Academic literature on the topic 'Aerosols Asia, Southeastern'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerosols Asia, Southeastern.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aerosols Asia, Southeastern"

1

Wang, M., B. Xu, J. Cao, X. Tie, H. Wang, R. Zhang, Y. Qian, et al. "Carbonaceous aerosols recorded in a Southeastern Tibetan glacier: variations, sources and radiative forcing." Atmospheric Chemistry and Physics Discussions 14, no. 13 (July 31, 2014): 19719–46. http://dx.doi.org/10.5194/acpd-14-19719-2014.

Full text
Abstract:
Abstract. High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of OC / BC ratio with higher values in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source-receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia is a primary contributor during the non-monsoon season (October to May) (81%) and on an annual basis (74%), followed by East Asia (14% and 21%, respectively). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia as the primary contributor. Moreover, the increasing trend of OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice core record.
APA, Harvard, Vancouver, ISO, and other styles
2

Zheng, Jing, Min Hu, Zhuofei Du, Dongjie Shang, Zhaoheng Gong, Yanhong Qin, Jingyao Fang, et al. "Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China." Atmospheric Chemistry and Physics 17, no. 11 (June 12, 2017): 6853–64. http://dx.doi.org/10.5194/acp-17-6853-2017.

Full text
Abstract:
Abstract. Highly time-resolved in situ measurements of airborne particles were conducted at Mt. Yulong (3410 m above sea level) on the southeastern edge of the Tibetan Plateau in China from 22 March to 14 April 2015. The detailed chemical composition was measured by a high-resolution time-of-flight aerosol mass spectrometer together with other online instruments. The average mass concentration of the submicron particles (PM1) was 5.7 ± 5.4 µg m−3 during the field campaign, ranging from 0.1 up to 33.3 µg m−3. Organic aerosol (OA) was the dominant component in PM1, with a fraction of 68 %. Three OA factors, i.e., biomass burning organic aerosol (BBOA), biomass-burning-influenced oxygenated organic aerosol (OOA-BB) and oxygenated organic aerosol (OOA), were resolved using positive matrix factorization analysis. The two oxygenated OA factors accounted for 87 % of the total OA mass. Three biomass burning events were identified by examining the enhancement of black carbon concentrations and the f60 (the ratio of the signal at m∕z 60 from the mass spectrum to the total signal of OA). Back trajectories of air masses and satellite fire map data were integrated to identify the biomass burning locations and pollutant transport. The western air masses from South Asia with active biomass burning activities transported large amounts of air pollutants, resulting in elevated organic concentrations up to 4-fold higher than those of the background conditions. This study at Mt. Yulong characterizes the tropospheric background aerosols of the Tibetan Plateau during pre-monsoon season and provides clear evidence that the southeastern edge of the Tibetan Plateau was affected by the transport of anthropogenic aerosols from South Asia.
APA, Harvard, Vancouver, ISO, and other styles
3

Hatzianastassiou, Kalaitzi, Gavrouzou, Gkikas, Korras-Carraca, and Mihalopoulos. "A Climatological Satellite Assessment of Absorbing Carbonaceous Aerosols on a Global Scale." Atmosphere 10, no. 11 (November 1, 2019): 671. http://dx.doi.org/10.3390/atmos10110671.

Full text
Abstract:
A global climatology of absorbing carbonaceous aerosols (ACA) for the period 2005–2015 is obtained by using satellite MODIS (Moderate Resolution Imaging Spectroradiometer)-Aqua and OMI (Ozone Monitoring Instrument)-Aura aerosol optical properties and by applying an algorithm. The algorithm determines the frequency of presence of ACA (black and brown carbon) over the globe at 1° × 1° pixel level and on a daily basis. The results of the algorithm indicate high frequencies of ACA (up to 19 days/month) over world regions with extended biomass burning, such as the tropical forests of southern and central Africa, South America and equatorial Asia, over savannas, cropland areas or boreal forests, as well as over urban and rural areas with intense anthropogenic activities, such as the eastern coast of China or the Indo-Gangetic plain. A clear seasonality of the frequency of occurrence of ACA is evident, with increased values during June–October over southern Africa, during July–November over South America, August–November over Indonesia, November–March over central Africa and November–April over southeastern Asia. The estimated seasonality of ACA is in line with the known annual patterns of worldwide biomass-burning emissions, while other features such as the export of carbonaceous aerosols from southern Africa to the southeastern Atlantic Ocean are also successfully reproduced by the algorithm. The results indicate a noticeable interannual variability and tendencies of ACA over specific world regions during 2005–2015, such as statistically significant increasing frequency of occurrence over southern Africa and eastern Asia.
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, M., B. Xu, J. Cao, X. Tie, H. Wang, R. Zhang, Y. Qian, et al. "Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing." Atmospheric Chemistry and Physics 15, no. 3 (February 2, 2015): 1191–204. http://dx.doi.org/10.5194/acp-15-1191-2015.

Full text
Abstract:
Abstract. High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia has the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Xiaodong, Chun Zhao, Mingyue Xu, Qiuyan Du, Jianqiu Zheng, Yun Bi, Shengfu Lin, and Yali Luo. "The sensitivity of simulated aerosol climatic impact to domain size using regional model (WRF-Chem v3.6)." Geoscientific Model Development 15, no. 1 (January 12, 2022): 199–218. http://dx.doi.org/10.5194/gmd-15-199-2022.

Full text
Abstract:
Abstract. Domain size can have significant impact on regional modeling results, but few studies examined the sensitivities of simulated aerosol impact to regional domain size. This study investigates the regional modeling sensitivities of aerosol impact on the East Asian summer monsoon (EASM) to domain size. The simulations with two different domain sizes demonstrate consistently that aerosols induce the cooling of the lower troposphere that leads to the anticyclone circulation anomalies and thus the weakening of EASM moisture transport. The aerosol-induced adjustment of monsoonal circulation results in an alternate increase and decrease pattern of precipitation over China. Domain size has a great influence on the simulated meteorological fields. For example, the simulation with larger domain size produces weaker EASM circulation, which also affects aerosol distributions significantly. This leads to the difference of simulated strength and area extent of aerosol-induced changes of lower-tropospheric temperature and pressure, which further results in different distributions of circulation and precipitation anomalies over China. For example, over southeastern China, aerosols induce the increase (decrease) of precipitation from the smaller-domain (larger-domain) simulation. Different domain sizes consistently simulate an aerosol-induced increase in precipitation around 30∘ N over eastern China. This study highlights the important influence of domain size on regional modeling results of aerosol impact on circulation and precipitation, which may not be limited to East Asia. More generally, this study also implies that proper modeling of meteorological fields with appropriate domain size is one of the keys to simulating robust aerosol climatic impact.
APA, Harvard, Vancouver, ISO, and other styles
6

Zanis, Prodromos, Dimitris Akritidis, Aristeidis K. Georgoulias, Robert J. Allen, Susanne E. Bauer, Olivier Boucher, Jason Cole, et al. "Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study." Atmospheric Chemistry and Physics 20, no. 14 (July 17, 2020): 8381–404. http://dx.doi.org/10.5194/acp-20-8381-2020.

Full text
Abstract:
Abstract. In this work, we use Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations from 10 Earth system models (ESMs) and general circulation models (GCMs) to study the fast climate responses on pre-industrial climate, due to present-day aerosols. All models carried out two sets of simulations: a control experiment with all forcings set to the year 1850 and a perturbation experiment with all forcings identical to the control, except for aerosols with precursor emissions set to the year 2014. In response to the pattern of all aerosols effective radiative forcing (ERF), the fast temperature responses are characterized by cooling over the continental areas, especially in the Northern Hemisphere, with the largest cooling over East Asia and India, sulfate being the dominant aerosol surface temperature driver for present-day emissions. In the Arctic there is a warming signal for winter in the ensemble mean of fast temperature responses, but the model-to-model variability is large, and it is presumably linked to aerosol-induced circulation changes. The largest fast precipitation responses are seen in the tropical belt regions, generally characterized by a reduction over continental regions and presumably a southward shift of the tropical rain belt. This is a characteristic and robust feature among most models in this study, associated with weakening of the monsoon systems around the globe (Asia, Africa and America) in response to hemispherically asymmetric cooling from a Northern Hemisphere aerosol perturbation, forcing possibly the Intertropical Convergence Zone (ITCZ) and tropical precipitation to shift away from the cooled hemisphere despite that aerosols' effects on temperature and precipitation are only partly realized in these simulations as the sea surface temperatures are kept fixed. An interesting feature in aerosol-induced circulation changes is a characteristic dipole pattern with intensification of the Icelandic Low and an anticyclonic anomaly over southeastern Europe, inducing warm air advection towards the northern polar latitudes in winter.
APA, Harvard, Vancouver, ISO, and other styles
7

Lawrence, M. G., and J. Lelieveld. "Atmospheric pollutant outflow from southern Asia: a review." Atmospheric Chemistry and Physics Discussions 10, no. 4 (April 15, 2010): 9463–646. http://dx.doi.org/10.5194/acpd-10-9463-2010.

Full text
Abstract:
Abstract. Southern Asia is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal with the trade winds, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects.
APA, Harvard, Vancouver, ISO, and other styles
8

Veefkind, J. P., K. F. Boersma, J. Wang, T. Kurosu, N. Krotkov, and P. F. Levelt. "Global analysis of the relation between aerosols and short-lived trace gases." Atmospheric Chemistry and Physics Discussions 10, no. 8 (August 11, 2010): 18919–51. http://dx.doi.org/10.5194/acpd-10-18919-2010.

Full text
Abstract:
Abstract. The spatial and temporal correlations between concurrent satellite observations of aerosol optical thickness (AOT) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and tropospheric columns of nitrogen dioxide, sulfur dioxide, and formaldehyde from the Ozone Monitoring Instrument (OMI) are used to infer information on the global composition of aerosol particles. When averaging the satellite data over large regions and longer time periods, we find significant correlation between MODIS AOT and OMI trace gas columns for various regions in the world. This suggests that enhanced aerosol and trace gas concentrations originate from common sources, such as fossil fuel combustion, biomass burning, and organic compounds released from the biosphere. This leads us to propose that satellite-inferred AOT to NO2 ratios for regions with comparable photochemical regimes can be used as indicators for the relative (local) efficiency of combustion processes. Indeed, satellites observe low AOT to NO2 ratios over the eastern United States and western Europe, and high AOT to NO2 ratios over comparably industrialized regions in eastern Europe and China. Emission databases and OMI SO2 observations over these regions suggest a much stronger sulfur contribution to aerosol formation than over the well-regulated areas of the eastern United States and western Europe. Furthermore, satellite observations show AOT to NO2 ratios are a factor 100 higher over biomass burning regions than over industrialized areas, reflecting the unregulated burning practices with strong primary particle emissions in the tropics compared to the heavily controlled combustion processes in the industrialized Northern Hemisphere. Simulations with a global chemistry transport model (GEOS-Chem) capture most of these differences, providing some confidence in our understanding of aerosol sources, formation mechanisms, and sinks. Wintertime aerosol concentrations show strongest correlations with NO2 throughout most of the Northern Hemisphere. During summertime, AOT is often (also) correlated with enhanced HCHO concentrations, reflecting the importance of secondary organic aerosol formation in that season. We also find significant correlations between AOT and HCHO over biomass burning regions, the tropics in general, and over industrialized regions in southeastern Asia. The distinct summertime maximum in AOT (0.4 at 550 nm) and HCHO over the southeastern United States strengthens existing hypotheses that local emissions of volatile organic compounds lead to the formation of secondary organic aerosols there. GEOS-Chem underestimates the AOT over the southeastern United States by a factor of 2, most likely due to too strong precipitation and too low SOA yield in the model.
APA, Harvard, Vancouver, ISO, and other styles
9

Lawrence, M. G., and J. Lelieveld. "Atmospheric pollutant outflow from southern Asia: a review." Atmospheric Chemistry and Physics 10, no. 22 (November 25, 2010): 11017–96. http://dx.doi.org/10.5194/acp-10-11017-2010.

Full text
Abstract:
Abstract. Southern Asia, extending from Pakistan and Afghanistan to Indonesia and Papua New Guinea, is one of the most heavily populated regions of the world. Biofuel and biomass burning play a disproportionately large role in the emissions of most key pollutant gases and aerosols there, in contrast to much of the rest of the Northern Hemisphere, where fossil fuel burning and industrial processes tend to dominate. This results in polluted air masses which are enriched in carbon-containing aerosols, carbon monoxide, and hydrocarbons. The outflow and long-distance transport of these polluted air masses is characterized by three distinct seasonal circulation patterns: the winter monsoon, the summer monsoon, and the monsoon transition periods. During winter, the near-surface flow is mostly northeasterly, and the regional pollution forms a thick haze layer in the lower troposphere which spreads out over millions of square km between southern Asia and the Intertropical Convergence Zone (ITCZ), located several degrees south of the equator over the Indian Ocean during this period. During summer, the heavy monsoon rains effectively remove soluble gases and aerosols. Less soluble species, on the other hand, are lifted to the upper troposphere in deep convective clouds, and are then transported away from the region by strong upper tropospheric winds, particularly towards northern Africa and the Mediterranean in the tropical easterly jet. Part of the pollution can reach the tropical tropopause layer, the gateway to the stratosphere. During the monsoon transition periods, the flow across the Indian Ocean is primarily zonal, and strong pollution plumes originating from both southeastern Asia and from Africa spread across the central Indian Ocean. This paper provides a review of the current state of knowledge based on the many observational and modeling studies over the last decades that have examined the southern Asian atmospheric pollutant outflow and its large scale effects. An outlook is provided as a guideline for future research, pointing out particularly critical issues such as: resolving discrepancies between top down and bottom up emissions estimates; assessing the processing and aging of the pollutant outflow; developing a better understanding of the observed elevated pollutant layers and their relationship to local sea breeze and large scale monsoon circulations; and determining the impacts of the pollutant outflow on the Asian monsoon meteorology and the regional hydrological cycle, in particular the mountain cryospheric reservoirs and the fresh water supply, which in turn directly impact the lives of over a billion inhabitants of southern Asia.
APA, Harvard, Vancouver, ISO, and other styles
10

Niu, Hewen, Shichang Kang, Hailong Wang, Rudong Zhang, Xixi Lu, Yun Qian, Rukumesh Paudyal, Shijin Wang, Xiaofei Shi, and Xingguo Yan. "Seasonal variation and light absorption property of carbonaceous aerosol in a typical glacier region of the southeastern Tibetan Plateau." Atmospheric Chemistry and Physics 18, no. 9 (May 7, 2018): 6441–60. http://dx.doi.org/10.5194/acp-18-6441-2018.

Full text
Abstract:
Abstract. Deposition and accumulation of light-absorbing carbonaceous aerosol on glacier surfaces can alter the energy balance of glaciers. In this study, 2 years (December 2014 to December 2016) of continuous observations of carbonaceous aerosols in the glacierized region of the Mt. Yulong and Ganhaizi (GHZ) basin are analyzed. The average elemental carbon (EC) and organic carbon (OC) concentrations were 1.51±0.93 and 2.57±1.32 µg m−3, respectively. Although the annual mean OC ∕ EC ratio was 2.45±1.96, monthly mean EC concentrations during the post-monsoon season were even higher than OC in the high altitudes (approximately 5000 ma.s.l.) of Mt. Yulong. Strong photochemical reactions and local tourism activities were likely the main factors inducing high OC ∕ EC ratios in the Mt. Yulong region during the monsoon season. The mean mass absorption efficiency (MAE) of EC, measured for the first time in Mt. Yulong, at 632 nm with a thermal-optical carbon analyzer using the filter-based method, was 6.82±0.73 m2 g−1, comparable with the results from other studies. Strong seasonal and spatial variations of EC MAE were largely related to the OC abundance. Source attribution analysis using a global aerosol–climate model, equipped with a black carbon (BC) source tagging technique, suggests that East Asia emissions, including local sources, have the dominant contribution (over 50 %) to annual mean near-surface BC in the Mt. Yulong area. There is also a strong seasonal variation in the regional source apportionment. South Asia has the largest contribution to near-surface BC during the pre-monsoon season, while East Asia dominates the monsoon season and post-monsoon season. Results in this study have great implications for accurately evaluating the influences of carbonaceous matter on glacial melting and water resource supply in glacierization areas.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography