Academic literature on the topic 'Aerodynamic lens'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Aerodynamic lens.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Aerodynamic lens"
Du, Xubing, Zeming Zhuo, Xue Li, Xuan Li, Mei Li, Junlin Yang, Zhen Zhou, Wei Gao, Zhengxu Huang, and Lei Li. "Design and Simulation of Aerosol Inlet System for Particulate Matter with a Wide Size Range." Atmosphere 14, no. 4 (March 31, 2023): 664. http://dx.doi.org/10.3390/atmos14040664.
Full textWang, Xiaoliang, and Peter H. McMurry. "A Design Tool for Aerodynamic Lens Systems." Aerosol Science and Technology 40, no. 5 (June 2006): 320–34. http://dx.doi.org/10.1080/02786820600615063.
Full textWang, Xiaoliang, and Peter H. McMurry. "Instruction Manual for the Aerodynamic Lens Calculator." Aerosol Science and Technology 40, no. 5 (June 2006): 1–10. http://dx.doi.org/10.1080/02786820600616764.
Full textOKA, Nobuhito, Masato FURUKAWA, Kenta KAWAMITSU, and Kazutoyo YAMADA. "Optimum aerodynamic design for wind-lens turbine." Journal of Fluid Science and Technology 11, no. 2 (2016): JFST0011. http://dx.doi.org/10.1299/jfst.2016jfst0011.
Full textWilliams, L. R., L. A. Gonzalez, J. Peck, D. Trimborn, J. McInnis, M. R. Farrar, K. D. Moore, et al. "Characterization of an aerodynamic lens for transmitting particles greater than 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer." Atmospheric Measurement Techniques 6, no. 11 (November 28, 2013): 3271–80. http://dx.doi.org/10.5194/amt-6-3271-2013.
Full textGunasekaran, Sidaard, Madison Peyton, and Neal Novotny. "Aerodynamic Interactions of Wind Lenses at Close Proximities." Energies 15, no. 13 (June 24, 2022): 4622. http://dx.doi.org/10.3390/en15134622.
Full textNovosselov, Igor V., and Peter C. Ariessohn. "Rectangular Slit Atmospheric Pressure Aerodynamic Lens Aerosol Concentrator." Aerosol Science and Technology 48, no. 2 (December 13, 2013): 163–72. http://dx.doi.org/10.1080/02786826.2013.865832.
Full textGrund, J., Ch E. Düllmann, K. Eberhardt, Sz Nagy, J. J. W. van de Laar, D. Renisch, and F. Schneider. "Implementation of an aerodynamic lens for TRIGA-SPEC." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 376 (June 2016): 225–28. http://dx.doi.org/10.1016/j.nimb.2015.12.017.
Full textWorbs, Lena, Nils Roth, Jannik Lübke, Armando D. Estillore, P. Lourdu Xavier, Amit K. Samanta, and Jochen Küpper. "Optimizing the geometry of aerodynamic lens injectors for single-particle coherent diffractive imaging of gold nanoparticles." Journal of Applied Crystallography 54, no. 6 (November 16, 2021): 1730–37. http://dx.doi.org/10.1107/s1600576721009973.
Full textWilliams, L. R., L. A. Gonzalez, J. Peck, D. Trimborn, J. McInnis, M. R. Farrar, K. D. Moore, et al. "Characterization of an aerodynamic lens for transmitting particles > 1 micrometer in diameter into the Aerodyne aerosol mass spectrometer." Atmospheric Measurement Techniques Discussions 6, no. 3 (June 7, 2013): 5033–63. http://dx.doi.org/10.5194/amtd-6-5033-2013.
Full textDissertations / Theses on the topic "Aerodynamic lens"
Koolik, Libby (Libby P. ). "Characterization of a 3D printed pumped counterflow virtual impactor and an aerodynamic lens concentrator." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/114346.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 11-12).
Atmospheric aerosols have an important role in cloud formation and, by extension, in the overall climate system. Field studies are required to refine the uncertainty associated with the net radiative effect of atmospheric aerosols. Two pre-existing cloud sampling devices, the pumped counterflow virtual impactor (PCVI) and aerodynamic lens concentrator (ADL), were modelled using computer aided design software and printed using stereolithography printing. These devices were compared against their industrial counterparts. The printed PCVI was proven to be as effective as the industrial PCVI in a smaller working range. The printed concentrator effectively concentrated particles, but at a lower concentration factor than the industrial concentrator. This study revealed potential for further refinement in design features for both devices and it served as an essential pre-study for future field campaigns that will use these 3D printed devices.
by Libby Koolik.
S.B.
Lai, Shutong. "Synthèse de revêtements nanocomposites photocatalytiques par pulvérisation cathodique assisté par jet d’aérosol." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCD063.
Full textA process combining magnetron sputtering with a divergent jet of nanoparticles transported by an aerodynamic lens is proposed for the synthesis of nanocomposite films. This process enables the incorporation of nanoparticles during coating growth, with separate control of nanoparticle and matrix deposition. In addition, the incorporation of nanoparticles generates the formation of growth defects that aids coating surface development. This is why it is proposed to apply this process to the synthesis of photocatalytic nanocomposite films. TiO2, recognized for its photocatalytic properties, was chosen as the matrix. The aim of this thesis is to investigate the potential of this process from three main perspectives. The first concerns the control of nanoparticle concentration and its impact on the matrix properties. The second concerns how to incorporate the nanoparticles into the matrix, by adjusting the time sequence and time of incorporation. The third perspective deals with the nature of the particles: five different types of nanoparticles (SiO2, Au, Bi2O3, Cu2O, P25) have been successfully incorporated, and a comparison of these different types of nanoparticles has been carried out. It is demonstrated that judicious coating architecture can be easily implemented and lead to promising results
Matouk, Rabea. "Calculation of Aerodynamic Noise of Wing Airfoils by Hybrid Methods." Doctoral thesis, Universite Libre de Bruxelles, 2016. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/240641.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Baugher, Skyler Keil. "Development of a Hybrid Methodology for RANS and LES Modeling of Aerodynamic Flows." University of Toledo / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1588873661973254.
Full textAfailal, Al Hassan. "Numerical simulation of non-reactive aerodynamics in Internal Combustion Engines using a hybrid RANS/LES approach." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3028.
Full textInternal aerodynamics is a key element for improving the combustion efficiency in Spark-Ignition (SI) engines. Within this context, CFD tools are increasingly used to investigate in-cylinder flows and to support the design of fuel-efficient engines. The present research aimed at extending and validating a non-zonal hybrid Reynolds-Averaged Navier-Stokes / Temporal Large-Eddy Simulation (HTLES) approach, initially formulated for stationary flows, to cyclic SI engine flows with moving walls. The aim was to model the near-wall regions and coarse mesh regions in RANS, while solving the turbulent scales in core regions with sufficient mesh resolution using temporal LES, in a seamless approach with no a priori user input. HTLES was retained as it proposed a consistent hybridization combining time-averaging in RANS regions with temporal filtering in TLES.A first development consisted in implementing a smooth shielding function that enforces the RANS mode in near-wall regions, regardless of the local temporal and spatial resolution. The extension of HTLES to cyclic flows was then achieved via the formulation of a method allowing approximating the phase averages of resolved flow quantities based on an Exponentially Weighted Average (EWA). A dynamic expression for the width of the weighted average was proposed, in order to ensure that the high frequency turbulent fluctuations be filtered out from the resolved quantities, while keeping the low frequency cyclic components of the flow variables. The resulting EWA-HTLES model was implemented in the commercial CONVERGE CFD code. The developed EWA-HTLES model was first applied to the simulation of two steady flow configurations: a minimal turbulent channel and a steady flow rig. Predictions were confronted with reference data, as well as with those from RANS and LES. All simulations relied on the use of standard wall laws and coarse grids at walls. Imposing the RANS mode at walls yielded EWA-HTLES predictions of pressure losses much closer to DNS and experimental findings than with LES. At the same time, it allowed yielding results in terms of mean and RMS velocities s in the core regions of the same quality than LES, and superior to RANS.Finally, EWA-HTLES was applied to the simulation of two cyclic flows representative of SI engines: the compressed tumble and the Darmstadt single-cylinder pentroof 4valve engine. For each configuration, a total number of 40 consecutive cycles were simulated. The results were confronted to PIV data, and to RANS and LES predictions obtained using the same numerical set-up. It was shown that EWA-HTLES successfully drives the RANS-to-LES transition in such complex configurations exhibiting unsteady flow features and important cyclic geometrical deformations. It switched from the RANS mode at the walls to LES in the core region of the cylinder, allowing a better prediction of unsteady phenomena including the evolution of the overall tumble characteristics and phenomena associated to cyclic variability. The EWA-HTLES results were shown to be comparable to those predicted by LES, and superior to RANS.The performed developments and obtained results open encouraging perspectives for the application of this hybrid RANS/LES method in industrial configurations involving non-stationary conditions and in particular moving boundaries
Zhang, Di. "Turbulence Modeling and Simulation of Unsteady Transitional Boundary Layers and Wakes with Application to Wind Turbine Aerodynamics." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/81137.
Full textPh. D.
Mossi, Michele. "Simulation of benchmark and industrial unsteady compressible turbulent fluid flows /." [S.l.] : [s.n.], 1999. http://library.epfl.ch/theses/?nr=1958.
Full textSzubert, Damien. "Physics and modelling of unsteady turbulent flows around aerodynamic and hydrodynamic structures at high Reynold number by numerical simulation." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15129/2/szubert_1.pdf.
Full textLiggett, Nicholas Dwayne. "Numerical investigation of static and dynamic stall of single and flapped airfoils." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45834.
Full textHodara, Joachim. "Hybrid RANS-LES closure for separated flows in the transitional regime." Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54995.
Full textBooks on the topic "Aerodynamic lens"
Ambrose, James E. Simplified building design for wind and earthquake forces. 2nd ed. New York: Wiley, 1990.
Find full text1933-, Vergun Dimitry, ed. Simplified building design for wind and earthquake forces. 3rd ed. New York: Wiley, 1995.
Find full textBook chapters on the topic "Aerodynamic lens"
Xia, Zhenhua, Zuoli Xiao, Yipeng Shi, and Shiyi Chen. "Constrained Large-Eddy Simulation for Aerodynamics." In Progress in Hybrid RANS-LES Modelling, 105–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15141-0_8.
Full textAngerbauer, Rupert, and Thomas Rung. "Hybrid RANS/LES Simulations of Aerodynamic Flows Around Superstructures of Ships." In Progress in Hybrid RANS-LES Modelling, 367–77. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27607-2_30.
Full textKrajnović, Siniša, and Guglielmo Minelli. "Status of PANS for Bluff Body Aerodynamics of Engineering Relevance." In Progress in Hybrid RANS-LES Modelling, 399–410. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15141-0_32.
Full textFavre, T., B. Diedrichs, and G. Efraimsson. "Detached-Eddy Simulations Applied to Unsteady Crosswind Aerodynamics of Ground Vehicles." In Progress in Hybrid RANS-LES Modelling, 167–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14168-3_14.
Full textJakirlic, S., L. Kutej, B. Basara, and C. Tropea. "On PANS-ζ-f Model Assessment by Reference to Car Aerodynamics." In Progress in Hybrid RANS-LES Modelling, 143–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27607-2_11.
Full textLi, Hongshuai, Lei Tan, and Huanxin Zhao. "Influence of Blade Geometry on Performance of Hydrogen Vortex Blower in Fuel Cell System." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1, 163–73. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_18.
Full textWeiss, Pierre-Élie, and Sébastien Deck. "Advanced Numerical Strategy for the Prediction of Unsteady Flow Aerodynamics Around Complex Geometries." In Progress in Hybrid RANS-LES Modelling, 181–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27607-2_14.
Full textNgouani, M. M. Siewe, Yong Kang Chen, R. Day, and O. David-West. "Low-Speed Aerodynamic Analysis Using Four Different Turbulent Models of Solver of a Wind Turbine Shroud." In Springer Proceedings in Energy, 149–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63916-7_19.
Full textBrahimi, Tayeb, and Ion Paraschivoiu. "Aerodynamic Analysis and Performance Prediction of VAWT and HAWT Using CARDAAV and Qblade Computer Codes." In Entropy and Exergy in Renewable Energy [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96343.
Full textFrolov, Vladimir. "Critical Mach Numbers of Flow around Two-Dimensional and Axisymmetric Bodies." In Aerodynamics. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94981.
Full textConference papers on the topic "Aerodynamic lens"
Oka, Nobuhito, Masato Furukawa, Kazutoyo Yamada, and Kota Kido. "Aerodynamic Design for Wind-Lens Turbine Using Optimization Technique." In ASME 2013 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/fedsm2013-16569.
Full textOka, Nobuhito, Masato Furukawa, Kazutoyo Yamada, Kenta Kawamitsu, Kota Kido, and Akihiro Oka. "Simultaneous Optimization of Rotor Blade and Wind-Lens for Aerodynamic Design of Wind-Lens Turbine." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25770.
Full textOka, Nobuhito, Masato Furukawa, Kazutoyo Yamada, Akihiro Oka, and Yasushi Kurokawa. "Aerodynamic Performances and Flow Fields of Pareto Optimal Solutions in an Aerodynamic Design of a Wind-Lens Turbine." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-43619.
Full textSpencer, Harvey M. "Optical Design and Fabrication of an Infrared Conformal Window." In International Lens Design. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/ild.1990.ltue3.
Full textHe, Yun, Hongyu He, and Zhixing Gao. "Improvement on the plasma excitation probability of aerosol particles based on aerodynamic lens." In Advanced Fiber Laser Conference (AFL2022), edited by Pu Zhou. SPIE, 2023. http://dx.doi.org/10.1117/12.2669005.
Full textNikbakht, Abbas, Omid Abouali, and Goodarz Ahmadi. "3-D Modelling of Brownian Motion of Nano-Particles in Aerodynamic Lenses." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98488.
Full textAbouali, Omid, and Goodarz Ahmadi. "Numerical Simulation of Supersonic Flow and Particle Motion in Aerodynamic Lenses." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45074.
Full textDavino, Michael, Tobias Saule, Jeffrey A. Powell, Nora G. Helming, and Carlos Trallero-Herrero. "Strong field ionization for the characterization of aerosolized nanoparticles in vacuum." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu4a.67.
Full textGoeltenbott, Uli, Yuji Ohya, Takashi Karasudani, and Peter Jamieson. "Aerodynamics of Clustered Wind Lens Turbines." In ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-28601.
Full textMuylaert, J., L. Walpot, M. Spel, G. Tumino, and R. Steijl. "Nonequilibrium computational analysis of blunt cone experiments performed in LENS and HEG." In 14th Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2436.
Full textReports on the topic "Aerodynamic lens"
Goodarz Ahmadi. Developing Supersonic Impactor and Aerodynamic Lens for Separation and Handling of Nano-Sized Particles. Office of Scientific and Technical Information (OSTI), June 2008. http://dx.doi.org/10.2172/941125.
Full textFuchs, Marcel, Jerry Hatfield, Amos Hadas, and Rami Keren. Reducing Evaporation from Cultivated Soils by Mulching with Crop Residues and Stabilized Soil Aggregates. United States Department of Agriculture, 1993. http://dx.doi.org/10.32747/1993.7568086.bard.
Full textWissink, Andrew, Jude Dylan, Buvana Jayaraman, Beatrice Roget, Vinod Lakshminarayan, Jayanarayanan Sitaraman, Andrew Bauer, James Forsythe, Robert Trigg, and Nicholas Peters. New capabilities in CREATE™-AV Helios Version 11. Engineer Research and Development Center (U.S.), June 2021. http://dx.doi.org/10.21079/11681/40883.
Full textLawson. L51597 Feasibility Study of New Technology for Intake Air Filtration. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), June 1989. http://dx.doi.org/10.55274/r0010105.
Full text