Academic literature on the topic 'Aerosols Australia Observations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerosols Australia Observations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aerosols Australia Observations"

1

Yang, Xingchuan, Chuanfeng Zhao, Yikun Yang, and Hao Fan. "Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia." Atmospheric Chemistry and Physics 21, no. 5 (March 15, 2021): 3803–25. http://dx.doi.org/10.5194/acp-21-3803-2021.

Full text
Abstract:
Abstract. The spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of major aerosol types over Australia, are investigated based on multi-year Aerosol Robotic Network (AERONET) observations at nine sites, the Moderate Resolution Imaging Spectroradiometer (MODIS), Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and back-trajectory analysis from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). During the observation period from 2001–2020, the annual aerosol optical depth (AOD) at most sites showed increasing trends (0.002–0.029 yr−1), except for that at three sites, Canberra, Jabiru, and Lake Argyle, which showed decreasing trends (−0.004 to −0.014 yr−1). In contrast, the annual Ångström exponent (AE) showed decreasing tendencies at most sites (−0.045 to −0.005 yr−1). The results showed strong seasonal variations in AOD, with high values in the austral spring and summer and relatively low values in the austral fall and winter, and weak seasonal variations in AE, with the highest mean values in the austral spring at most sites. Monthly average AOD increases from August to December or the following January and decreases during March–July. Spatially, the MODIS AOD showed obvious spatial heterogeneity, with high values appearing over the Australian tropical savanna regions, Lake Eyre Basin, and southeastern regions of Australia, while low values appeared over the arid regions in western Australia. MERRA-2 showed that carbonaceous aerosol over northern Australia, dust over central Australia, sulfate over densely populated northwestern and southeastern Australia, and sea salt over Australian coastal regions are the major types of atmospheric aerosols. The nine ground-based AERONET sites over Australia showed that the mixed type of aerosols (biomass burning and dust) is dominant in all seasons. Moreover, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed that polluted dust is the dominant aerosol type detected at heights 0.5–5 km over the Australian continent during all seasons. The results suggested that Australian aerosol has similar source characteristics due to the regional transport over Australia, especially for biomass burning and dust aerosols. However, the dust-prone characteristic of aerosol is more prominent over central Australia, while the biomass-burning-prone characteristic of aerosol is more prominent in northern Australia.
APA, Harvard, Vancouver, ISO, and other styles
2

Shi, Ge, Wenju Cai, Tim Cowan, Joachim Ribbe, Leon Rotstayn, and Martin Dix. "Variability and Trend of North West Australia Rainfall: Observations and Coupled Climate Modeling." Journal of Climate 21, no. 12 (June 15, 2008): 2938–59. http://dx.doi.org/10.1175/2007jcli1908.1.

Full text
Abstract:
Abstract Since 1950, there has been an increase in rainfall over North West Australia (NWA), occurring mainly during the Southern Hemisphere (SH) summer season. A recent study using twentieth-century multimember ensemble simulations in a global climate model forced with and without increasing anthropogenic aerosols suggests that the rainfall increase is attributable to increasing Northern Hemisphere aerosols. The present study investigates the dynamics of the observed trend toward increased rainfall and compares the observed trend with that generated in the model forced with increasing aerosols. It is found that the observed positive trend in rainfall is projected onto two modes of variability. The first mode is associated with an anomalously low mean sea level pressure (MSLP) off NWA instigated by the enhanced sea surface temperature (SST) gradients toward the coast. The associated cyclonic flows bring high-moisture air to northern Australia, leading to an increase in rainfall. The second mode is associated with an anomalously high MSLP over much of the Australian continent; the anticyclonic circulation pattern, over northern Australia, determines that when rainfall is anomalously high, west of 130°E, rainfall is anomalously low east of this longitude. The sum of the upward trends in these two modes compares well to the observed increasing trend pattern. The modeled rainfall trend, however, is generated by a different process. The model suffers from an equatorial cold-tongue bias: the tongue of anomalies associated with El Niño–Southern Oscillation extends too far west into the eastern Indian Ocean. Consequently, there is an unrealistic relationship in the SH summer between Australian rainfall and eastern Indian Ocean SST: the rise in SST is associated with increasing rainfall over NWA. In the presence of increasing aerosols, a significant SST increase occurs in the eastern tropical Indian Ocean. As a result, the modeled rainfall increase in the presence of aerosol forcing is accounted for by these unrealistic relationships. It is not clear whether, in a model without such defects, the observed trend can be generated by increasing aerosols. Thus, the impact of aerosols on Australian rainfall remains an open question.
APA, Harvard, Vancouver, ISO, and other styles
3

Strzelec, Michal, Bernadette C. Proemse, Leon A. Barmuta, Melanie Gault-Ringold, Maximilien Desservettaz, Philip W. Boyd, Morgane M. G. Perron, Robyn Schofield, and Andrew R. Bowie. "Atmospheric Trace Metal Deposition from Natural and Anthropogenic Sources in Western Australia." Atmosphere 11, no. 5 (May 7, 2020): 474. http://dx.doi.org/10.3390/atmos11050474.

Full text
Abstract:
Aerosols from Western Australia supply micronutrient trace elements including Fe into the western shelf of Australia and further afield into the Southern and Indian Oceans. However, regional observations of atmospheric trace metal deposition are limited. Here, we applied a series of leaching experiments followed by total analysis of bulk aerosol samples to a unique time-series of aerosol samples collected in Western Australia to determine atmospheric concentrations and solubilities of Fe and V, Mn, Co, Zn, and Pb. Positive matrix factorisation analysis indicated that mineral dust, biomass burning particulates, sea salt, and industrial emissions were the major types of aerosols. Overall, natural sources dominated Fe deposition. Higher atmospheric concentrations of mineral dust (sixfold) and biomass burning emissions were observed in warmer compared to cooler months. The fraction of labile Fe (0.6–6.0%) was lower than that reported for other regions of Australia. Bushfire emissions are a temporary source of labile Fe and may cause a peak in the delivery of its more easily available forms to the ocean. Increased labile Fe deposition may result in higher ocean productivity in regions where Fe is limiting, and the effect of aerosol deposition on ocean productivity in this region requires further study.
APA, Harvard, Vancouver, ISO, and other styles
4

Torres, Omar, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola. "TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020." Atmospheric Measurement Techniques 13, no. 12 (December 15, 2020): 6789–806. http://dx.doi.org/10.5194/amt-13-6789-2020.

Full text
Abstract:
Abstract. TROPOspheric Monitoring Instrument (TROPOMI) near-ultraviolet (near-UV) radiances are used as input to an inversion algorithm that simultaneously retrieves aerosol optical depth (AOD), single-scattering albedo (SSA), and the qualitative UV aerosol index (UVAI). We first present the TROPOMI aerosol algorithm (TropOMAER), an adaptation of the currently operational OMI near-UV (OMAERUV and OMACA) inversion schemes that takes advantage of TROPOMI's unprecedented fine spatial resolution at UV wavelengths and the availability of ancillary aerosol-related information to derive aerosol loading in cloud-free and above-cloud aerosols scenes. TROPOMI-retrieved AOD and SSA products are evaluated by direct comparison to sun-photometer measurements. A parallel evaluation analysis of OMAERUV and TropOMAER aerosol products is carried out to separately identify the effect of improved instrument capabilities and algorithm upgrades. Results show TropOMAER improved levels of agreement with respect to those obtained with the heritage coarser-resolution sensor. OMI and TROPOMI aerosol products are also intercompared at regional daily and monthly temporal scales, as well as globally at monthly and seasonal scales. We then use TropOMAER aerosol retrieval results to discuss the US Northwest and British Columbia 2018 wildfire season, the 2019 biomass burning season in the Amazon Basin, and the unprecedented January 2020 fire season in Australia that injected huge amounts of carbonaceous aerosols in the stratosphere.
APA, Harvard, Vancouver, ISO, and other styles
5

Emmerson, Kathryn M., Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, et al. "Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia." Atmospheric Chemistry and Physics 16, no. 11 (June 8, 2016): 6997–7011. http://dx.doi.org/10.5194/acp-16-6997-2016.

Full text
Abstract:
Abstract. The biogenic emissions of isoprene and monoterpenes are one of the main drivers of atmospheric photochemistry, including oxidant and secondary organic aerosol production. In this paper, the emission rates of isoprene and monoterpenes from Australian vegetation are investigated for the first time using the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGANv2.1); the CSIRO chemical transport model; and atmospheric observations of isoprene, monoterpenes and isoprene oxidation products (methacrolein and methyl vinyl ketone). Observations from four field campaigns during three different seasons are used, covering urban, coastal suburban and inland forest areas. The observed concentrations of isoprene and monoterpenes were of a broadly similar magnitude, which may indicate that southeast Australia holds an unusual position where neither chemical species dominates. The model results overestimate the observed atmospheric concentrations of isoprene (up to a factor of 6) and underestimate the monoterpene concentrations (up to a factor of 4). This may occur because the emission rates currently used in MEGANv2.1 for Australia are drawn mainly from young eucalypt trees (< 7 years), which may emit more isoprene than adult trees. There is no single increase/decrease factor for the emissions which suits all seasons and conditions studied. There is a need for further field measurements of in situ isoprene and monoterpene emission fluxes in Australia.
APA, Harvard, Vancouver, ISO, and other styles
6

Bègue, Nelson, Hassan Bencherif, Fabrice Jégou, Hélène Vérèmes, Sergey Khaykin, Gisèle Krysztofiak, Thierry Portafaix, et al. "Transport and Variability of Tropospheric Ozone over Oceania and Southern Pacific during the 2019–20 Australian Bushfires." Remote Sensing 13, no. 16 (August 5, 2021): 3092. http://dx.doi.org/10.3390/rs13163092.

Full text
Abstract:
The present study contributes to the scientific effort for a better understanding of the potential of the Australian biomass burning events to influence tropospheric trace gas abundances at the regional scale. In order to exclude the influence of the long-range transport of ozone precursors from biomass burning plumes originating from Southern America and Africa, the analysis of the Australian smoke plume has been driven over the period December 2019 to January 2020. This study uses satellite (IASI, MLS, MODIS, CALIOP) and ground-based (sun-photometer, FTIR, ozone radiosondes) observations. The highest values of aerosol optical depth (AOD) and carbon monoxide total columns are observed over Southern and Central Australia. Transport is responsible for the spatial and temporal distributions of aerosols and carbon monoxide over Australia, and also the transport of the smoke plume outside the continent. The dispersion of the tropospheric smoke plume over Oceania and Southern Pacific extends from tropical to extratropical latitudes. Ozone radiosonde measurements performed at Samoa (14.4°S, 170.6°W) and Lauder (45.0°S, 169.4°E) indicate an increase in mid-tropospheric ozone (6–9 km) (from 10% to 43%) linked to the Australian biomass burning plume. This increase in mid-tropospheric ozone induced by the transport of the smoke plume was found to be consistent with MLS observations over the tropical and extratropical latitudes. The smoke plume over the Southern Pacific was organized as a stretchable anticyclonic rolling which impacted the ozone variability in the tropical and subtropical upper-troposphere over Oceania. This is corroborated by the ozone profile measurements at Samoa which exhibit an enhanced ozone layer (29%) in the upper-troposphere. Our results suggest that the transport of Australian biomass burning plumes have significantly impacted the vertical distribution of ozone in the mid-troposphere southern tropical to extratropical latitudes during the 2019–20 extreme Australian bushfires.
APA, Harvard, Vancouver, ISO, and other styles
7

Nguyen, Hiep Duc, Matt Riley, John Leys, and David Salter. "Dust Storm Event of February 2019 in Central and East Coast of Australia and Evidence of Long-Range Transport to New Zealand and Antarctica." Atmosphere 10, no. 11 (October 28, 2019): 653. http://dx.doi.org/10.3390/atmos10110653.

Full text
Abstract:
Between 11 and 15 February 2019, a dust storm originating in Central Australia with persistent westerly and south westerly winds caused high particle concentrations at many sites in the state of New South Wales (NSW); both inland and along the coast. The dust continued to be transported to New Zealand and to Antarctica in the south east. This study uses observed data and the WRF-Chem Weather Research Forecast model based on GOCART-AFWA (Goddard Chemistry Aerosol Radiation and Transport–Air Force and Weather Agency) dust scheme and GOCART aerosol and gas-phase MOZART (Model for Ozone And Related chemical Tracers) chemistry model to study the long-range transport of aerosols for the period 11 to 15 February 2019 across eastern Australia and onto New Zealand and Antarctica. Wildfires also happened in northern NSW at the same time, and their emissions are taken into account in the WRF-Chem model by using the Fire Inventory from NCAR (FINN) as the emission input. Modelling results using the WRF-Chem model show that for the Canterbury region of the South Island of New Zealand, peak concentration of PM10 (and PM2.5) as measured on 14 February 2019 at 05:00 UTC at the monitoring stations of Geraldine, Ashburton, Timaru and Woolston (Christchurch), and about 2 h later at Rangiora and Kaiapoi, correspond to the prediction of high PM10 due to the intrusion of dust to ground level from the transported dust layer above. The Aerosol Optical Depth (AOD) observation data from MODIS 3 km Terra/Aqua and CALIOP LiDAR measurements on board CALIPSO (Cloud-Aerosol LiDAR and Infrared Pathfinder Satellite Observations) satellite also indicate that high-altitude dust ranging from 2 km to 6 km, originating from this dust storm event in Australia, was located above Antarctica. This study suggests that the present dust storms in Australia can transport dust from sources in Central Australia to the Tasman sea, New Zealand and Antarctica.
APA, Harvard, Vancouver, ISO, and other styles
8

Guerova, G., and N. Jones. "2003 megafires in Australia: impact on tropospheric ozone and aerosols." Atmospheric Chemistry and Physics Discussions 9, no. 1 (January 29, 2009): 3007–40. http://dx.doi.org/10.5194/acpd-9-3007-2009.

Full text
Abstract:
Abstract. 2003 was a record year for wildfires worldwide. Severe forest fires killed four people, displaced 20 500 others and burnt 260 000 ha in South-East Australia in January 2003. The uncontrolled fires ignited in early January 2003 as a result of a prolonged El Niño drought in South-East Australia. Severe weather conditions resulted in a fast spread of the fires and poor air quality in a region where 70% of the population of Australia lives. We use state-of-art global chemistry and transport model GEOS-Chem in conjunction with ground- and space-based observations to study the ozone (O3) and aerosol enhancement due to fires. Firstly, the monthly mean surface O3 and Aerosol Optical Depth (AOD) in January 2003 are compared to January 2004 and, secondly, from sensitivity model simulations, four episodes are isolated and an attempt is made to quantify the contribution of the fires to air quality in south and South-East Australia. In January 2003 the observed monthly mean afternoon surface O3 in Victoria (VIC) and South Australia (SA) reached 27.5 ppb, which is 6.5 ppb (i.e. 30%) higher than in 2004. The simulated O3 is 29.5 ppb, which is 10 ppb higher than in 2004. While the model tends to overestimate the observed peak O3, it exhibits very good skill in reproducing the O3 temporal variability in January 2003 with a correlation of 0.83. In VIC, the air quality 4-h ozone (O3) standard exceedences are reported on 17, 24 and 25 January. On 12, 17, 24–25 and 29 January 2003, the observed O3 peaks above 40 ppb and the simulated fire contribution is higher than 10 ppb. During these 4 episodes, the range of observed O3 enhancement due to fires is 20–35 ppb, which is a factor of 3 to 5 higher than the monthly mean. The simulated fire O3 enhancement is in the range 15–50 ppb with a factor of 1.5 to 5 higher than the monthly mean. During two episodes, a well-formed surface wind channel stretches across the Tasman Sea facilitating the long range transport to New Zealand contributing to a 10% increase of surface O3. During the four episodes in January 2003, the observed AOD was up to a factor of five higher that the monthly mean AOD. The simulated and observed AODs agree on the spatial structure. Despite the model tendency to underestimate the AOD, it proves a useful tool in reconstructing the mostly patchy observations.
APA, Harvard, Vancouver, ISO, and other styles
9

Emmerson, Kathryn M., Martin E. Cope, Ian E. Galbally, Sunhee Lee, and Peter F. Nelson. "Isoprene and monoterpene emissions in south-east Australia: comparison of a multi-layer canopy model with MEGAN and with atmospheric observations." Atmospheric Chemistry and Physics 18, no. 10 (May 31, 2018): 7539–56. http://dx.doi.org/10.5194/acp-18-7539-2018.

Full text
Abstract:
Abstract. One of the key challenges in atmospheric chemistry is to reduce the uncertainty of biogenic volatile organic compound (BVOC) emission estimates from vegetation to the atmosphere. In Australia, eucalypt trees are a primary source of biogenic emissions, but their contribution to Australian air sheds is poorly quantified. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) has performed poorly against Australian isoprene and monoterpene observations. Finding reasons for the MEGAN discrepancies and strengthening our understanding of biogenic emissions in this region is our focus. We compare MEGAN to the locally produced Australian Biogenic Canopy and Grass Emissions Model (ABCGEM), to identify the uncertainties associated with the emission estimates and the data requirements necessary to improve isoprene and monoterpene emissions estimates for the application of MEGAN in Australia. Previously unpublished, ABCGEM is applied as an online biogenic emissions inventory to model BVOCs in the air shed overlaying Sydney, Australia. The two models use the same meteorological inputs and chemical mechanism, but independent inputs of leaf area index (LAI), plant functional type (PFT) and emission factors. We find that LAI, a proxy for leaf biomass, has a small role in spatial, temporal and inter-model biogenic emission variability, particularly in urban areas for ABCGEM. After removing LAI as the source of the differences, we found large differences in the emission activity function for monoterpenes. In MEGAN monoterpenes are partially light dependent, reducing their dependence on temperature. In ABCGEM monoterpenes are not light dependent, meaning they continue to be emitted at high rates during hot summer days, and at night. When the light dependence of monoterpenes is switched off in MEGAN, night-time emissions increase by 90–100 % improving the comparison with observations, suggesting the possibility that monoterpenes emitted from Australian vegetation may not be as light dependent as vegetation globally. Targeted measurements of emissions from in situ Australian vegetation, particularly of the light dependence issue are critical to improving MEGAN for one of the world's major biogenic emitting regions.
APA, Harvard, Vancouver, ISO, and other styles
10

Klekociuk, Andrew R., David J. Ottaway, Andrew D. MacKinnon, Iain M. Reid, Liam V. Twigger, and Simon P. Alexander. "Australian Lidar Measurements of Aerosol Layers Associated with the 2015 Calbuco Eruption." Atmosphere 11, no. 2 (January 21, 2020): 124. http://dx.doi.org/10.3390/atmos11020124.

Full text
Abstract:
The Calbuco volcano in southern Chile (41.3° S, 72.6° W) underwent three separate eruptions on 22–23 April 2015. Following the eruptions, distinct layers of enhanced lidar backscatter at 532 nm were observed in the lower stratosphere above Buckland Park, South Australia (34.6° S, 138.5° E), and Kingston, Tasmania (43.0° S, 147.3° E), during a small set of observations in April–May 2015. Using atmospheric trajectory modelling and measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) space-borne lidar and the Ozone Mapping Profiler Suite (OMPS) instrument on the Suomi National Polar-orbiting Partnership (NPP) satellite, we show that these layers were associated with the Calbuco eruptions. Buckland Park measurements on 30 April and 3 May detected discrete aerosol layers at and slightly above the tropopause, where the relative humidity was well below saturation. Stratospheric aerosol layers likely associated with the eruptions were observed at Kingston on 17 and 22 May in narrow discrete layers accompanied by weaker and more vertically extended backscatter. The measurements on 22 May provided a mean value of the particle linear depolarisation ratio within the main observed volcanic aerosol layer of 18.0 ± 3.0%, which was consistent with contemporaneous CALIOP measurements. The depolarisation measurements indicated that this layer consisted of a filament dominated by ash backscatter residing above a main region having likely more sulfate backscatter. Layer-average optical depths were estimated from the measurements. The mean lidar ratio for the volcanic aerosols on 22 May of 86 ± 37 sr is consistent with but generally higher than the mean for ground-based measurements for other volcanic events. The inferred optical depth for the main volcanic layer on 17 May was consistent with a value obtained from OMPS measurements, but a large difference on 22 May likely reflected the spatial inhomogeneity of the volcanic plume. Short-lived enhancements of backscatter near the tropopause of 17 May likely represented the formation cirrus that was aided by the presence of associated volcanic aerosols. We also provide evidence that gravity waves potentially influenced the layers, particularly in regard to the vertical motion observed in the strong layer on 22 May. Overall, these observations provide additional information on the dispersal and characteristics of the Calbuco aerosol plumes at higher southern latitudes than previously reported for ground-based lidar measurements.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Aerosols Australia Observations"

1

Dirksen, Ruud, Folkert Boersma, Jos de Laat, Piet Stammes, Omar Torres, and Pepijn Veefkind. "3D OMI observations of aerosol plumes released from December 2006 Australian forest fires." In SPIE Remote Sensing, edited by Richard H. Picard, Adolfo Comeron, Klaus Schäfer, Aldo Amodeo, and Michiel van Weele. SPIE, 2008. http://dx.doi.org/10.1117/12.801660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography