Academic literature on the topic 'Aerosol, hygroscopicity, deliquescence, atmospheric corrosion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerosol, hygroscopicity, deliquescence, atmospheric corrosion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Aerosol, hygroscopicity, deliquescence, atmospheric corrosion"

1

Mikhailov, E., S. Vlasenko, D. Rose, and U. Pöschl. "Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake." Atmospheric Chemistry and Physics 13, no. 2 (January 21, 2013): 717–40. http://dx.doi.org/10.5194/acp-13-717-2013.

Full text
Abstract:
Abstract. In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid – ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary organic aerosol) we present first mass-based measurements of water uptake over a wide range of relative humidity (1–99.4%) obtained with a new filter-based differential hygroscopicity analyzer (FDHA) technique. For these samples the concentration dependence of κm can be described by a simple KIM model equation based on observable mass growth factors and a total of only six fit parameters summarizing the combined effects of the dilute hygroscopicity parameters, self- and cross-interaction parameters, and solubilities of all involved chemical components. One of the fit parameters represents κm0 and can be used to predict critical dry diameters for the activation of cloud condensation nuclei (CCN) as a function of water vapor supersaturation according to Köhler theory. For sodium chloride and ammonium sulfate reference particles as well as for pristine rainforest aerosols consisting mostly of secondary organic matter, we obtained good agreement between the KIM predictions and measurement data of CCN activation. The application of KIM and mass-based measurement techniques shall help to bridge gaps in the current understanding of water uptake by atmospheric aerosols: (1) the gap between hygroscopicity parameters determined by hygroscopic growth measurements under sub-saturated conditions and by CCN activation measurements at water vapor supersaturation, and (2) the gap between the results of simplified single parameter models widely used in atmospheric or climate science and the results of complex multi-parameter ion- and molecule-interaction models frequently used in physical chemistry and solution thermodynamics (e.g., AIM, E-AIM, ADDEM, UNIFAC, AIOMFAC).
APA, Harvard, Vancouver, ISO, and other styles
2

Ren, Rongmin, Zhanqing Li, Peng Yan, Yuying Wang, Hao Wu, Maureen Cribb, Wei Wang, Xiao'ai Jin, Yanan Li, and Dongmei Zhang. "Measurement report: The effect of aerosol chemical composition on light scattering due to the hygroscopic swelling effect." Atmospheric Chemistry and Physics 21, no. 13 (July 2, 2021): 9977–94. http://dx.doi.org/10.5194/acp-21-9977-2021.

Full text
Abstract:
Abstract. Liquid water in aerosol particles has a significant effect on their optical properties, especially on light scattering, whose dependence on chemical composition is investigated here using measurements made in southern Beijing in 2019. The effect is measured by the particle light scattering enhancement f(RH), where RH denotes the relative humidity, which is found to be positively and negatively impacted by the proportions of inorganic and organic matter, respectively. Black carbon is also negatively correlated. The positive impact is more robust when the inorganic matter mass fraction was smaller than 40 % (R=0.93, R: the Pearson's correlation coefficient), becoming weaker as the inorganic matter mass fraction gets larger (R=0.48). A similar pattern was also found for the negative impact of the organic matter mass fraction. Nitrate played a more significant role in aerosol hygroscopicity than sulfate in Beijing. However, the deliquescence point of ambient aerosols was at about RH = 80 % when the ratio of the sulfate mass concentration to the nitrate mass concentration of the aerosol was high (mostly higher than ∼ 4). Two schemes to parameterize f(RH) were developed to account for the deliquescent and non-deliquescent effects. Using only one f(RH) parameterization scheme to fit all f(RH) processes incurs large errors. A piecewise parameterization scheme is proposed, which can better describe deliquescence and reduces uncertainties in simulating aerosol hygroscopicity.
APA, Harvard, Vancouver, ISO, and other styles
3

Gysel, M., E. Weingartner, S. Nyeki, D. Paulsen, U. Baltensperger, I. Galambos, and G. Kiss. "Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol." Atmospheric Chemistry and Physics 4, no. 1 (January 22, 2004): 35–50. http://dx.doi.org/10.5194/acp-4-35-2004.

Full text
Abstract:
Abstract. Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from remaining inorganic salts and "most" hydrophilic organic matter (MHOM). This approach allowed ISOM, which constitutes the major fraction of WSOM, to be isolated from ambient aerosols and investigated in pure form. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 30% and 60% relative humidity (RH), and hygroscopic growth factors at 90% RH ranged from 1.08 to 1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. The hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75-85% and 85-95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular mass and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumed value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) ranging from +1% to -18%. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42-53 wt % of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80-62% of particulate water in the samples are associated with inorganic salts and about 20-38% with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.
APA, Harvard, Vancouver, ISO, and other styles
4

Gysel, M., E. Weingartner, S. Nyeki, D. Paulsen, U. Baltensperger, I. Galambos, and G. Kiss. "Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol." Atmospheric Chemistry and Physics Discussions 3, no. 5 (October 1, 2003): 4879–925. http://dx.doi.org/10.5194/acpd-3-4879-2003.

Full text
Abstract:
Abstract. Ambient continental-rural fine aerosol (K-puszta, Hungary, PM1.5) was sampled on quartz fibre filters in winter and summer 2001. Water-soluble matter (WSM) was extracted in MilliQ-water, and, in a second step, solid phase extraction was used to isolate the less hydrophilic fraction (ISOM) of the water-soluble organic matter (WSOM) from inorganic salts and remaining most hydrophilic organic matter (MHOM). This approach allowed to investigate a major fraction of WSOM isolated in pure form from ambient aerosols. Hygroscopic properties of both WSM and ISOM extracts as well as of aquatic reference fulvic and humic acids were investigated using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). ISOM deliquesced between 40–60% and 30–55% relative humidity (RH), in winter and summer, respectively, and hygroscopic growth factors at 90% RH were 1.08–1.11 and 1.16–1.17. The hygroscopicity of ISOM is comparable to secondary organic aerosols obtained in smog chamber experiments, but lower than the hygroscopicity of highly soluble organic acids. Hygroscopic behaviour of investigated fulvic and humic acids had similarities to ISOM, but hygroscopic growth factors were slightly smaller and deliquescence was observed at higher RH (75–85% and 85–95% RH for fulvic acid and humic acid, respectively). These differences probably originate from larger average molecular weight and lower solubility of fulvic and humic acids. Inorganic composition data, measured ISOM hygroscopicity, and a presumable value for the hygroscopicity of the small remaining MHOM fraction were used to predict hygroscopic growth of WSM extracts. Good agreement between model prediction and measured water uptake was observed with differences (by volume) of +1% and −5% in winter, and −18% and −12% in summer. While deliquescence properties of WSM extracts were mainly determined by the inorganic salts (42–53 wt \\% of WSM), the WSOM accounted for a significant fraction of particulate water. At 90% RH, according to model predictions and measurements, about 80% (62%) of particulate water in winter (summer) samples are associated with inorganic salts and about 20% (38%) with WSOM. The relative contributions of both distinguished WSOM fractions, ISOM and MHOM, remains uncertain since MHOM was not available in isolated form, but the results suggest that the less abundant MHOM is also important due to its presumably larger hygroscopicity.
APA, Harvard, Vancouver, ISO, and other styles
5

Lei, T., A. Zuend, W. G. Wang, Y. H. Zhang, and M. F. Ge. "Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols." Atmospheric Chemistry and Physics 14, no. 20 (October 23, 2014): 11165–83. http://dx.doi.org/10.5194/acp-14-11165-2014.

Full text
Abstract:
Abstract. Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5–90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii–Stokes–Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology effects), which are not considered in the models. Hygroscopic growth factors of mixed particles containing humic acid are well reproduced by the ZSR relation. Lastly, the organic surrogate compounds represent a selection of some of the most abundant pyrolysis products of biomass burning. The hygroscopic growths of mixtures of the organic surrogate compounds with ammonium sulfate with increasing organics mass fraction representing ambient conditions from the wet to the dry seasonal period in the Amazon basin, exhibit significant water uptake prior to the deliquescence of ammonium sulfate. The measured water absorptions of mixtures of several organic surrogate compounds (including levoglucosan) with ammonium sulfate are close to those of binary mixtures of levoglucosan with ammonium sulfate, indicating that levoglucosan constitutes a major contribution to the aerosol water uptake prior to (and beyond) the deliquescence of ammonium sulfate. Hence, certain hygroscopic organic surrogate compounds can substantially affect the deliquescence point of ammonium sulfate and overall particle water uptake.
APA, Harvard, Vancouver, ISO, and other styles
6

Joutsensaari, J., P. Vaattovaara, M. Vesterinen, K. Hämeri, and A. Laaksonen. "A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles." Atmospheric Chemistry and Physics 1, no. 1 (December 4, 2001): 51–60. http://dx.doi.org/10.5194/acp-1-51-2001.

Full text
Abstract:
Abstract. A novel method to characterize the organic composition of aerosol particles has been developed. The method is based on organic vapor interaction with aerosol particles and it has been named an Organic Tandem Differential Mobility Analyzer (OTDMA). The OTDMA method has been tested for inorganic (sodium chloride and ammonium sulfate) and organic (citric acid and adipic acid) particles. Growth curves of the particles have been measured in ethanol vapor and as a comparison in water vapor as a function of saturation ratio. Measurements in water vapor show that sodium chloride and ammonium sulfate as well as citric acid particles grow at water saturation ratios (S) of 0.8 and above, whereas adipic acid particles do not grow at S < 0.96. For sodium chloride and ammonium sulfate particles, a deliquescence point is observed at S = 0.75 and S = 0.79, respectively. Citric acid particles grow monotonously with increasing saturation ratios already at low saturation ratios and no clear deliquescence point is found. For sodium chloride and ammonium sulfate particles, no growth can be seen in ethanol vapor at saturation ratios below 0.93. In contrast, for adipic acid particles, the deliquescence takes place at around S = 0.95 in the ethanol vapor. The recrystallization of adipic acid takes place at S < 0.4. Citric acid particles grow in ethanol vapor similarly as in water vapor; the particles grow monotonously with increasing saturation ratios and no stepwise deliquescence is observed. The results show that the working principles of the OTDMA are operational for single-component aerosols. Furthermore, the results indicate that the OTDMA method may prove useful in determining whether aerosol particles contain organic substances, especially if the OTDMA is operated in parallel with a hygroscopicity TDMA, as the growth of many substances is different in ethanol and water vapors.
APA, Harvard, Vancouver, ISO, and other styles
7

Taylor, Nathan F., Don R. Collins, Douglas H. Lowenthal, Ian B. McCubbin, A. Gannet Hallar, Vera Samburova, Barbara Zielinska, Naresh Kumar, and Lynn R. Mazzoleni. "Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory." Atmospheric Chemistry and Physics 17, no. 4 (February 20, 2017): 2555–71. http://dx.doi.org/10.5194/acp-17-2555-2017.

Full text
Abstract:
Abstract. Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer–CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall–winter of 2007–2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Jun, Wanyu Liu, Linjie Li, Wenjun Gu, Xiying Zhang, Mattias Hallquist, Mingjin Tang, Sen Wang, and Xiangrui Kong. "Hygroscopicity of Fresh and Aged Salt Mixtures from Saline Lakes." Atmosphere 12, no. 9 (September 16, 2021): 1203. http://dx.doi.org/10.3390/atmos12091203.

Full text
Abstract:
The high hygroscopicity of salt aerosol particles makes the particles active in aerosol and cloud formations. Inland saline lakes are an important and dynamic source of salt aerosol. The salt particles can be mixed with mineral dust and transported over long distances. During transportation, these particles participate in atmospheric heterogeneous chemistry and further impact the climate and air quality on a global scale. Despite their importance and potential, relatively little research has been done on saline lake salt mixtures from atmospheric perspectives. In this study, we use experimental and model methods to evaluate the hygroscopic properties of saline lake brines, fresh salt aerosol particles, and aged salt aerosol particles. Both original samples and literature data are investigated. The original brine samples are collected from six salt lakes in Shanxi and Qinghai provinces in China. The ionic compositions of the brines are determined and the hygroscopicity measurements are performed on crystallized brines. The experimental results agree well with theoretical deliquescence relative humidity (DRH) values estimated by a thermodynamic model. The correlations between DRHs of different salt components and the correlations between DRHs and ionic concentrations are presented and discussed. Positive matrix factorization (PMF) analysis is performed on the ionic concentrations data and the hygroscopicity results, and the solutions are interpreted and discussed. The fresh and aged salt aerosol particles are analyzed in the same way as the brines, and the comparison shows that the aged salt aerosol particles completely alter their hygroscopic property, i.e., transferring from MgCl2− governed to NH4NO3− governed.
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Weigang, Ting Lei, Andreas Zuend, Hang Su, Yafang Cheng, Yajun Shi, Maofa Ge, and Mingyuan Liu. "Effect of mixing structure on the water uptake of mixtures of ammonium sulfate and phthalic acid particles." Atmospheric Chemistry and Physics 21, no. 3 (February 15, 2021): 2179–90. http://dx.doi.org/10.5194/acp-21-2179-2021.

Full text
Abstract:
Abstract. Aerosol mixing state regulates the interactions between water molecules and particles and thus controls aerosol activation and hygroscopic growth, which thereby influences visibility degradation, cloud formation, and its radiative forcing. There are, however, few current studies on the mixing structure effects on aerosol hygroscopicity. Here, we investigated the hygroscopicity of ammonium sulfate / phthalic acid (AS / PA) aerosol particles with different mass fractions of PA in different mixing states in terms of initial particle generation. Firstly, the effect of PA coatings on the hygroscopic behavior of the core-shell-generated mixtures of AS with PA was studied using a coating hygroscopicity tandem differential mobility analyzer (coating HTDMA). The slow increase in the hygroscopic growth factor of core-shell-generated particles is observed with increasing thickness of the coating PA prior to the deliquescence relative humidity (DRH) of AS. At relative humidity (RH) above 80 %, a decrease in the hygroscopic growth factor of particles occurs as the thickness of the PA shell increases, which indicates that the increase of PA mass fractions leads to a reduction of the overall core-shell-generated particle hygroscopicity. In addition, the use of the Zdanovskii–Stokes–Robinson (ZSR) relation leads to the underestimation of the measured growth factors of core-shell-generated particles without consideration of the morphological effect of core-shell-generated particles, especially at higher RH. Secondly, in the case of the AS / PA initially well-mixed particles, a shift of the DRH of AS (∼80 %, Tang and Munkelwitz, 1994) to lower RH is observed due to the presence of PA in the initially well-mixed particles. The predicted hygroscopic growth factor using the ZSR relation is consistent with the measured hygroscopic growth factor of the initially well-mixed particles. Moreover, we compared and discussed the influence of mixing states on the water uptake of AS / PA aerosol particles. It is found that the hygroscopic growth factor of the core-shell-generated particles is slightly higher than that of the initially well-mixed particles with the same mass fractions of PA at RH above 80 %. The observation of AS / PA particles may contribute to a growing field of knowledge regarding the influence of coating properties and mixing structure on water uptake.
APA, Harvard, Vancouver, ISO, and other styles
10

Miñambres, L., E. Méndez, M. N. Sánchez, F. Castaño, and F. J. Basterretxea. "The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols." Atmospheric Chemistry and Physics 14, no. 20 (October 29, 2014): 11409–25. http://dx.doi.org/10.5194/acp-14-11409-2014.

Full text
Abstract:
Abstract. In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were generated by flowing atomized sodium halide particles (either dry or aqueous) through a heated oven containing the gaseous acid. The obtained results indicate that gaseous organic acids easily nucleate onto dry and aqueous sodium halide particles. On the other hand, scanning electron microscopy (SEM) images indicate that lauric acid coating on NaCl particles makes them to aggregate in small clusters. The hygroscopic behaviour of covered sodium halide particles in deliquescence mode shows different features with the exchange of the halide ion, whereas the organic surfactant has little effect in NaBr particles, NaCl and NaI covered particles experience appreciable shifts in their deliquescence relative humidities, with different trends observed for each of the acids studied. In efflorescence mode, the overall effect of the organic covering is to retard the loss of water in the particles. It has been observed that the presence of gaseous water in heterogeneously nucleated particles tends to displace the cover of hexanoic acid to energetically stabilize the system.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Aerosol, hygroscopicity, deliquescence, atmospheric corrosion"

1

D'ANGELO, LUCA. "Atmospheric aerosol phase transitions: measurements and implications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/102623.

Full text
Abstract:
Many properties of atmospheric aerosols, such as optical and chemical behavior, are strictly affected by their ability to adsorb moisture from the atmosphere, i.e. hygroscopicity, and to change their physical phase. Indeed, aerosols deliquesce when a solid-to-liquid phase transition occurs due to an increase in relative humidity (RH) conditions; the opposite process, i.e. crystallization, implies a decrease in RH. Whereas aerosols hygroscopicity is widely studied, the lack of a well-standardized method which allows to characterized the overall behavior of PMx fraction, leaded most of the authors to investigate the phase transitions of simplified aerosol systems, such as pure or simple mixture of compounds, and not real atmospheric aerosols which are extremely complex in chemical composition. Thus, the aim of this work is to describe a new conductance method which allows the identification of the phase transition of atmospheric aerosols sampled as PM2.5 fraction in a urban site (Milan, Po Valley, Italy). In addition, seasonal variability of deliquescence and crystallization relative humidity (DRH and CRH, respectively) is discussed in connection with the variability of chemical composition. The results highlights that atmospheric aerosols show a hysteresis when RH conditions are increased up to DRH and then decreased. In particular, deliquescence occurs at higher RH values in respect of CRH, since crystallization is kinetically-dependent and it occurs at supersaturated conditions. The averaged hysteresis amplitude is found to account about 14% RH and nitrates and sulfates content is found to mainly drive the deliquescence and crystallization conditions. The obtained data are then used to estimate the atmospheric aerosols physical state estimated on the basis of the RH conditions and history in Milan for the 2006-2014 period. Thus, the results are discussed to different applications. Firstly, the implications for energy saving of data centers are shown. Since this centers represent about 2% of the global energy demand, the importance in reducing this amount was stated. This can be allowed by improve the energy efficiency of data centers, mainly by means of decreasing the energy consumption of the cooling systems. The Direct-Free Cooling systems, which is one of the most used answer, forced filtered ambient airflow to remove heat produced by circuits activity. On the other hand, atmospheric contaminants are deposited on circuits surface and corrosion can occurred when they promote an electrolyte solutions formation due to hygroscopicity and deliquescence. Thus, a modelling and experimental approaches are compared to estimate the energy saving of ENI-Green Data Center (Sannazzaro de’ Burgondi, Po Valley, Italy). The effects of atmospheric contaminants are then discussed on their corrosive effects on electronic circuits. The results show that deliquesced aerosols promote corrosion and electrochemical migration far from condensing conditions and this can induce circuits failures. This states the importance in considering aerosols contamination and their phases for circuits reliability. Finally, the aerosols hygroscopic growth factors are evaluated within the hysteresis loop with the aim to provide an estimation of the error which affects the widely-used algorithms for PM2.5 concentrations from remote sensing data retrieval.
APA, Harvard, Vancouver, ISO, and other styles
2

ROVELLI, GRAZIA. "Characterizing the hygroscopic properties of aerosols: from binary aqueous systems to atmospheric aerosols." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/104639.

Full text
Abstract:
The quantification of the hygroscopic properties of atmospheric aerosols is important to understand several processes they are involved in, such as clouds formation, their interaction with solar radiation and the penetration of particles in the human respiratory track. In addition, the interaction of deposited aerosols with surfaces depends on their physical state, too; thus, characterizing their phase transitions as a function of their chemical composition is key to understanding the effects they have on materials (e.g. printed circuits, cultural heritage artifacts). In order to investigate the hygroscopic properties of aerosols, an electrical conductance method in an Aerosol Exposure Chamber was developed for the determination of the phase transitions of PM2.5 aerosol samples during relative humidity cycles. The obtained Deliquescence and Crystallization Relative Humidity (DRH and CRH) were put in relation with the ionic chemical composition of the analyzed samples: it was found that seasonal chemical variations result in seasonal trends for DRH and CRH, too. The implications of these results for Free-Cooled Data Centers, for the understanding of the role of particles in stone-decay processes of cultural heritage artifacts and for the common algorithms used in the remote sensing of particulate matter concentrations were evaluated. The ionic fraction characterisation was also used as an input for a state-of-the-art equilibrium aerosol model (E-AIM) to simulate the DRH of the samples. Some discrepancies were evidenced in the comparison of experimental and modelled values, because the hygroscopic properties of the organic components need to be included too. In order to effectively account for their contribute, current aerosol models need to be refined with accurate hygroscopicity measurements on organic compounds of increasing molecular complexity and their mixtures with common electrolytes. Such measurements are essential for understanding and modelling the microphysical properties that determine the partitioning of water between the gas and the aerosol phases in chemically complex systems. In this context, an experimental technique based on evaporation kinetics measurements in an Cylindrical Electrodynamic Balance was developed for the measurement of hygroscopic properties on single confined droplets from aqueous solutions with known chemical composition. To expand the range of applicability of a previously developed technique to water activities from 0.5 to values close to saturation (>0.99), well-characterized binary and ternary inorganic mixtures were considered. The obtained results were used to successfully validate this technique by comparing them with calculations from E-AIM model and to assess the sensitivity of this technique to small changes in chemical composition. The first class of atmospherically relevant compounds that was considered was aminium sulphates, which are the products of the neutralization reactions of sulphuric acid and short-chained alkylamines (methyl- and ethylamines). They have been detected in atmospheric aerosols up to hundreds of pg m-3, but their hygroscopic behaviour was less characterized than their inorganic equivalent, ammonium sulphate, even if they can promote cloud droplets formation and particle growth.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography