11187-2013.

Full text
Abstract:
Abstract. Electrified aerosols have been observed in the lower troposphere and in the mesosphere, but have never been detected in the stratosphere and upper troposphere. We present measurements of aerosols obtained during a balloon flight to an altitude of ~ 24 km. The measurements were performed with an improved version of the Stratospheric and Tropospheric Aerosol Counter (STAC) aerosol counter dedicated to the search for charged aerosols. It is found that most of the aerosols are charged in the upper troposphere for altitudes below 10 km and in the stratosphere for altitudes above 20 km. Conversely, the aerosols seem to be uncharged between 10 km and 20 km. Model calculations are used to quantify the electrification of the aerosols with a stratospheric aerosol-ion model. The percentages of charged aerosols obtained with model calculations are in excellent agreement with the observations below 10 km and above 20 km. However, the model cannot reproduce the absence of electrification found in the lower stratosphere, as the processes leading to neutralisation in this altitude range are unknown. The presence of sporadic transient layers of electrified aerosol in the upper troposphere and in the stratosphere could have significant implications for sprite formation.
APA, Harvard, Vancouver, ISO, and other styles
23

Li, G., N. Bei, X. Tie, and L. T. Molina. "Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign." Atmospheric Chemistry and Physics Discussions 11, no. 3 (March 14, 2011): 8625–64. http://dx.doi.org/10.5194/acpd-11-8625-2011.

Full text
Abstract:
Abstract. In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module has been developed with detailed consideration of aerosol size, composition, and mixture. The module has been coupled into the WRF-CHEM model to calculate the aerosol optical properties, including optical depth, single scattering albedo, and asymmetry factor. Calculated aerosol optical properties are in good agreement with the surface observations and aircraft and satellite measurements during daytime. In general, the photolysis rates are reduced due to the absorption by carbonaceous aerosols, particularly in the early morning and late afternoon with a long aerosol optical path. However, with the growth of aerosol particles and the decrease of the solar zenith angle around noontime, aerosols can slightly enhance photolysis rates when ultraviolet (UV) radiation scattering dominates UV absorption by aerosols. The changes in photolysis rates due to aerosols lead to about 2–17% surface ozone reduction during daytime in the urban area in Mexico City, resulting in a decrease of OH level by about 9%, as well as a decrease in the daytime concentrations of nitrate and secondary organic aerosols by 5–6% on average. In addition, the rapid aging of black carbon aerosols and the enhanced absorption of UV radiation by organic aerosols contribute substantially to the reduction of photolysis rates, resulting in a further decrease of other chemical species.
APA, Harvard, Vancouver, ISO, and other styles
24

Li, G., N. Bei, X. Tie, and L. T. Molina. "Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign." Atmospheric Chemistry and Physics 11, no. 11 (June 1, 2011): 5169–82. http://dx.doi.org/10.5194/acp-11-5169-2011.

Full text
Abstract:
Abstract. In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module has been developed with detailed consideration of aerosol size, composition, and mixing. The module has been coupled into the WRF-CHEM model to calculate the aerosol optical properties, including optical depth, single scattering albedo, and asymmetry factor. Calculated aerosol optical properties are in good agreement with the surface observations and aircraft and satellite measurements during daytime. In general, the photolysis rates are reduced due to the absorption by carbonaceous aerosols, particularly in the early morning and late afternoon hours with a long aerosol optical path. However, with the growth of aerosol particles and the decrease of the solar zenith angle around noontime, aerosols can slightly enhance photolysis rates when ultraviolet (UV) radiation scattering dominates UV absorption by aerosols at the lower-most model layer. The changes in photolysis rates due to aerosols lead to about 2–17 % surface ozone reduction during daytime in the urban area in Mexico City with generally larger reductions during early morning hours near the city center, resulting in a decrease of OH level by about 9 %, as well as a decrease in the daytime concentrations of nitrate and secondary organic aerosols by 5–6 % on average. In addition, the rapid aging of black carbon aerosols and the enhanced absorption of UV radiation by organic aerosols contribute substantially to the reduction of photolysis rates.
APA, Harvard, Vancouver, ISO, and other styles
25

Penning de Vries, M. J. M., S. Beirle, and T. Wagner. "UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI)." Atmospheric Chemistry and Physics 9, no. 24 (December 21, 2009): 9555–67. http://dx.doi.org/10.5194/acp-9-9555-2009.

Full text
Abstract:
Abstract. The Absorbing Aerosol Index (AAI) is a useful tool for detecting aerosols that absorb UV radiation – especially in cases where other aerosol retrievals fail, such as over bright surfaces (e.g. desert) and in the presence of clouds. The AAI does not, however, consider contributions from scattering (hardly absorbing) aerosols and clouds: they cause negative AAI values and are usually disregarded. In this paper, we demonstrate the use of the AAI's negative counterpart, the SCattering Index (SCI) to detect scattering aerosols. Consideration of the full UV Aerosol Index scale is of importance if the Aerosol Index is to be used for the quantification of aerosol absorption in the future. Maps of seasonally averaged SCI show significantly enhanced values in summer in Southeast USA and Southeast Asia, pointing to a high production of scattering aerosols (presumably mainly sulphate aerosols and secondary organic aerosols) in this season. The application of a cloud filter makes the presence of scattering aerosols even more clear. Radiative transfer calculations were performed to investigate the sensitivity of AAI and SCI to cloud parameters, and it is demonstrated that clouds cause significant SCI, in some special cases even small AAI values. The results from cloud modelling imply that cloud effects need to be taken into account when AAI and SCI are used in a quantitative manner. The paper concludes with a comparison of aerosol parameters from AERONET and our Aerosol Indices (AAI and SCI) from SCIAMACHY, where reasonable agreement was found for six AERONET stations in Southeast USA, Southeast Asia, and Africa. These findings corroborate the suitability of SCI as a tool to detect scattering aerosols.
APA, Harvard, Vancouver, ISO, and other styles
26

Choi, Y., Y. S. Ghim, and B. N. Holben. "Identification of column-integrated dominant aerosols using the archive of AERONET data set." Atmospheric Chemistry and Physics Discussions 13, no. 10 (October 15, 2013): 26627–56. http://dx.doi.org/10.5194/acpd-13-26627-2013.

Full text
Abstract:
Abstract. Dominant aerosols were distinguished from level 2 inversion products for the Anmyon Aerosol Robotic Network (AERONET) site between 1999 and 2007. Secondary inorganic ions, black carbon (BC) and organic carbon (OC) were separated from fine mode aerosols, and mineral dust (MD), MD mixed with carbon, mixed coarse particles were separated from coarse mode aerosols. Four parameters (aerosol optical depth, single scattering albedo, absorption Angstrom exponent, and fine mode fraction) were used for this classification. Monthly variation of the occurrence rate of each aerosol type reveals that MD and MD mixed with carbon are frequent in spring. Although the fraction among dominant aerosols and occurrence rates of BC and OC tend to be high in cold season for heating, their contributions are variable but consistent due to various combustion sources. Secondary inorganic ions are most prevalent from June to August; the effective radius of these fine mode aerosols increases with water vapor content because of hygroscopic growth. To evaluate the validity of aerosol types identified, dominant aerosols at worldwide AERONET sites (Beijing, Mexico City, Goddard Space Flight Center, Mongu, Alta Floresta, Cape Verde), which have distinct source characteristics, were classified into the same aerosol types. The occurrence rate and fraction of the aerosol types at the selected sites confirm that the classification in this study is reasonable. However, mean optical properties of the aerosol types are generally influenced by the aerosol types with large fractions. The present work shows that the identification of dominant aerosols is effective even at a single site, provided that the archive of the data set is properly available.
APA, Harvard, Vancouver, ISO, and other styles
27

Fadnavis, S., K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, S. Das, and R. Kakatkar. "Transport of aerosols into the UTLS and their impact on the Asian monsoon region as seen in a global model simulation." Atmospheric Chemistry and Physics 13, no. 17 (September 3, 2013): 8771–86. http://dx.doi.org/10.5194/acp-13-8771-2013.

Full text
Abstract:
Abstract. An eight-member ensemble of ECHAM5-HAMMOZ simulations for a boreal summer season is analysed to study the transport of aerosols in the upper troposphere and lower stratosphere (UTLS) during the Asian summer monsoon (ASM). The simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September), when convective activity over the Indian subcontinent is highest, indicating that boundary layer aerosol pollution is the source of this UTLS aerosol layer. The simulations identify deep convection and the associated heat-driven circulation over the southern flanks of the Himalayas as the dominant transport pathway of aerosols and water vapour into the tropical tropopause layer (TTL). Comparison of model simulations with and without aerosols indicates that anthropogenic aerosols are central to the formation of this transport pathway. Aerosols act to increase cloud ice, water vapour, and temperature in the model UTLS. Evidence of ASM transport of aerosols into the stratosphere is also found, in agreement with aerosol extinction measurements from the Halogen Occultation Experiment (HALOE) and Stratospheric Aerosol and Gas Experiment (SAGE) II. As suggested by the observations, aerosols are transported into the Southern Hemisphere around the tropical tropopause by large-scale mixing processes. Aerosol-induced circulation changes also include a weakening of the main branch of the Hadley circulation and a reduction of monsoon precipitation over India.
APA, Harvard, Vancouver, ISO, and other styles
28

Croft, B., J. R. Pierce, R. V. Martin, C. Hoose, and U. Lohmann. "Uncertainty associated with convective wet removal of entrained aerosols in a global climate model." Atmospheric Chemistry and Physics 12, no. 22 (November 16, 2012): 10725–48. http://dx.doi.org/10.5194/acp-12-10725-2012.

Full text
Abstract:
Abstract. The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all entrained accumulation and coarse mode aerosols are assumed to be cloud-droplet borne or ice-crystal borne, and evaporation due to the Bergeron-Findeisen process is neglected. The simulated convective wet scavenging of entrained accumulation and coarse mode aerosols has feedbacks on new particle formation and the number of Aitken mode aerosols, which control stratiform and convective cloud droplet number concentrations and yield precipitation changes in the ECHAM5-HAM model. However, the geographic distribution of aerosol annual mean convective wet deposition change in the model is driven by changes to the assumptions regarding the scavenging of aerosols entrained above cloud bases rather than by precipitation changes, except for sea salt deposition in the tropics. Uncertainty in the seasonal, regional cycles of AOD due to assumptions about entrained aerosol wet scavenging is similar in magnitude to the estimated error in the AOD retrievals. The uncertainty in aerosol concentrations, burdens, and AOD attributed to different assumptions for the wet scavenging of aerosols entrained above convective cloud bases in a global model motivates the ongoing need to better understand and model the activation and impaction processes that aerosols undergo after entrainment into convective updrafts.
APA, Harvard, Vancouver, ISO, and other styles
29

Giannakaki, E., D. S. Balis, V. Amiridis, and C. Zerefos. "Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece." Atmospheric Measurement Techniques 3, no. 3 (May 10, 2010): 569–78. http://dx.doi.org/10.5194/amt-3-569-2010.

Full text
Abstract:
Abstract. We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001–2007. The largest optical depths are observed for Saharan dust and smoke aerosol particles. For local and continental polluted aerosols the measurements indicate high aerosol loads. However, measurements associated with the local path indicate enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for continental aerosols, from West directions with less free tropospheric contribution. The largest lidar ratios, of the order of 70 sr, are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values were estimated for different aerosol categories. Scatter plot between lidar ratio values and Ångström exponent values for local and continental polluted aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for continental aerosols with west and northwest directions that follow downward movement when arriving at our site constantly low lidar ratios almost independent of size are found.
APA, Harvard, Vancouver, ISO, and other styles
30

Giannakaki, E., D. S. Balis, V. Amiridis, and C. Zerefos. "Optical properties of different aerosol types: seven years of combined Raman- elastic backscatter lidar measurements in Thessaloniki, Greece." Atmospheric Measurement Techniques Discussions 2, no. 6 (November 27, 2009): 3027–54. http://dx.doi.org/10.5194/amtd-2-3027-2009.

Full text
Abstract:
Abstract. We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001–2007. The largest optical depths are observed for Saharan dust and smoke aerosol loads. For "local" and "continental polluted" aerosols the measurements indicate moderate aerosol loads. However, measurements associated with the "local" path show lower values of free tropospheric contribution (37% versus 46% for "continental polluted") and thus, enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for "continental clean" aerosols. The largest lidar ratios, of the order of 70 sr are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values was estimated for well defined aerosol categories, which provides a statistical measure of the lidar ratio's dependency on aerosol-size, which is a useful tool for elastic lidar systems. Scatter plot between lidar ratio values and Ångström exponent values for "local" and "continental polluted" aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for "clean continental" aerosols we found constantly low lidar ratios almost independent of size.
APA, Harvard, Vancouver, ISO, and other styles
31

Fadnavis, S., K. Semeniuk, L. Pozzoli, M. G. Schultz, S. D. Ghude, and S. Das. "Transport of aerosol pollution in the UTLS during Asian summer monsoon as simulated by ECHAM5-HAMMOZ model." Atmospheric Chemistry and Physics Discussions 12, no. 11 (November 21, 2012): 30081–117. http://dx.doi.org/10.5194/acpd-12-30081-2012.

Full text
Abstract:
Abstract. An eight member ensemble of ECHAM5-HAMMOZ simulations for the year 2003 is analyzed to study the transport of aerosols in the Upper Troposphere and Lower Stratosphere (UTLS) during the Asian Summer Monsoon (ASM). Simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September) when convective activity over the Indian subcontinent is highest. Model simulations indicate boundary layer aerosol pollution as the source of this UTLS aerosol layer and identify ASM convection as the dominant transport process. Evidence of ASM transport of aerosols into the stratosphere is observed in HALogen Occultation Experiment (HALOE) and Stratospheric Aerosol and Gas Experiment (SAGE) II aerosol extinction. The impact of aerosols in the UTLS region is analyzed by evaluating the differences between simulations with (CTRL) and without aerosol (HAM-off) loading. The transport of anthropogenic aerosols in the UTLS increases cloud ice, water vapour and temperature, indicating that aerosols play an important role in enhancement of cloud ice in the Upper-Troposphere (UT). Aerosol induced circulation changes include a weakening of the main branch of the Hadley circulation and increased vertical transport around the southern flank of the Himalayas and reduction in monsoon precipitation over the India region.
APA, Harvard, Vancouver, ISO, and other styles
32

Pedrós, R., J. L. Gómez-Amo, C. R. Marcos, M. P. Utrillas, S. Gandía, F. Tena, and J. A. Martinez Lozano. "AEROgui: A Graphical User Interface for the Optical Properties of Aerosols." Bulletin of the American Meteorological Society 95, no. 12 (December 1, 2014): 1863–71. http://dx.doi.org/10.1175/bams-d-13-00162.1.

Full text
Abstract:
Atmospheric aerosols have an uncertain effect on climate and serious impacts on human health. The uncertainty in the aerosols' role on climate has several sources. First, aerosols have great spatial and temporal variability. The spatial variability arises from the fact that aerosols emitted in a certain place can travel thousands of kilometers, swept by the winds to modify the destination region's climate. The spatial variability also means that aerosols are inhomogeneously distributed in the vertical direction, which can lead to a differential effect on the energy balance depending on the aerosols' altitude. On the other hand, aerosols experience physical and chemical transformations in the time they spend in the atmosphere, commonly known as aging, which modifies its optical properties. These factors make necessary the use of two approaches for the study of the aerosol impact on climate: global aerosol models and satellite- and ground-based measurements. The disagreement between the estimates of the two approaches is the main cause of the climate uncertainty. One way to reduce climate uncertainty is to create new tools to simulate more realistic aerosol scenarios. We present a graphical user interface to obtain aerosol optical properties: extinction, scattering, and absorption coefficients; single-scattering albedo; asymmetry parameter; and aerosol optical depth. The tool can be used to obtain the optical properties of the external and internal mixture of several aerosol components. Interface outputs have successfully been compared to a black carbon plume and to aging mineral dust.
APA, Harvard, Vancouver, ISO, and other styles
33

Muhlbauer, Andreas, and Ulrike Lohmann. "Sensitivity Studies of Aerosol–Cloud Interactions in Mixed-Phase Orographic Precipitation." Journal of the Atmospheric Sciences 66, no. 9 (September 1, 2009): 2517–38. http://dx.doi.org/10.1175/2009jas3001.1.

Full text
Abstract:
Abstract Anthropogenic aerosols serve as a source of both cloud condensation nuclei (CCN) and ice nuclei (IN) and affect microphysical properties of clouds. Increasing aerosol number concentration is assumed to retard the cloud droplet coalescence and the riming process in mixed-phase orographic clouds, thereby decreasing orographic precipitation. In this study, idealized 3D simulations are conducted to investigate aerosol–cloud interactions in mixed-phase orographic clouds and the possible impact of anthropogenic and natural aerosols on orographic precipitation. Two different types of aerosol anomalies are considered: naturally occurring mineral dust and anthropogenic black carbon. In the simulations with a dust aerosol anomaly, the dust aerosols serve as efficient ice nuclei in the contact mode, leading to an early initiation of the ice phase in the orographic cloud. As a consequence, the riming rates in the cloud are increased, leading to increased precipitation efficiency and enhancement of orographic precipitation. The simulations with an anthropogenic aerosol anomaly suggest that the mixing state of the aerosols plays a crucial role because coating and mixing may cause the aerosols to initiate freezing in the less efficient immersion mode rather than by contact nucleation. It is found that externally mixed black carbon aerosols increase riming in orographic clouds and enhance orographic precipitation. In contrast, internally mixed black carbon aerosols decrease the riming rates, leading in turn to a decrease in orographic precipitation.
APA, Harvard, Vancouver, ISO, and other styles
34

Tian, Pengfei, Lei Zhang, Xianjie Cao, Naixiu Sun, Xinyue Mo, Jiening Liang, Xuetao Li, Xingai Gao, Beidou Zhang, and Hongbin Wang. "Enhanced Bottom-of-the-Atmosphere Cooling and Atmosphere Heating Efficiency by Mixed-Type Aerosols: A Classification Based on Aerosol Nonsphericity." Journal of the Atmospheric Sciences 75, no. 1 (January 2018): 113–24. http://dx.doi.org/10.1175/jas-d-17-0019.1.

Full text
Abstract:
The current understanding of the climate effects of mixed-type aerosols is an open question. The optical and radiative properties of the anthropogenic, mixed-type, and dust aerosols were studied using simultaneous observations of a sun photometer and a depolarization lidar over the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), northwestern China. The aerosol radiative effect was calculated using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model and was in good agreement with the Aerosol Robotic Network (AERONET) product. The anthropogenic, mixed-type, and dust aerosols were identified mainly based on the lidar-measured depolarization ratio, which was supported by the airmass back trajectories. The mixed-type aerosols exhibit lower (higher) extinctions below (above) 1.5 km above the ground, indicating anthropogenic pollution from the atmospheric boundary layer and dust aerosols above. The dust aerosols exhibit the highest absolute radiative effect because of the highest aerosol loading. However, the mixed-type aerosols are effective in both scattering and absorbing solar radiation, leading to the highest cooling efficiency at the bottom of the atmosphere (BOA), 7.4% and 6.5% higher than those of the anthropogenic and dust aerosols, respectively. The mixed-type aerosols exhibit the highest warming efficiency in the atmosphere (ATM), 20.8% and 28.2% higher than the anthropogenic and dust aerosols, respectively. The mixed-type aerosols also show the lowest cooling efficiency at the top of the atmosphere (TOA). The results suggest the necessity of carefully characterizing the mixed-type aerosols in atmospheric numerical models to more precisely assess the energy budget of the Earth–atmosphere system.
APA, Harvard, Vancouver, ISO, and other styles
35

Benedetti, Angela, and Frédéric Vitart. "Can the Direct Effect of Aerosols Improve Subseasonal Predictability?" Monthly Weather Review 146, no. 10 (September 28, 2018): 3481–98. http://dx.doi.org/10.1175/mwr-d-17-0282.1.

Full text
Abstract:
Abstract The fact that aerosols are important players in Earth’s radiation balance is well accepted by the scientific community. Several studies have shown the importance of characterizing aerosols in order to constrain surface radiative fluxes and temperature in climate runs. In numerical weather prediction, however, there has not been definite proof that interactive aerosol schemes are needed to improve the forecast. Climatologies are instead used that allow for computational efficiency and reasonable accuracy. At the monthly to subseasonal range, it is still worth investigating whether aerosol variability could afford some predictability, considering that it is likely that persisting aerosol biases might manifest themselves more over time scales of weeks to months and create a nonnegligible forcing. This paper explores this hypothesis using the ECMWF’s Ensemble Prediction System for subseasonal prediction with interactive prognostic aerosols. Four experiments are conducted with the aim of comparing the monthly prediction by the default system, which uses aerosol climatologies, with the prediction using radiatively interactive aerosols. Only the direct aerosol effect is considered. Twelve years of reforecasts with 50 ensemble members are analyzed on the monthly scale. Results indicate that the interactive aerosols have the capability of improving the subseasonal prediction at the monthly scales for the spring/summer season. It is hypothesized that this is due to the aerosol variability connected to the different phases of the Madden–Julian oscillation, particularly that of dust and carbonaceous aerosols. The degree of improvement depends crucially on the aerosol initialization. More work is required to fully assess the potential of interactive aerosols to increase predictability at the subseasonal scales.
APA, Harvard, Vancouver, ISO, and other styles
36

Adler, G., J. M. Flores, A. Abo Riziq, S. Borrmann, and Y. Rudich. "Chemical, physical, and optical evolution of biomass burning aerosols: a case study." Atmospheric Chemistry and Physics Discussions 10, no. 10 (October 20, 2010): 24371–407. http://dx.doi.org/10.5194/acpd-10-24371-2010.

Full text
Abstract:
Abstract. In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (Hi-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While extensive BB is not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m=1.53(±0.03)+0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m=1.54(±0.01)+0.04i(±0.01) compared to m=1.49(±0.01)+0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.
APA, Harvard, Vancouver, ISO, and other styles
37

Adler, G., J. M. Flores, A. Abo Riziq, S. Borrmann, and Y. Rudich. "Chemical, physical, and optical evolution of biomass burning aerosols: a case study." Atmospheric Chemistry and Physics 11, no. 4 (February 16, 2011): 1491–503. http://dx.doi.org/10.5194/acp-11-1491-2011.

Full text
Abstract:
Abstract. In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.
APA, Harvard, Vancouver, ISO, and other styles
38

Bossolasco, Adriana, Fabrice Jegou, Pasquale Sellitto, Gwenaël Berthet, Corinna Kloss, and Bernard Legras. "Global modeling studies of composition and decadal trends of the Asian Tropopause Aerosol Layer." Atmospheric Chemistry and Physics 21, no. 4 (February 24, 2021): 2745–64. http://dx.doi.org/10.5194/acp-21-2745-2021.

Full text
Abstract:
Abstract. The Asian summer monsoon (ASM) traps convectively lifted boundary layer pollutants inside its upper-tropospheric lower-stratospheric Asian monsoon anticyclone (AMA). It is associated with a seasonal and spatially confined enhanced aerosol layer, called the Asian Tropopause Aerosol Layer (ATAL). Due to the dynamical variability of the AMA, the dearth of in situ observations in this region, the complexity of the emission sources and of transport pathways, knowledge of the ATAL properties in terms of aerosol budget, chemical composition, as well as its variability and temporal trend is still largely uncertain. In this work, we use the Community Earth System Model (CESM 1.2 version) based on the coupling of the Community Atmosphere Model (CAM5) and the MAM7 (Modal Aerosol Model) aerosol module to simulate the composition of the ATAL and its decadal trends. Our simulations cover a long-term period of 16 years from 2000 to 2015. We identify a typical “double-peak” vertical profile of aerosols for the ATAL. We attribute the upper peak (around 100 hPa, predominant during early ATAL, e.g., in June) to dry aerosols, possibly from nucleation processes, and the lower peak (around 250 hPa, predominant for a well-developed and late ATAL, e.g., in July and August) to cloud-borne aerosols associated with convective clouds. We find that mineral dust (present in both peaks) is the dominant aerosol by mass in the ATAL, showing a large interannual variability but no long-term trend, due to its natural variability. The results between 120 and 80 hPa (dry aerosol peak) suggest that for aerosols other than dust the ATAL is composed of around 40 % of sulfate, 30 % of secondary and 15 % of primary organic aerosols, 14 % of ammonium aerosols and less than 3 % of black carbon. Nitrate aerosols are not considered in MAM7. The analysis of the anthropogenic and biomass burning aerosols shows a positive trend for all aerosols simulated by CESM-MAM7.
APA, Harvard, Vancouver, ISO, and other styles
39

Li, Meng, Hang Su, Guo Li, Nan Ma, Ulrich Pöschl, and Yafang Cheng. "Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients." Atmospheric Chemistry and Physics 19, no. 16 (August 29, 2019): 10981–1011. http://dx.doi.org/10.5194/acp-19-10981-2019.

Full text
Abstract:
Abstract. Quantifying the relative importance of gas uptake on the ground and aerosol surfaces helps to determine which processes should be included in atmospheric chemistry models. Gas uptake by aerosols is often characterized by an effective uptake coefficient (γeff), whereas gas uptake on the ground is usually described by a deposition velocity (Vd). For efficient comparison, we introduce an equivalent uptake coefficient (γeqv) at which the uptake flux of aerosols would equal that on the ground surface. If γeff is similar to or larger than γeqv, aerosol uptake is important and should be included in atmospheric models. In this study, we compare uptake fluxes in the planetary boundary layer (PBL) for different reactive trace gases (O3, NO2, SO2, N2O5, HNO3 and H2O2), aerosol types (mineral dust, soot, organic aerosol and sea salt aerosol), environments (urban areas, agricultural land, the Amazon forest and water bodies), seasons and mixing heights. For all investigated gases, γeqv ranges from magnitudes of 10−6–10−4 in polluted urban environments to 10−4–10−1 under pristine forest conditions. In urban areas, aerosol uptake is relevant for all species (γeff≥γeqv) and should be considered in models. On the contrary, contributions of aerosol uptakes in the Amazon forest are minor compared with the dry deposition. The phase state of aerosols could be one of the crucial factors influencing the uptake rates. Current models tend to underestimate the O3 uptake on liquid organic aerosols which can be important, especially over regions with γeff≥γeqv. H2O2 uptakes on a variety of aerosols are yet to be measured under laboratory conditions and evaluated. Given the fact that most models have considered the uptakes of these species on the ground surface, we suggest also considering the following processes in atmospheric models: N2O5 uptake by all types of aerosols, HNO3 and SO2 uptake by mineral dust and sea salt aerosols, H2O2 uptake by mineral dust, NO2 uptakes by sea salt aerosols and O3 uptake by liquid organic aerosols.
APA, Harvard, Vancouver, ISO, and other styles
40

Zhou, Hao, Xu Yue, Yadong Lei, Chenguang Tian, Jun Zhu, Yimian Ma, Yang Cao, Xixi Yin, and Zhiding Zhang. "Distinguishing the impacts of natural and anthropogenic aerosols on global gross primary productivity through diffuse fertilization effect." Atmospheric Chemistry and Physics 22, no. 1 (January 17, 2022): 693–709. http://dx.doi.org/10.5194/acp-22-693-2022.

Full text
Abstract:
Abstract. Aerosols can enhance ecosystem productivity by increasing diffuse radiation. Such diffuse fertilization effects (DFEs) vary among different aerosol compositions and sky conditions. Here, we apply a suite of chemical, radiation, and vegetation models in combination with ground- and satellite-based measurements to assess the impacts of natural and anthropogenic aerosol species on gross primary productivity (GPP) through DFE from 2001–2014. Globally, aerosols enhance GPP by 8.9 Pg C yr−1 under clear-sky conditions but only 0.95 Pg C yr−1 under all-sky conditions. Anthropogenic aerosols account for 41 % of the total GPP enhancement, though they contribute only 25 % to the increment of diffuse radiation. Sulfate/nitrate aerosols from anthropogenic sources make dominant contributions of 33 % (36 %) to aerosol DFE under all-sky (clear-sky) conditions, followed by the fraction of 18 % (22 %) by organic carbon aerosols from natural sources. In contrast to other species, black carbon aerosols reduce global GPP by 0.28 (0.12) Pg C yr−1 under all-sky (clear-sky) conditions. Long-term simulations show that aerosol DFE increases 2.9 % yr−1 under all-sky conditions mainly because of a downward trend in cloud amount. This study suggests that the impacts of aerosols and cloud should be considered in projecting future changes of ecosystem productivity under varied emission scenarios.
APA, Harvard, Vancouver, ISO, and other styles
41

Gantt, B., and N. Meskhidze. "The physical and chemical characteristics of marine organic aerosols: a review." Atmospheric Chemistry and Physics Discussions 12, no. 8 (August 23, 2012): 21779–813. http://dx.doi.org/10.5194/acpd-12-21779-2012.

Full text
Abstract:
Abstract. Knowledge of the physical characteristics and chemical composition of marine organic aerosols is needed for the quantification of their effects on solar radiation transfer and cloud processes. Global emission estimates of marine organic aerosol are in a range of 2 to 70 Tg yr−1 and occur over regions most susceptible to aerosol perturbations. This review examines research pertinent to the chemical composition, size distribution, mixing state, emission mechanism, and climatic impact of marine primary organic aerosols associated with sea spray. Numerous measurements have shown that both the ambient mass concentration of marine organic aerosol and size-resolved organic mass fraction of sea spray aerosol are related to surface ocean biological activity. Recent studies have also indicated that fine mode (smaller than 200 nm in diameter) marine organic aerosols can have a size distribution independent from sea-salt, while coarse mode aerosols (larger than 1000 nm in diameter) are more likely to be internally-mixed with sea-salt. Climate studies have found that marine organic aerosols can cause large local increases in the cloud condensation nuclei concentration, with the potential to have a non-negligible influence on the anthropogenic aerosol indirect forcing. Despite these signs of climate-relevance for marine organic aerosols, the source strength, chemical composition, mixing state, hygroscopicity, cloud droplet activation potential, atmospheric aging, and removal of marine organic aerosols remain poorly quantified. Additional laboratory, field, and modeling studies focused on the chemistry, size distribution, and mixing state of sea spray aerosols are needed to better understand and quantify their importance.
APA, Harvard, Vancouver, ISO, and other styles
42

Jeong, Gill-Ran. "Weather Effects of Aerosols in the Global Forecast Model." Atmosphere 11, no. 8 (August 12, 2020): 850. http://dx.doi.org/10.3390/atmos11080850.

Full text
Abstract:
The weather effects of aerosol types were investigated using well-posed aerosol climatology through the aerosol sensitivity test of thermodynamic and hydrometeor fields, and the weather forecast performances in July of 2017. The largest aerosol direct radiative forcing (ADRF) in July was due to dust aerosols at the surface and atmosphere, and sulfate at the top of the atmosphere (TOA), respectively. The ADRF of total aerosols had unilateral tendencies in thermodynamic and hydrometeor fields. The contribution of individual aerosols was linearly additive to those of total aerosols in the heat fluxes, heating rates, humidity, and convective precipitation. However, no such linearity existed in temperature, geopotential height, cloud liquid or ice contents, and large-scale precipitation. Dust was the most influential forcing agent in July among five aerosol types due to the largest light-absorption capacity. Such unilateral tendencies of total aerosols and a part of the linearity of individual aerosols were exerted on the weather systems. The verification of medium-range forecasts showed that aerosols alleviated the overestimation of surface shortwave (SW) downward fluxes, the negative biases of temperature and geopotential heights at TOA and surface, and the underestimation in light and moderate precipitation. In contrast, they enhanced warm biases at the mid-atmosphere and underestimation in heavy precipitations, particularly negative biases in the intertropical convergence zone (ITCZ). Weather forecast scores including current aerosol information were improved in geopotential height (GPH) of the northern hemisphere (NH); however, they got worse in the temperature and the upper atmosphere GPH of the southern hemisphere (SH), which was mostly due to black carbon (BC) aerosols in the tropical regions. The missing mechanisms such as aerosol–cloud interactions, better aerosol spectral optical properties including mixing states and aging, and the near-real-time (NRT) based aerosol loading data are worthwhile to be tried in the near future for fixing the intrinsic underestimation of precipitation in ITCZ and surface radiative fluxes in the desert and biomass burning area.
APA, Harvard, Vancouver, ISO, and other styles
43

Chan, C. H., A. Y. S. Cheng, and A. Viseu. "A simplified empirical method for determination of aerosol hygroscopicity and composition." Atmospheric Chemistry and Physics Discussions 10, no. 10 (October 12, 2010): 23627–56. http://dx.doi.org/10.5194/acpd-10-23627-2010.

Full text
Abstract:
Abstract. Atmospheric aerosols have substantial influence on the Earth's radiation budget, visibility, cloud formation and precipitation. The aerosol hygroscopicity and the composition of aerosols are of vital importance for solar radiation budget calculation, cloud formation mechanism, and measurement of aerosol spatiotemporal distribution through remote sensing, such as Lidar, MODIS and sun/star photometer. In this paper, hourly averaged records of humidity, visibility and aerosol concentration, conducted in Macao, P.R.C. from 1 February 2006 to 31 December 2008 (LT), are used to estimate aerosol hygroscopicity and composition with a simplified empirical method. The result of monthly variation of aerosol hygroscopicity indicates the important role of aerosol composition on optical properties, which is in agreement with the previous study. This aerosol composition pattern is also consistent with the Asiatic Monsoon pattern and vicinity, such as Hong Kong. The monthly variation of aerosol hygroscopicity and composition also shows the necessity to consider such a factor for the aerosols monitoring by remote system and aerosols forcing simulated by climate model.
APA, Harvard, Vancouver, ISO, and other styles
44

Jung, Eunsil, Seongkyu Seo, Ki-Ho Chang, Seong-Soo Yum, and Bok-Haeng Heo. "Aerosol Properties within and above the Planetary Boundary Layer across the Korean Peninsula during December 2016." Atmosphere 12, no. 10 (October 5, 2021): 1299. http://dx.doi.org/10.3390/atmos12101299.

Full text
Abstract:
During December 2016, airborne aerosol measurements were taken at multiple heights across the Korean Peninsula to examine the vertical properties of aerosols. This study showed that aerosols above the planetary boundary layer (PBL) show similar concentrations and particle size distributions (PSDs), regardless of the relative locations in Korea. On the other hand, aerosols within the PBL differ depending on the geographical location, origin and path of the air mass. The concentrations are the highest in Seoul, followed by Gangneung, East Sea and the Yellow Sea. The known east–west aerosol gradient did not appear and the reasons are discussed in this paper. The study further shows that the aerosols of upwind regions affect the aerosols above the PBL, whereas aerosols in the PBL are affected by local sources and atmospheric conditions in addition to aerosols of upwind areas.
APA, Harvard, Vancouver, ISO, and other styles
45

Liu, Y., Y. Sato, R. Jia, Y. Xie, J. Huang, and T. Nakajima. "Modeling study on the transport of summer dust and anthropogenic aerosols over the Tibetan Plateau." Atmospheric Chemistry and Physics 15, no. 21 (November 11, 2015): 12581–94. http://dx.doi.org/10.5194/acp-15-12581-2015.

Full text
Abstract:
Abstract. The Tibetan Plateau (TP) is located at the juncture of several important natural and anthropogenic aerosol sources. Satellites have observed substantial dust and anthropogenic aerosols in the atmosphere during summer over the TP. These aerosols have distinct effects on the earth's energy balance, microphysical cloud properties, and precipitation rates. To investigate the transport of summer dust and anthropogenic aerosols over the TP, we combined the Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) with a non-hydrostatic regional model (NHM). The model simulation shows heavily loaded dust aerosols over the northern slope and anthropogenic aerosols over the southern slope and the east of the TP. The dust aerosols are primarily mobilized around the Taklimakan Desert, where a portion of the aerosols are transported eastward due to the northwesterly current; simultaneously, a portion of the particles are transported southward when a second northwesterly current becomes northeasterly because of the topographic blocking of the northern slope of the TP. Because of the strong upward current, dust plumes can extend upward to approximately 7–8 km a.s.l. over the northern slope of the TP. When a dust event occurs, anthropogenic aerosols that entrained into the southwesterly current via the Indian summer monsoon are transported from India to the southern slope of the TP. Simultaneously, a large amount of anthropogenic aerosol is also transported from eastern China to the east of the TP by easterly winds. An investigation on the transport of dust and anthropogenic aerosols over the plateau may provide the basis for determining aerosol impacts on summer monsoons and climate systems.
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Lingyu, Wensheng Wang, Baolei Lyu, Jinghua Zhang, Yilun Han, Yuqi Bai, and Zhi Guo. "The Identification and Analysis of Long-Range Aerosol Transport Pathways with Layered Cloud-Aerosol Lidar with Orthogonal Polarization Datasets from 2006 to 2016." Remote Sensing 15, no. 18 (September 15, 2023): 4537. http://dx.doi.org/10.3390/rs15184537.

Full text
Abstract:
In this study, we used Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol products acquired from 2006 to 2016 to identify global long-range aerosol transport pathways, including the trans-Atlantic, the trans-Pacific, and the trans-Arabian Sea pathways. Deep analyses were subsequently conducted focusing on two significant paths within the range of the trans-Pacific transport pathway, from which we generated a three-stage conceptual model mainly identifying aerosols from the Taklimakan Desert and aerosols from the North China Plain. The results show that in the first stage of the model, the dust or polluted-dust aerosols were emitted, raised, and mixed within the planetary boundary layer (PBL), characterized by high percentages (>70%) of aerosols in the PBL (AODPBL), while in the second stage, some aerosols were further raised into the free troposphere where the AODPBL percentages decreased to less than 40%, driven by vertical movements and turbulences; in the last stage, the aerosols gradually settled back to the surface layer due to gravity and wet deposition, inferred by increasing AODPBL percentages. We demonstrated that the proposed model is capable of characterizing different aerosol types and climate conditions on spatiotemporal scales, providing a straightforward and evident approach to exploring long-range aerosol transport pathways.
APA, Harvard, Vancouver, ISO, and other styles
47

Park, Soon-Ung, and Jeong Hoon Cho. "Air Quality in East Asia during the heavy haze event period of 10 to 15 January 2013." International Journal of Energy and Environment 15 (March 24, 2021): 1–9. http://dx.doi.org/10.46300/91012.2021.15.1.

Full text
Abstract:
A prolonged heavy haze event that has caused for the Environmental Protection Bureau (EPB) in Beijing to take emergency measures for the protection of the public health and the reduction of air pollution damages in China has been analyzed with the use of the Aerosol modeling System (AMS) to identify causes of this event. It is found that the heavy haze event is associated with high aerosols and water droplets concentrations. These high aerosol concentrations are mainly composed of anthropogenic aerosols, especially secondary inorganic aerosols formed by gas-to-particle conversion of gaseous pollutants in the eastern part of China whereas those in the northeastern parts of China are composed of the mixture of the anthropogenic aerosols and the Asian dust aerosol originated from the dust source regions of northern China and Mongolia. These high aerosol concentrations are found to be subsequently transported to the downwind regions of the Korean Peninsula and Japan causing a prolonged haze event there. It is also found that the Asian dust aerosol originated from northern China and Mongolia and the anthropogenic aerosols produced by chemical reactions of pollutants in the high emissions region of eastern China can cause significantly adverse environmental impacts in the whole Asian region by increased atmospheric aerosol loadings that may cause respiration diseases and visibility reduction and by excess deposition of aerosols causing adverse impacts on terrestrial and marine eco-systems.
APA, Harvard, Vancouver, ISO, and other styles
48

Gao, Yiman, Bingliang Zhuang, Tijian Wang, Huimin Chen, Shu Li, Wen Wei, Huijuan Lin, and Mengmeng Li. "Climatic–Environmental Effects of Aerosols and Their Sensitivity to Aerosol Mixing States in East Asia in Winter." Remote Sensing 14, no. 15 (July 23, 2022): 3539. http://dx.doi.org/10.3390/rs14153539.

Full text
Abstract:
To establish the direct climatic and environmental effect of anthropogenic aerosols in East Asia in winter under external, internal, and partial internal mixing (EM, IM and PIM) states, a well-developed regional climate–chemical model RegCCMS is used by carrying out sensitive numerical simulations. Different aerosol mixing states yield different aerosol optical and radiative properties. The regional averaged EM aerosol single scattering albedo is approximately 1.4 times that of IM. The average aerosol effective radiative forcing in the atmosphere ranges from −0.35 to +1.40 W/m2 with increasing internal mixed aerosols. Due to the absorption of black carbon aerosol, lower air temperatures are increased, which likely weakens the EAWM circulations and makes the atmospheric boundary more stable. Consequently, substantial accumulations of aerosols further appear in most regions of China. This type of interaction will be intensified when more aerosols are internally mixed. Overall, the aerosol mixing states may be important for regional air pollution and climate change assessments. The different aerosol mixing states in East Asia in winter will result in a variation from 0.04 to 0.11 K for the averaged lower air temperature anomaly and from approximately 0.45 to 2.98 μg/m3 for the aerosol loading anomaly, respectively, due to the different mixing aerosols.
APA, Harvard, Vancouver, ISO, and other styles
49

Hoffmann, Fabian. "On the limits of Köhler activation theory: how do collision and coalescence affect the activation of aerosols?" Atmospheric Chemistry and Physics 17, no. 13 (July 10, 2017): 8343–56. http://dx.doi.org/10.5194/acp-17-8343-2017.

Full text
Abstract:
Abstract. Activation is necessary to form a cloud droplet from an aerosol, and it is widely accepted that it occurs as soon as a wetted aerosol grows beyond its critical radius. Traditional Köhler theory assumes that this growth is driven by the diffusion of water vapor. However, if the wetted aerosols are large enough, the coalescence of two or more particles is an additional process for accumulating sufficient water for activation. This transition from diffusional to collectional growth marks the limit of traditional Köhler theory and it is studied using a Lagrangian cloud model in which aerosols and cloud droplets are represented by individually simulated particles within large-eddy simulations of shallow cumuli. It is shown that the activation of aerosols larger than 0. 1 µm in dry radius can be affected by collision and coalescence, and its contribution increases with a power-law relation toward larger radii and becomes the only process for the activation of aerosols larger than 0. 4–0. 8 µm depending on aerosol concentration. Due to the natural scarcity of the affected aerosols, the amount of aerosols that are activated by collection is small, with a maximum of 1 in 10 000 activations. The fraction increases as the aerosol concentration increases, but decreases again as the number of aerosols becomes too high and the particles too small to cause collections. Moreover, activation by collection is found to affect primarily aerosols that have been entrained above the cloud base.
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Hongyue, Siyu Chen, Nanxuan Jiang, Xin Wang, Xiaorui Zhang, Jian Liu, Zhou Zang, et al. "Differences in Sulfate Aerosol Radiative Forcing between the Daytime and Nighttime over East Asia Using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) Model." Atmosphere 9, no. 11 (November 13, 2018): 441. http://dx.doi.org/10.3390/atmos9110441.

Full text
Abstract:
The effect of aerosols is an important indicator of climate change. Sulfate aerosols, as the major scattering aerosols, which have attracted more and more attention in recent years. The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) were utilized to investigate the spatial distribution of sulfate aerosols and their radiative forcing characteristics over East Asia in 2010. Results showed that sulfate aerosols were mainly distributed over eastern China (24–43° N, 101–126° E), especially in the Sichuan Basin. The concentration of sulfate aerosols decreased with increasing altitude over East Asia. It also exhibited obvious seasonal variations, where the largest range of sulfate aerosol concentrations was found in summer, with a maximum of 2.4 μg kg−1 over eastern China. Although sulfate aerosol concentrations varied slightly during day and night, there was still a significantly difference in the sulfate aerosol radiative forcing. Specifically, the magnitude of the direct radiative forcing induced by sulfate aerosols at the surface was approximately −3.02 W m−2 in the daytime, while that was +0.24 W m−2 in the nighttime. This asymmetric change that was caused by the radiative forcing of sulfate aerosols between day and night would have significant impacts on climate change at the regional scale.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography