Journal articles on the topic 'Aero-engine combustors'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Aero-engine combustors.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Şöhret, Yasin, and T. Hikmet Karakoc. "Exergy indicators of a low-emission aero-engine combustor." Aircraft Engineering and Aerospace Technology 90, no. 2 (March 5, 2018): 344–50. http://dx.doi.org/10.1108/aeat-03-2016-0045.
Full textLi, J., X. Sun, Y. Liu, and V. Sethi. "Preliminary aerodynamic design methodology for aero engine lean direct injection combustors." Aeronautical Journal 121, no. 1242 (June 21, 2017): 1087–108. http://dx.doi.org/10.1017/aer.2017.47.
Full textMarudhappan, Raja, Chandrasekhar Udayagiri, and Koni Hemachandra Reddy. "Combustion chamber design and reaction modeling for aero turbo-shaft engine." Aircraft Engineering and Aerospace Technology 91, no. 1 (January 7, 2018): 94–111. http://dx.doi.org/10.1108/aeat-10-2017-0217.
Full textZIEMANN, J. "Low-NOx combustors for hydrogen fueled aero engine." International Journal of Hydrogen Energy 23, no. 4 (April 1998): 281–88. http://dx.doi.org/10.1016/s0360-3199(97)00054-2.
Full textBake, Friedrich, Ulf Michel, and Ingo Roehle. "Investigation of Entropy Noise in Aero-Engine Combustors." Journal of Engineering for Gas Turbines and Power 129, no. 2 (February 1, 2006): 370–76. http://dx.doi.org/10.1115/1.2364193.
Full textKlose, G., R. Schmehl, R. Meier, G. Maier, R. Koch, S. Wittig, M. Hettel, W. Leuckel, and N. Zarzalis. "Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 817–23. http://dx.doi.org/10.1115/1.1377010.
Full textZhu, M., A. P. Dowling, and K. N. C. Bray. "Self-Excited Oscillations in Combustors With Spray Atomizers." Journal of Engineering for Gas Turbines and Power 123, no. 4 (October 1, 2000): 779–86. http://dx.doi.org/10.1115/1.1376717.
Full textCorsini, A., F. Rispoli, and T. E. Tezduyar. "Stabilized finite element computation of NOx emission in aero-engine combustors." International Journal for Numerical Methods in Fluids 65, no. 1-3 (October 29, 2010): 254–70. http://dx.doi.org/10.1002/fld.2451.
Full textTietz, S., and T. Behrendt. "Development and application of a pre-design tool for aero-engine combustors." CEAS Aeronautical Journal 2, no. 1-4 (September 13, 2011): 111–23. http://dx.doi.org/10.1007/s13272-011-0012-x.
Full textHu, Bin, Yong Huang, Fang Wang, and Fa Xie. "CFD predictions of LBO limits for aero-engine combustors using fuel iterative approximation." Chinese Journal of Aeronautics 26, no. 1 (February 2013): 74–84. http://dx.doi.org/10.1016/j.cja.2012.12.014.
Full textTACHIBANA, Shigeru. "Combustion stability diagnostics by use of visualization in the development of aero-engine combustors." Journal of the Visualization Society of Japan 35, no. 138 (2015): 20–25. http://dx.doi.org/10.3154/jvs.35.138_20.
Full textHu, Bin, Yong Huang, and Fang Wang. "FIA method for LBO limit predictions of aero-engine combustors based on FV model." Aerospace Science and Technology 28, no. 1 (July 2013): 435–46. http://dx.doi.org/10.1016/j.ast.2013.01.002.
Full textAgbadede, Roupa, and Biweri Kainga. "Effect of Water Injection into Aero-derivative Gas Turbine Combustors on NOx Reduction." European Journal of Engineering Research and Science 5, no. 11 (November 21, 2020): 1357–59. http://dx.doi.org/10.24018/ejers.2020.5.11.2180.
Full textAgbadede, Roupa, and Isaiah Allison. "Effect of Water Injection into Aero-derivative Gas Turbine Combustors on NOx Reduction." European Journal of Engineering and Technology Research 5, no. 11 (November 21, 2020): 1357–59. http://dx.doi.org/10.24018/ejeng.2020.5.11.2180.
Full textSUN, Lei, Yong HUANG, Xiwei WANG, Zekun ZHENG, Ruixiang WANG, and Xiang FENG. "Hybrid method based on flame volume concept for lean blowout limits prediction of aero engine combustors." Chinese Journal of Aeronautics 34, no. 5 (May 2021): 425–37. http://dx.doi.org/10.1016/j.cja.2020.12.033.
Full textAndreini, Antonio, Bruno Facchini, Andrea Giusti, and Fabio Turrini. "Assessment of Flame Transfer Function Formulations for the Thermoacoustic Analysis of Lean Burn Aero-engine Combustors." Energy Procedia 45 (2014): 1422–31. http://dx.doi.org/10.1016/j.egypro.2014.01.149.
Full textPinelli, Lorenzo, Leonardo Lilli, Andrea Arnone, Paolo Gaetani, and Giacomo Persico. "Numerical Study of Entropy Wave Evolution within a HPT Stage." E3S Web of Conferences 197 (2020): 11011. http://dx.doi.org/10.1051/e3sconf/202019711011.
Full textZhao, Ziqiang, Xiaomin He, Guoyu Ding, Mingyu Li, Ping Jiang, and Weidong Huanga. "Effect of rotational direction of triple-swirler on cold flow characteristics of a model combustor." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 231, no. 5 (April 25, 2016): 918–30. http://dx.doi.org/10.1177/0954410016645126.
Full textInnocenti, A., A. Andreini, D. Bertini, B. Facchini, and M. Motta. "Turbulent flow-field effects in a hybrid CFD-CRN model for the prediction of NO and CO emissions in aero-engine combustors." Fuel 215 (March 2018): 853–64. http://dx.doi.org/10.1016/j.fuel.2017.11.097.
Full textLiu, Jian, Dingrui Zhang, Lingyun Hou, Jinhu Yang, and Gang Xu. "Laminar Burning Speed of Aviation Kerosene at Low Pressures." Energies 15, no. 6 (March 17, 2022): 2191. http://dx.doi.org/10.3390/en15062191.
Full textKirk, D. R., G. R. Guenette, S. P. Lukachko, and I. A. Waitz. "Gas Turbine Engine Durability Impacts of High Fuel-Air Ratio Combustors—Part II: Near-Wall Reaction Effects on Film-Cooled Heat Transfer." Journal of Engineering for Gas Turbines and Power 125, no. 3 (July 1, 2003): 751–59. http://dx.doi.org/10.1115/1.1606473.
Full textMazzei, Lorenzo, Antonio Andreini, and Bruno Facchini. "Assessment of modelling strategies for film cooling." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 5 (May 2, 2017): 1118–27. http://dx.doi.org/10.1108/hff-03-2016-0086.
Full textLi, Longbiao, Suyi Bi, and Youchao Sun. "Risk assessment method for aeroengine multiple failure risk using Monte Carlo simulation." Multidiscipline Modeling in Materials and Structures 12, no. 2 (August 8, 2016): 384–96. http://dx.doi.org/10.1108/mmms-06-2015-0028.
Full textZhang, Junhong, Huwei Dai, Jiewei Lin, Yi Yuan, Zhiyuan Liu, Yubo Sun, and Kunying Ding. "Cracking analysis of an aero-engine combustor." Engineering Failure Analysis 115 (September 2020): 104640. http://dx.doi.org/10.1016/j.engfailanal.2020.104640.
Full textZhang, Jin Chuan, Yun Wang, and Can Zhang. "Basic Research of the Intercooled Turbofan Aero-Engine." Advanced Materials Research 516-517 (May 2012): 544–47. http://dx.doi.org/10.4028/www.scientific.net/amr.516-517.544.
Full textXiao, Yinli, Zhibo Cao, and Changwu Wang. "The Effect of Dilution Air Jets on Aero-Engine Combustor Performance." International Journal of Turbo & Jet-Engines 36, no. 3 (August 27, 2019): 257–69. http://dx.doi.org/10.1515/tjj-2018-0045.
Full textLv, Fengjun, Quan Li, and Guoru Fu. "Failure analysis of an aero-engine combustor liner." Engineering Failure Analysis 17, no. 5 (July 2010): 1094–101. http://dx.doi.org/10.1016/j.engfailanal.2010.01.003.
Full textWang, Xiting, Ai He, and Zhongzhi Hu. "Transient Modeling and Performance Analysis of Hydrogen-Fueled Aero Engines." Processes 11, no. 2 (January 31, 2023): 423. http://dx.doi.org/10.3390/pr11020423.
Full textZhu, Lian Jun, Yu Cai Dong, Jian Guang Yuan, Liang Hai Yi, and Ge Hua Fan. "Prediction of the Total Sound Level of the Annular Combustor Noise of Aircraft Engine Based on SVR." Applied Mechanics and Materials 687-691 (November 2014): 33–36. http://dx.doi.org/10.4028/www.scientific.net/amm.687-691.33.
Full textChen, Yi, Li Fei, Liming He, Lei Zhang, Chunchang Zhu, and Jun Deng. "The Influence of Dielectric Barrier Discharge Plasma on the Characteristics of Aero-Engine Combustion Chamber." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 37, no. 2 (April 2019): 369–77. http://dx.doi.org/10.1051/jnwpu/20193720369.
Full textWang, Tianyu, Jinlu Yu, Bingbing Zhao, Weida Cheng, Lei Zhang, and Yongkun Sun. "Study on plasma combustion process in aero engine combustor." Journal of Physics: Conference Series 2228, no. 1 (March 1, 2022): 012034. http://dx.doi.org/10.1088/1742-6596/2228/1/012034.
Full textAntoshkiv, O., Th Poojitganont, L. Jehring, and C. Berkholz. "Main aspects of kerosene and gaseous fuel ignition in aero-engine." Aeronautical Journal 121, no. 1246 (December 2017): 1779–94. http://dx.doi.org/10.1017/aer.2017.113.
Full textKhandelwal, B., A. Karakurt, V. Sethi, R. Singh, and Z. Quan. "Preliminary design and performance analysis of a low emission aero-derived gas turbine combustor." Aeronautical Journal 117, no. 1198 (December 2013): 1249–71. http://dx.doi.org/10.1017/s0001924000008848.
Full textXiao, Yinli, Changwu Wang, Zhibo Cao, and Wenyan Song. "Laser holography measurement and theoretical analysis of a pressure-swirl nozzle spray." Advances in Mechanical Engineering 10, no. 12 (December 2018): 168781401881325. http://dx.doi.org/10.1177/1687814018813253.
Full textMishra, R. K., and Sunil Chandel. "Soot Formation and Its Effect in an Aero Gas Turbine Combustor." International Journal of Turbo & Jet-Engines 36, no. 1 (March 26, 2019): 61–73. http://dx.doi.org/10.1515/tjj-2016-0062.
Full textJakubowski, Robert. "Study of Bypass Ratio Increasing Possibility for Turbofan Engine and Turbofan with Inter Turbine Burner." Journal of KONES 26, no. 2 (June 1, 2019): 61–68. http://dx.doi.org/10.2478/kones-2019-0033.
Full textLi, L., X. F. Peng, and T. Liu. "Combustion and cooling performance in an aero-engine annular combustor." Applied Thermal Engineering 26, no. 16 (November 2006): 1771–79. http://dx.doi.org/10.1016/j.applthermaleng.2005.11.023.
Full textZheng, Min, Fan Shen, and Pei Luo. "Vibration Fatigue Analysis of the Structure under Thermal Loading." Advanced Materials Research 853 (December 2013): 559–64. http://dx.doi.org/10.4028/www.scientific.net/amr.853.559.
Full textMishra, R. K., and Sunil Chandel. "Numerical Analysis of Exhaust Emission from an Aero Gas Turbine Combustor under Fuel-Rich Condition." International Journal of Turbo & Jet-Engines 36, no. 4 (November 18, 2019): 411–24. http://dx.doi.org/10.1515/tjj-2016-0079.
Full textEhsan, Kianpour, Nor Azwadi Che Sidik, and Mohsen Agha Seyyed Mirza Bozorg. "Thermodynamic Analysis of Flow Field at the End of Combustor Simulator." Applied Mechanics and Materials 225 (November 2012): 261–66. http://dx.doi.org/10.4028/www.scientific.net/amm.225.261.
Full textZeng, Wen, Hai-xia Li, Bao-dong Chen, and Hong-an Ma. "Kinetic Simulation of Combustion Process in the Combustor of the Aero-Engine." Combustion Science and Technology 186, no. 8 (June 26, 2014): 1097–114. http://dx.doi.org/10.1080/00102202.2014.902815.
Full textHuang, Shengfang, Zhibo Zhang, Huimin Song, Yun Wu, and Yinghong Li. "A Novel Way to Enhance the Spark Plasma-Assisted Ignition for an Aero-Engine Under Low Pressure." Applied Sciences 8, no. 9 (September 1, 2018): 1533. http://dx.doi.org/10.3390/app8091533.
Full textLi, Le, Jianqin Suo, Han Yu, and Longxi Zhang. "Optimal Design and Application of Gas Analysis System." Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 38, no. 1 (February 2020): 104–13. http://dx.doi.org/10.1051/jnwpu/20203810104.
Full textZhao, Jiazi, Yasong Sun, Yifan Li, and Changhao Liu. "Investigation of coupled radiation-conduction heat transfer in cylindrical systems by discontinuous spectral element method." Journal of the Global Power and Propulsion Society 6 (December 30, 2022): 354–66. http://dx.doi.org/10.33737/jgpps/156350.
Full textChoi, Myeung Hwan, Dongsoo Shin, Youngbin Yoon, and Jaye Koo. "Swirl Number of Radial Swirler Design for Combustor in Aero Gas Turbine Engine." Journal of the Korean Society for Aeronautical & Space Sciences 47, no. 12 (December 31, 2019): 848–55. http://dx.doi.org/10.5139/jksas.2019.47.12.848.
Full textDai, Huwei, Junhong Zhang, Yanyan Ren, Nuohao Liu, Bin Wu, Kunying Ding, and Jiewei Lin. "Failure mechanism of thermal barrier coatings of an ex-service aero-engine combustor." Surface and Coatings Technology 380 (December 2019): 125030. http://dx.doi.org/10.1016/j.surfcoat.2019.125030.
Full textEberle, Christian, Peter Gerlinger, Klaus Peter Geigle, and Manfred Aigner. "Numerical Investigation of Transient Soot Evolution Processes in an Aero-Engine Model Combustor." Combustion Science and Technology 187, no. 12 (July 6, 2015): 1841–66. http://dx.doi.org/10.1080/00102202.2015.1065254.
Full textKim, Daesik, Seungchai Jung, and Heeho Park. "Acoustic damping characterization of a double-perforated liner in an aero-engine combustor." Journal of Mechanical Science and Technology 33, no. 6 (June 2019): 2957–65. http://dx.doi.org/10.1007/s12206-019-0544-2.
Full textChen, Y. D., Q. Feng, Y. R. Zheng, and X. F. Ding. "Formation of hole-edge cracks in a combustor liner of an aero engine." Engineering Failure Analysis 55 (September 2015): 148–56. http://dx.doi.org/10.1016/j.engfailanal.2015.05.018.
Full textChen, Yi, Li-Ming He, Li Fei, Jun Deng, Jian-Ping Lei, and Han Yu. "Experimental study of dielectric barrier discharge plasma-assisted combustion in an aero-engine combustor." Aerospace Science and Technology 99 (April 2020): 105765. http://dx.doi.org/10.1016/j.ast.2020.105765.
Full text