Dissertations / Theses on the topic 'Adversarial robustness'

To see the other types of publications on this topic, follow the link: Adversarial robustness.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 20 dissertations / theses for your research on the topic 'Adversarial robustness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Engstrom, Logan(Logan G. ). "Understanding the landscape of adversarial robustness." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123021.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 108-115).
Despite their performance on standard tasks in computer vision, natural language processing and voice recognition, state-of-the-art models are pervasively vulnerable to adversarial examples. Adversarial examples are inputs that have been slightly perturbed--such that the semantic content is the same--as to cause malicious behavior in a classifier. The study of adversarial robustness has so far largely focused on perturbations bound in l[subscript p]-norms, in the case where the attacker knows the full model and controls exactly what input is sent to the classifier. However, this threat model is unrealistic in many respects. Models are vulnerable to classes of slight perturbations that are not captured by l[subscript p] bounds, adversaries realistically often will not have full model access, and in the physical world it is not possible to exactly control what image is sent to the classifier. In our exploration we successfully develop new algorithms and frameworks for exploiting vulnerabilities even in restricted threat models. We find that models are highly vulnerable to adversarial examples in these more realistic threat models, highlighting the necessity of further research to attain models that are truly robust and reliable.
by Logan Engstrom.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Jeffrey M. Eng Massachusetts Institute of Technology. "Enhancing adversarial robustness of deep neural networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122994.

Full text
Abstract:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 57-58).
Logit-based regularization and pretrain-then-tune are two approaches that have recently been shown to enhance adversarial robustness of machine learning models. In the realm of regularization, Zhang et al. (2019) proposed TRADES, a logit-based regularization optimization function that has been shown to improve upon the robust optimization framework developed by Madry et al. (2018) [14, 9]. They were able to achieve state-of-the-art adversarial accuracy on CIFAR10. In the realm of pretrain- then-tune models, Hendrycks el al. (2019) demonstrated that adversarially pretraining a model on ImageNet then adversarially tuning on CIFAR10 greatly improves the adversarial robustness of machine learning models. In this work, we propose Adversarial Regularization, another logit-based regularization optimization framework that surpasses TRADES in adversarial generalization. Furthermore, we explore the impact of trying different types of adversarial training on the pretrain-then-tune paradigm.
by Jeffry Zhang.
M. Eng.
M.Eng. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
3

PINTOR, MAURA. "Towards Debugging and Improving Adversarial Robustness Evaluations ​." Doctoral thesis, Università degli Studi di Cagliari, 2022. http://hdl.handle.net/11584/328882.

Full text
Abstract:
Despite exhibiting unprecedented success in many application domains, machine‐learning models have been shown to be vulnerable to adversarial examples, i.e., maliciously perturbed inputs that are able to subvert their predictions at test time. Rigorous testing against such perturbations requires enumerating all possible outputs for all possible inputs, and despite impressive results in this field, these methods remain still difficult to scale to modern deep learning systems. For these reasons, empirical methods are often used. These adversarial perturbations are optimized via gradient descent, minimizing a loss function that aims to increase the probability of misleading the model’s predictions. To understand the sensitivity of the model to such attacks, and to counter the effects, machine-learning model designers craft worst-case adversarial perturbations and test them against the model they are evaluating. However, many of the proposed defenses have been shown to provide a false sense of security due to failures of the attacks, rather than actual improvements in the machine‐learning models’ robustness. They have been broken indeed under more rigorous evaluations. Although guidelines and best practices have been suggested to improve current adversarial robustness evaluations, the lack of automatic testing and debugging tools makes it difficult to apply these recommendations in a systematic and automated manner. To this end, we tackle three different challenges: (1) we investigate how adversarial robustness evaluations can be performed efficiently, by proposing a novel attack that can be used to find minimum-norm adversarial perturbations; (2) we propose a framework for debugging adversarial robustness evaluations, by defining metrics that reveal faulty evaluations as well as mitigations to patch the detected problems; and (3) we show how to employ a surrogate model for improving the success of transfer-based attacks, that are useful when gradient-based attacks are failing due to problems in the gradient information. To improve the quality of robustness evaluations, we propose a novel attack, referred to as Fast Minimum‐Norm (FMN) attack, which competes with state‐of‐the‐art attacks in terms of quality of the solution while outperforming them in terms of computational complexity and robustness to sub‐optimal configurations of the attack hyperparameters. These are all desirable characteristics of attacks used in robustness evaluations, as the aforementioned problems often arise from the use of sub‐optimal attack hyperparameters, including, e.g., the number of attack iterations, the step size, and the use of an inappropriate loss function. The correct refinement of these variables is often neglected, hence we designed a novel framework that helps debug the optimization process of adversarial examples, by means of quantitative indicators that unveil common problems and failures during the attack optimization process, e.g., in the configuration of the hyperparameters. Commonly accepted best practices suggest further validating the target model with alternative strategies, among which is the usage of a surrogate model to craft the adversarial examples to transfer to the model being evaluated is useful to check for gradient obfuscation. However, how to effectively create transferable adversarial examples is not an easy process, as many factors influence the success of this strategy. In the context of this research, we utilize a first-order model to show what are the main underlying phenomena that affect transferability and suggest best practices to create adversarial examples that transfer well to the target models. ​
APA, Harvard, Vancouver, ISO, and other styles
4

Cina', Antonio Emanuele <1995&gt. "On the Robustness of Clustering Algorithms to Adversarial Attacks." Master's Degree Thesis, Università Ca' Foscari Venezia, 2019. http://hdl.handle.net/10579/15430.

Full text
Abstract:
Machine learning is becoming more and more used by businesses and private users as an additional tool for aiding in decision making and automation processes. However, over the past few years, there has been an increased interest in research related to the security or robustness of learning models in presence of adversarial examples. It has been discovered that wisely crafted adversarial perturbations, unaffecting human judgment, can significantly affect the performance of the learning models. Adversarial machine learning studies how learning algorithms can be fooled by crafted adversarial examples. In many ways it is a recent research area, mainly focused on the analysis of supervised models, and only few works have been done in unsupervised settings. The adversarial analysis of this learning paradigm has become imperative as in recent years unsupervised learning has been increasingly adopted in multiple security and data analysis applications. In this thesis, we are going to show how an attacker can craft poisoning perturbations on the input data for reaching target goals. In particular, we are going to analyze the robustness of two fundamental applications of unsupervised learning, feature-based data clustering and image segmentation. We are going to show how an attacker can craft poisoning perturbations against the two applications. We choose 3 very well known clustering algorithms (K-Means, Spectral and Dominant Sets clustering) and multiple datasets for analyzing the robustness provided by them against adversarial examples, crafted with our designed algorithms.
APA, Harvard, Vancouver, ISO, and other styles
5

Allenet, Thibault. "Quantization and adversarial robustness of embedded deep neural networks." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. https://ged.univ-rennes1.fr/nuxeo/site/esupversions/5f524c49-7a4a-4724-ae77-9afe383b7c3c.

Full text
Abstract:
Les réseaux de neurones convolutifs et les réseaux neurones récurrents (RNN) ont été largement utilisés dans de nombreux domaines tels que la vision par ordinateur, le traitement naturel du langage et le traitement du signal. Néanmoins, la charge de calcul et le besoin en bande passante mémoire impliqués dans l'inférence des réseaux de neurones profonds empêchent souvent leur déploiement sur des cibles embarquées à faible ressources. De plus, la vulnérabilité des réseaux de neurones profonds à de petites perturbations sur les entrées remet en question leur déploiement pour des applications impliquant des décisions de haute criticité. Pour relever ces défis, cette thèse propose deux principales contributions. D'une part, nous proposons des méthodes de compression pour rendre les réseaux de neurones profonds plus adaptés aux systèmes embarqués ayant de faibles ressources. D'autre part, nous proposons une nouvelle stratégie pour rendre les réseaux de neurones profonds plus robustes aux attaques adverses en tenant compte des ressources limitées des systèmes embarqués. Dans un premier temps, nous présentons une revue de la littérature sur des principes et des outils de bases de l'apprentissage profond, des types de réseaux de neurones reconnus et un état de l'art sur des méthodes de compression de réseaux de neurones. Ensuite, nous présentons deux contributions autour de la compression des réseaux de neurones profonds : une étude de transférabilité du Lottery Ticket sur les RNN et une méthode de quantification à l’apprentissage. L’étude de transférabilité du Lottery Ticket sur les RNN analyse la convergence des RNN et étudie son impact sur l'élagage des paramètres pour des taches de classification d'images et de modélisation du langage. Nous proposons aussi une méthode de prétraitement basée sur le sous-échantillonnage des données qui permet une convergence plus rapide des LSTM tout en préservant les performances applicatives. Avec la méthode Disentangled Loss Quantization Aware Training (DL-QAT), nous proposons d'améliorer une méthode de quantification avancée avec des fonctions de coût favorables à la quantification afin d'atteindre des paramètres binaires. Les expériences sur ImageNet-1k avec DL-QAT montrent une amélioration de près de 1 % sur la précision du score de ResNet-18 avec des poids binaires et des activations de 2 bits. Il apparaît clairement que DL-QAT fournit le meilleur profil du compromis entre l'empreinte mémoire et la performance applicative. Ce travail étudie ensuite la robustesse des réseaux de neurones face aux attaques adverses. Après avoir présenté l'état de l'art sur les attaques adverses et les mécanismes de défense, nous proposons le mécanisme de défense Ensemble Hash Defense (EHD). EHD permet une meilleure résistance aux attaques adverses basées sur l'approximation du gradient tout en préservant les performances de l'application et en ne nécessitant qu'une surcharge de mémoire au moment de l'inférence. Dans la meilleure configuration, notre système réalise des gains de robustesse significatifs par rapport aux modèles de base et à une approche de robustesse basée sur la fonction de coût. De plus, le principe de l'EHD la rend complémentaire à d'autres méthodes d'optimisation robuste qui permettraient d'améliorer encore la robustesse du système final. Dans la perspective de l'inférence sur cible embarquée, la surcharge mémoire introduite par l'EHD peut être réduite par la quantification ou le partage de poids. En conclusion, les travaux de cette thèse ont proposé des méthodes de compression de réseaux de neurones et un système de défense pour résoudre des défis importants, à savoir comment rendre les réseaux de neurones profonds plus robustes face aux attaques adverses et plus faciles à déployer sur les plateformes à ressources limitées. Ces travaux réduisent davantage l'écart entre l'état de l'art des réseaux neurones profonds et leur exécution sur des cibles embarquées à faible ressources
Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been broadly used in many fields such as computer vision, natural language processing and signal processing. Nevertheless, the computational workload and the heavy memory bandwidth involved in deep neural networks inference often prevents their deployment on low-power embedded devices. Moreover, deep neural networks vulnerability towards small input perturbations questions their deployment for applications involving high criticality decisions. This PhD research project objective is twofold. On the one hand, it proposes compression methods to make deep neural networks more suitable for embedded systems with low computing resources and memory requirements. On the other hand, it proposes a new strategy to make deep neural networks more robust towards attacks based on crafted inputs with the perspective to infer on edge. We begin by introducing common concepts for training neural networks, convolutional neural networks, recurrent neural networks and review the state of the art neural on deep neural networks compression methods. After this literature review we present two main contributions on compressing deep neural networks: an investigation of lottery tickets on RNNs and Disentangled Loss Quantization Aware Training (DL-QAT) on CNNs. The investigation of lottery tickets on RNNs analyze the convergence of RNNs and study its impact when subject to pruning on image classification and language modelling. Then we present a pre-processing method based on data sub-sampling that enables faster convergence of LSTM while preserving application performance. With the Disentangled Loss Quantization Aware Training (DL-QAT) method, we propose to further improve an advanced quantization method with quantization friendly loss functions to reach low bit settings like binary parameters where the application performance is the most impacted. Experiments on ImageNet-1k with DL-QAT show improvements by nearly 1\% on the top-1 accuracy of ResNet-18 with binary weights and 2-bit activations, and also show the best profile of memory footprint over accuracy when compared with other state-of-the art methods. This work then studies neural networks robustness toward adversarial attacks. After introducing the state of the art on adversarial attacks and defense mechanisms, we propose the Ensemble Hash Defense (EHD) defense mechanism. EHD enables better resilience to adversarial attacks based on gradient approximation while preserving application performance and only requiring a memory overhead at inference time. In the best configuration, our system achieves significant robustness gains compared to baseline models and a loss function-driven approach. Moreover, the principle of EHD makes it complementary to other robust optimization methods that would further enhance the robustness of the final system and compression methods. With the perspective of edge inference, the memory overhead introduced by EHD can be reduced with quantization or weight sharing. The contributions in this thesis have concerned optimization methods and a defense system to solve an important challenge, that is, how to make deep neural networks more robust towards adversarial attacks and easier to deployed on the resource limited platforms. This work further reduces the gap between state of the art deep neural networks and their execution on edge devices
APA, Harvard, Vancouver, ISO, and other styles
6

Ebrahimi, Javid. "Robustness of Neural Networks for Discrete Input: An Adversarial Perspective." Thesis, University of Oregon, 2019. http://hdl.handle.net/1794/24535.

Full text
Abstract:
In the past few years, evaluating on adversarial examples has become a standard procedure to measure robustness of deep learning models. Literature on adversarial examples for neural nets has largely focused on image data, which are represented as points in continuous space. However, a vast proportion of machine learning models operate on discrete input, and thus demand a similar rigor in understanding their vulnerabilities and robustness. We study robustness of neural network architectures for textual and graph inputs, through the lens of adversarial input perturbations. We will cover methods for both attacks and defense; we will focus on 1) addressing challenges in optimization for creating adversarial perturbations for discrete data; 2) evaluating and contrasting white-box and black-box adversarial examples; and 3) proposing efficient methods to make the models robust against adversarial attacks.
APA, Harvard, Vancouver, ISO, and other styles
7

CARBONE, GINEVRA. "Robustness and Interpretability of Neural Networks’ Predictions under Adversarial Attacks." Doctoral thesis, Università degli Studi di Trieste, 2023. https://hdl.handle.net/11368/3042163.

Full text
Abstract:
Le reti neurali profonde (DNNs) sono potenti modelli predittivi, che superano le capacità umane in una varietà di task. Imparano sistemi decisionali complessi e flessibili dai dati a disposizione e raggiungono prestazioni eccezionali in molteplici campi di apprendimento automatico, dalle applicazioni dell'intelligenza artificiale, come il riconoscimento di immagini, parole e testi, alle scienze più tradizionali, tra cui medicina, fisica e biologia. Nonostante i risultati eccezionali, le prestazioni elevate e l’alta precisione predittiva non sono sufficienti per le applicazioni nel mondo reale, specialmente in ambienti critici per la sicurezza, dove l'utilizzo dei DNNs è fortemente limitato dalla loro natura black-box. Vi è una crescente necessità di comprendere come vengono eseguite le predizioni, fornire stime di incertezza, garantire robustezza agli attacchi avversari e prevenire comportamenti indesiderati. Anche le migliori architetture sono vulnerabili a piccole perturbazioni nei dati di input, note come attacchi avversari: manipolazioni malevole degli input che sono percettivamente indistinguibili dai campioni originali ma sono in grado di ingannare il modello in predizioni errate. In questo lavoro, dimostriamo che tale fragilità è correlata alla geometria del manifold dei dati ed è quindi probabile che sia una caratteristica intrinseca delle predizioni dei DNNs. Questa condizione suggerisce una possibile direzione al fine di ottenere robustezza agli attacchi: studiamo la geometria degli attacchi avversari nel limite di un numero infinito di dati e di pesi per le reti neurali Bayesiane, dimostrando che, in questo limite, sono immuni agli attacchi avversari gradient-based. Inoltre, proponiamo alcune tecniche di training per migliorare la robustezza delle architetture deterministiche. In particolare, osserviamo sperimentalmente che ensembles di reti neurali addestrati su proiezioni casuali degli input originali in spazi basso-dimensionali sono più resistenti agli attacchi. Successivamente, ci concentriamo sul problema dell'interpretabilità delle predizioni delle reti nel contesto delle saliency-based explanations. Analizziamo la stabilità delle explanations soggette ad attacchi avversari e dimostriamo che, nel limite di un numero infinito di dati e di pesi, le interpretazioni Bayesiane sono più stabili di quelle fornite dalle reti deterministiche. Confermiamo questo comportamento in modo sperimentale nel regime di un numero finito di dati. Infine, introduciamo il concetto di attacco avversario alle sequenze di amminoacidi per protein Language Models (LM). I modelli di Deep Learning per la predizione della struttura delle proteine, come AlphaFold2, sfruttano le architetture Transformer e il loro meccanismo di attention per catturare le proprietà strutturali e funzionali delle sequenze di amminoacidi. Nonostante l'elevata precisione delle predizioni, perturbazioni biologicamente piccole delle sequenze di input, o anche mutazioni di un singolo amminoacido, possono portare a strutture 3D sostanzialmente diverse. Al contempo, i protein LMs sono insensibili alle mutazioni che inducono misfolding o disfunzione (ad esempio le missense mutations). In particolare, le predizioni delle coordinate 3D non rivelano l'effetto di unfolding indotto da queste mutazioni. Pertanto, esiste un'evidente incoerenza tra l'importanza biologica delle mutazioni e il conseguente cambiamento nella predizione strutturale. Ispirati da questo problema, introduciamo il concetto di perturbazione avversaria delle sequenze proteiche negli embedding continui dei protein LMs. Il nostro metodo utilizza i valori di attention per rilevare le posizioni degli amminoacidi più vulnerabili nelle sequenze di input. Le mutazioni avversarie sono biologicamente diverse dalle sequenze di riferimento e sono in grado di alterare in modo significativo le strutture 3D.
Deep Neural Networks (DNNs) are powerful predictive models, exceeding human capabilities in a variety of tasks. They learn complex and flexible decision systems from the available data and achieve exceptional performances in multiple machine learning fields, spanning from applications in artificial intelligence, such as image, speech and text recognition, to the more traditional sciences, including medicine, physics and biology. Despite the outstanding achievements, high performance and high predictive accuracy are not sufficient for real-world applications, especially in safety-critical settings, where the usage of DNNs is severely limited by their black-box nature. There is an increasing need to understand how predictions are performed, to provide uncertainty estimates, to guarantee robustness to malicious attacks and to prevent unwanted behaviours. State-of-the-art DNNs are vulnerable to small perturbations in the input data, known as adversarial attacks: maliciously crafted manipulations of the inputs that are perceptually indistinguishable from the original samples but are capable of fooling the model into incorrect predictions. In this work, we prove that such brittleness is related to the geometry of the data manifold and is therefore likely to be an intrinsic feature of DNNs’ predictions. This negative condition suggests a possible direction to overcome such limitation: we study the geometry of adversarial attacks in the large-data, overparameterized limit for Bayesian Neural Networks and prove that, in this limit, they are immune to gradient-based adversarial attacks. Furthermore, we propose some training techniques to improve the adversarial robustness of deterministic architectures. In particular, we experimentally observe that ensembles of NNs trained on random projections of the original inputs into lower dimensional spaces are more resilient to the attacks. Next, we focus on the problem of interpretability of NNs’ predictions in the setting of saliency-based explanations. We analyze the stability of the explanations under adversarial attacks on the inputs and we prove that, in the large-data and overparameterized limit, Bayesian interpretations are more stable than those provided by deterministic networks. We validate this behaviour in multiple experimental settings in the finite data regime. Finally, we introduce the concept of adversarial perturbations of amino acid sequences for protein Language Models (LMs). Deep Learning models for protein structure prediction, such as AlphaFold2, leverage Transformer architectures and their attention mechanism to capture structural and functional properties of amino acid sequences. Despite the high accuracy of predictions, biologically small perturbations of the input sequences, or even single point mutations, can lead to substantially different 3d structures. On the other hand, protein language models are insensitive to mutations that induce misfolding or dysfunction (e.g. missense mutations). Precisely, predictions of the 3d coordinates do not reveal the structure-disruptive effect of these mutations. Therefore, there is an evident inconsistency between the biological importance of mutations and the resulting change in structural prediction. Inspired by this problem, we introduce the concept of adversarial perturbation of protein sequences in continuous embedding spaces of protein language models. Our method relies on attention scores to detect the most vulnerable amino acid positions in the input sequences. Adversarial mutations are biologically diverse from their references and are able to significantly alter the resulting 3D structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Itani, Aashish. "COMPARISON OF ADVERSARIAL ROBUSTNESS OF ANN AND SNN TOWARDS BLACKBOX ATTACKS." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2864.

Full text
Abstract:
n recent years, the vulnerability of neural networks to adversarial samples has gained wide attention from machine learning and deep learning communities. Addition of small and imperceptible perturbations to the input samples can cause neural network models to make incorrect prediction with high confidence. As the employment of neural networks on safety critical application is rising, this vulnerability of traditional neural networks to the adversarial samples demand for more robust alternative neural network models. Spiking Neural Network (SNN), is a special class of ANN, which mimics the brain functionality by using spikes for information processing. The known advantages of SNN include fast inference, low power consumption and biologically plausible information processing. In this work, we experiment on the adversarial robustness of the SNN as compared to traditional ANN, and figure out if SNN can be a candidate to solve the security problems faced by ANN.
APA, Harvard, Vancouver, ISO, and other styles
9

Yang, Shuo. "Adversarial Data Generation for Robust Deep Learning." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/27291.

Full text
Abstract:
The success of deep learning is inseparable from the support of massive data. The vast amount of high-quality data is one of the most crucial prerequisites to train a robust deep learning model. However, the raw data collected in the real world usually has some defects which prevent their direct usage for training. In this thesis, we propose to employ the generative adversarial learning framework to generate high-quality data for training robust deep learning models. We focus on the generation of two of the most common data types: time series and images. For time series, we propose an adversarial recurrent time series imputation model to reconstruct the incomplete time series. Specifically, our model modifies the traditional Recurrent Neural Network (RNN) architecture to better capture the temporal dependencies and feature correlations and legitimately combines them to impute the missing part. Besides, we employ an element-wise generative adversarial learning framework to train the modified recurrent structure to generate more realistic data. Experiments on several real-world time series datasets demonstrate encouraging improvement of our model on the imputation performance as well as the classification accuracy. For image classification, recent studies find that deep learning models trained with natural images can be vulnerable to a kind of adversarially generated perturbations, namely adversarial perturbations. In this work, we improve the adversarial example generation and traditional AT framework from four aspects: adaptive perturbation size, diversified adversarial examples, stabilizing AT with massive contrastive adversaries, and adversarial robustness through representation disentanglement. The models presented above all demonstrate empirical remarkable performance improvement in terms of the quality of adversarial examples and model robustness.
APA, Harvard, Vancouver, ISO, and other styles
10

Uličný, Matej. "Methods for Increasing Robustness of Deep Convolutional Neural Networks." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-29734.

Full text
Abstract:
Recent discoveries uncovered flaws in machine learning algorithms such as deep neural networks. Deep neural networks seem vulnerable to small amounts of non-random noise, created by exploiting the input to output mapping of the network. Applying this noise to an input image drastically decreases classication performance. Such image is referred to as an adversarial example. The purpose of this thesis is to examine how known regularization/robustness methods perform on adversarial examples. The robustness methods: dropout, low-pass filtering, denoising autoencoder, adversarial training and committees have been implemented, combined and tested. For the well-known benchmark, the MNIST (Mixed National Institute of Standards and Technology) dataset, the best combination of robustness methods has been found. Emerged from the results of the experiments, ensemble of models trained on adversarial examples is considered to be the best approach for MNIST. Harmfulness of the adversarial noise and some robustness experiments are demonstrated on CIFAR10 (The Canadian Institute for Advanced Research) dataset as well. Apart from robustness tests, the thesis describes experiments with human classification performance on noisy images and the comparison with performance of deep neural network.
APA, Harvard, Vancouver, ISO, and other styles
11

Woldeyohannes, Habtamu Desalegn <1981&gt. "Review on “Adversarial Robustness Toolbox (ART) v1.5.x.”: ART Attacks against Supervised Learning Algorithms Case Study." Master's Degree Thesis, Università Ca' Foscari Venezia, 2021. http://hdl.handle.net/10579/19100.

Full text
Abstract:
Nowadays, Machine Learning models are used in many real world AI-based systems. On the other hand, those models are at risk for cyber attacks, which are commonly known as Adversarial attacks. This cyber threat questioned the usefulness and validity of such machine learning models prediction intercepted by attackers. Adversarial Robustness Toolbox (ART) is an open source machine learning security library, which is developed at IBM Research using Python programming language. ART implements many the state of the art adversarial attacks and defense mechanism for conventional machine learning and deep learning models. Just like as a development tool, we can use this library to train and debug machine learning models against different adversarial attacks (i.e evasion, poisoning, extraction, and Inference attacks); and additionally techniques to defend models and to measure model robustness. In this paper we focus only on the work of data poisoning and evasion attacks supported in current version of “Adversarial Robustness Toolbox v1.5.x”, by evaluating the performance results of those attacks against classical machine learning methods to approach classification tasks in considering adversarial environment. To be specific, We evaluate those attack methods ART supports against four supervised learning methods (i.e Support Vector Machines, Decision Tree, Random Forests, and Gradient Boosted Decision Trees), two machine learning framework (i.e. scikit-learn and lightGBM), two publicly available datasets (i.e. Census Income dataset and MNIST handwritten digit database for tabular and image data type respectively) for classification problems (i.e. binary and multi-label classification respectively). Keywords: Adversarial Robustness Toolbox, ART Attacks, Adversarial Examples
APA, Harvard, Vancouver, ISO, and other styles
12

Östberg, Rasmus. "Robustness of a neural network used for image classification : The effect of applying distortions on adversarial examples." Thesis, Högskolan i Gävle, Datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26118.

Full text
Abstract:
Powerful classifiers as neural networks have long been used to recognise images; these images might depict objects like animals, people or plain text. Distorted images affect the neural network's ability to recognise them, they might be distorted or changed due to distortions related to the camera.Camera related distortions, and how they affect the accuracy, have previously been explored. Recently, it has been proven that images can be intentionally made harder to recognise, an effect that last even after they have been photographed.Such images are known as adversarial examples.The purpose of this thesis is to evaluate how well a neural network can recognise adversarial examples which are also distorted. To evaluate the network, the adversarial examples are distorted in different ways and thereafter fed to the neural network.Different kinds of distortions (rotation, blur, contrast and skew) were used to distort the examples. For each type and strength of distortion the network's ability to classify was measured.Here, it is shown that all distortions influenced the neural network's ability to recognise images.It is concluded that the type and strength of a distortion are important factors when classifying distorted adversarial examples, but also that some distortions, rotation and skew, are able to keep their characteristic influence on the accuracy, even if they are influenced by other distortions.
APA, Harvard, Vancouver, ISO, and other styles
13

Guichard, Jonathan. "Quality Assessment of Conversational Agents : Assessing the Robustness of Conversational Agents to Errors and Lexical Variability." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-226552.

Full text
Abstract:
Assessing a conversational agent’s understanding capabilities is critical, as poor user interactions could seal the agent’s fate at the very beginning of its lifecycle with users abandoning the system. In this thesis we explore the use of paraphrases as a testing tool for conversational agents. Paraphrases, which are different ways of expressing the same intent, are generated based on known working input by performing lexical substitutions and by introducing multiple spelling divergences. As the expected outcome for this newly generated data is known, we can use it to assess the agent’s robustness to language variation and detect potential understanding weaknesses. As demonstrated by a case study, we obtain encouraging results as it appears that this approach can help anticipate potential understanding shortcomings, and that these shortcomings can be addressed by the generated paraphrases.
Att bedöma en konversationsagents språkförståelse är kritiskt, eftersom dåliga användarinteraktioner kan avgöra om agenten blir en framgång eller ett misslyckande redan i början av livscykeln. I denna rapport undersöker vi användningen av parafraser som ett testverktyg för dessa konversationsagenter. Parafraser, vilka är olika sätt att uttrycka samma avsikt, skapas baserat på känd indata genom att utföra lexiska substitutioner och genom att introducera flera stavningsavvikelser. Eftersom det förväntade resultatet för denna indata är känd kan vi använda resultaten för att bedöma agentens robusthet mot språkvariation och upptäcka potentiella förståelssvagheter. Som framgår av en fallstudie får vi uppmuntrande resultat, eftersom detta tillvägagångssätt verkar kunna bidra till att förutse eventuella brister i förståelsen, och dessa brister kan hanteras av de genererade parafraserna.
APA, Harvard, Vancouver, ISO, and other styles
14

Balda, Cañizares Emilio Rafael [Verfasser], Rudolf [Akademischer Betreuer] Mathar, and Bastian [Akademischer Betreuer] Leibe. "Robustness analysis of deep neural networks in the presence of adversarial perturbations and noisy labels / Emilio Rafael Balda Canizares ; Rudolf Mathar, Bastian Leibe." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1216040931/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MAURI, LARA. "DATA PARTITIONING AND COMPENSATION TECHNIQUES FOR SECURE TRAINING OF MACHINE LEARNING MODELS." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/932387.

Full text
Abstract:
Advances in Machine Learning (ML), coupled with increased availability of huge amounts of data collected from diverse sources and improvements in computing power, have led to a widespread adoption of ML-based solutions in critical application scenarios. However, ML models intrinsically introduce new security vulnerabilities within the systems into which they are integrated, thereby expanding their attack surface. The security of ML-based systems hinges on the robustness of the ML model employed. By interfering with any of the phases of the learning process, an adversary can manipulate data and prevent the model from learning the correct correlations or mislead it into taking potentially harmful actions. Adversarial ML is a recent research field that addresses two specific research topics. One of them concerns the identification of security issues related to the use of ML models, and the other concerns the design of defense mechanisms to prevent or mitigate the detrimental effects of attacks. In this dissertation, we investigate how to improve the resilience of ML models against training-time attacks under black-box knowledge assumption on both the attacker and the defender. The main contribution of this work is a novel defense mechanism which combines ensemble models (an approach traditionally used only for increasing the generalization capabilities of the model) and security risk analysis. Specifically, the results from the risk analysis in the input data space are used to guide the partitioning of the training data via an unsupervised technique. Then, we employ an ensemble of models, each trained on a different partition, and combine their output based on a majority voting mechanism to obtain the final prediction. Experiments are carried out on a publicly available dataset to assess the effectiveness of the proposed method. This novel defence technique is complemented by two other contributions, which respectively support using a Distributed Ledger to make training data tampering less convenient for attackers, and using a quantitative index to compute ML models’ performance degradation before and after the deployment of the defense. Taken together, this set of techniques provides a framework to improve the robustness of the ML lifecycle.
APA, Harvard, Vancouver, ISO, and other styles
16

Abdelaty, Maged Fathy Youssef. "Robust Anomaly Detection in Critical Infrastructure." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/352463.

Full text
Abstract:
Critical Infrastructures (CIs) such as water treatment plants, power grids and telecommunication networks are critical to the daily activities and well-being of our society. Disruption of such CIs would have catastrophic consequences for public safety and the national economy. Hence, these infrastructures have become major targets in the upsurge of cyberattacks. Defending against such attacks often depends on an arsenal of cyber-defence tools, including Machine Learning (ML)-based Anomaly Detection Systems (ADSs). These detection systems use ML models to learn the profile of the normal behaviour of a CI and classify deviations that go well beyond the normality profile as anomalies. However, ML methods are vulnerable to both adversarial and non-adversarial input perturbations. Adversarial perturbations are imperceptible noises added to the input data by an attacker to evade the classification mechanism. Non-adversarial perturbations can be a normal behaviour evolution as a result of changes in usage patterns or other characteristics and noisy data from normally degrading devices, generating a high rate of false positives. We first study the problem of ML-based ADSs being vulnerable to non-adversarial perturbations, which causes a high rate of false alarms. To address this problem, we propose an ADS called DAICS, based on a wide and deep learning model that is both adaptive to evolving normality and robust to noisy data normally emerging from the system. DAICS adapts the pre-trained model to new normality with a small number of data samples and a few gradient updates based on feedback from the operator on false alarms. The DAICS was evaluated on two datasets collected from real-world Industrial Control System (ICS) testbeds. The results show that the adaptation process is fast and that DAICS has an improved robustness compared to state-of-the-art approaches. We further investigated the problem of false-positive alarms in the ADSs. To address this problem, an extension of DAICS, called the SiFA framework, is proposed. The SiFA collects a buffer of historical false alarms and suppresses every new alarm that is similar to these false alarms. The proposed framework is evaluated using a dataset collected from a real-world ICS testbed. The evaluation results show that the SiFA can decrease the false alarm rate of DAICS by more than 80%. We also investigate the problem of ML-based network ADSs that are vulnerable to adversarial perturbations. In the case of network ADSs, attackers may use their knowledge of anomaly detection logic to generate malicious traffic that remains undetected. One way to solve this issue is to adopt adversarial training in which the training set is augmented with adversarially perturbed samples. This thesis presents an adversarial training approach called GADoT that leverages a Generative Adversarial Network (GAN) to generate adversarial samples for training. GADoT is validated in the scenario of an ADS detecting Distributed Denial of Service (DDoS) attacks, which have been witnessing an increase in volume and complexity. For a practical evaluation, the DDoS network traffic was perturbed to generate two datasets while fully preserving the semantics of the attack. The results show that adversaries can exploit their domain expertise to craft adversarial attacks without requiring knowledge of the underlying detection model. We then demonstrate that adversarial training using GADoT renders ML models more robust to adversarial perturbations. However, the evaluation of adversarial robustness is often susceptible to errors, leading to robustness overestimation. We investigate the problem of robustness overestimation in network ADSs and propose an adversarial attack called UPAS to evaluate the robustness of such ADSs. The UPAS attack perturbs the inter-arrival time between packets by injecting a random time delay before packets from the attacker. The attack is validated by perturbing malicious network traffic in a multi-attack dataset and used to evaluate the robustness of two robust ADSs, which are based on a denoising autoencoder and an adversarially trained ML model. The results demonstrate that the robustness of both ADSs is overestimated and that a standardised evaluation of robustness is needed.
APA, Harvard, Vancouver, ISO, and other styles
17

(11211114), Qingyi Gao. "ADVERSARIAL LEARNING ON ROBUSTNESS AND GENERATIVE MODELS." Thesis, 2021.

Find full text
Abstract:
In this dissertation, we study two important problems in the area of modern deep learning: adversarial robustness and adversarial generative model. In the first part, we study the generalization performance of deep neural networks (DNNs) in adversarial learning. Recent studies have shown that many machine learning models are vulnerable to adversarial attacks, but much remains unknown concerning its generalization error in this scenario. We focus on the $\ell_\infty$ adversarial attacks produced under the fast gradient sign method (FGSM). We establish a tight bound for the adversarial Rademacher complexity of DNNs based on both spectral norms and ranks of weight matrices. The spectral norm and rank constraints imply that this class of networks can be realized as a subset of the class of a shallow network composed with a low dimensional Lipschitz continuous function. This crucial observation leads to a bound that improves the dependence on the network width compared to previous works and achieves depth independence. We show that adversarial Rademacher complexity is always larger than its natural counterpart, but the effect of adversarial perturbations can be limited under our weight normalization framework.
In the second part, we study deep generative models that receive great success in many fields. It is well-known that the complex data usually does not populate its ambient Euclidean space but resides in a lower-dimensional manifold instead. Thus, misspecifying the latent dimension in generative models will result in a mismatch of latent representations and poor generative qualities. To address these problems, we propose a novel framework called Latent Wasserstein GAN (LWGAN) to fuse the auto-encoder and WGAN such that the intrinsic dimension of data manifold can be adaptively learned by an informative latent distribution. In particular, we show that there exist an encoder network and a generator network in such a way that the intrinsic dimension of the learned encodes distribution is equal to the dimension of the data manifold. Theoretically, we prove the consistency of the estimation for the intrinsic dimension of the data manifold and derive a generalization error bound for LWGAN. Comprehensive empirical experiments verify our framework and show that LWGAN is able to identify the correct intrinsic dimension under several scenarios, and simultaneously generate high-quality synthetic data by samples from the learned latent distribution.

APA, Harvard, Vancouver, ISO, and other styles
18

Mopuri, Konda Reddy. "Deep Visual Representations: A study on Augmentation, Visualization, and Robustness." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5446.

Full text
Abstract:
Deep neural networks have resulted in unprecedented performances for various learning tasks. Particularly, Convolutional Neural Networks (CNNs) are shown to learn representations that can efficiently discriminate hundreds of visual categories. They learn a hierarchy of representations ranging from low level edge and blob detectors to semantic features such as object categories. These representations can be employed as off-the-shelf visual features in various vision tasks such as image classification, scene retrieval, caption generation, etc.In this thesis, we investigate three important aspects of the representations learned by the CNNs: (i) Augmentation: incorporating useful side and additional information to augment the learned visual representations, (ii) Visualization: providing visual explanations for the predicted inference, and (iii) Robustness: their susceptibility to adversarial perturbations during the test time. Augmenting: In the first part of this thesis, we present approaches that exploit the useful side and additional information to enrich the learned representations with more semantics. Specifically, we learn to encode additional discriminative information from (i) objectness prior over the image regions, and (ii) strong supervision offered by the captions given by human subjects that describe the image contents. Objectness prior: In order to encode comprehensive visual information from a scene, existing methods typically employ deep-learned visual representations in a sliding window framework. This approach is tedious which demands more computation, and is exhaustive. On the other hand, scenes are typically composed of objects, i.e., it is the objects that make a scene what it is. We exploit objectness information while aggregating the visual features from individual image regions into a compact image representation. Restricting the description to only object like regions drastically reduces the number of image patches to be considered and automatically takes care of the scale. Owing to the robust object representations learned by the CNNs, our aggregated image representations exhibit improved invariance to general image transformations such as translation, rotation and scaling. The proposed representation could discriminate images even under extreme dimensionality reduction, including binarization. Strong supervision: In a typical supervised learning setting for object recognition, labels offer only weak supervision. All that a label provides is presence or absence of an object in an image. It neglects a lot of useful information about the actual object, such as, attributes, context, etc. Image captions on the other hand, provide rich information about image contents. Therefore, in order to enhance the reprsentations, we exploit the image captions as strong supervision for the application of object retrieval. We show that strong supervision when served with pairwise constraints, can help the representations to better learn the graded (non-binary) relevances between pairs of images. Visualization: Despite their impressive performance, CNNs offer limited transparency, therefore, are treated as black boxes. Increasing depth, intricate architectures and sophisticated regularizers make them complex machine learning models. One way to make them transparent is to provide visual explanations for their predictions, i.e., visualizing the image regions that guide their predictions and thereby making them explainable. In the second part of the thesis, we develop a novel visualization method to locate the evidence in the input for a given activation at any layer in the architecture. Unlike most existing methods that rely on gradient computation, we directly exploit the dependencies across the learned representations to make the CNNs more interactive. Our method enables various applications such as visualizing the evidence for a given activation (e.g. predicted label), grounding a predicted caption, object detection, etc. in a weakly-supervised setup. Robustness: Along with successful adaption across various vision tasks, the learned representations are also observed to be unstable to addition of special noise of small magnitude, called adversarial perturbations. Thus, the third and final part of the thesis focuses on the stability of the representations to this additive perturbations. Generalizable data-free objectives: These additive perturbations make the CNNs susceptible to produce inaccurate predictions with high confidence and threaten their deployability in the real world. In order to craft these perturbations (either image specific or agnostic), existing methods solve complex fooling objectives that require samples from target data distribution. Also, the existing methods to craft image-agnostic perturbations are task specific, i.e, the objectives are designed to suit the underlying task. For the first time, we introduce generalizable and data-free objectives to craft imageagnostic adversarial perturbations. Our objective generalizes across multiple vision tasks such as object recognition, semantic segmentation, depth estimation and can efficiently craft perturbations that can effectively fool. Our objective exposes the fragility of the learned representations even in the black-box attacking scenario, where no information about the target model is known. In spite of being data-free, our objectives can exploit the minimal available prior information about the training distribution such as the dynamic range of the images in order to craft stronger attacks. Modeling the adversaries: Most existing methods present optimization approaches to craft adversarial perturbations. Also, for a given classifier, they generate one perturbation at a time, which is a single instance from a possibly big manifold of adversarial perturbations. Further, in order to build robust models, it is essential to explore the manifold of adversarial perturbations. We propose for the first time, a generative approach to model the distribution of such perturbations in both “data dependent” and “data-free” scenarios. Our generative model is inspired from Generative Adversarial Networks (GAN) and is trained using fooling and diversity objectives. The proposed generator network captures the distribution of adversarial perturbations for a given classifier and readily generates a wide variety of such perturbations. We demonstrate that perturbations crafted by our model (i) achieve state-of-the-art fooling rates, (ii) exhibit wide variety and (iii) deliver excellent cross model generalizability. Our work can be deemed as an important step in the process of inferring about the complex manifolds of adversarial perturbations. This knowledge of adversaries can be exploited to learn better representations that are robust to various attacks.
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Haotian. "Network Robustness: Diffusing Information Despite Adversaries." Thesis, 2012. http://hdl.handle.net/10012/6890.

Full text
Abstract:
In this thesis, we consider the problem of diffusing information resiliently in networks that contain misbehaving nodes. Previous strategies to achieve resilient information diffusion typically require the normal nodes to hold some global information, such as the topology of the network and the identities of non-neighboring nodes. However, these assumptions are not suitable for large-scale networks and this necessitates our study of resilient algorithms based on only local information. We propose a consensus algorithm where, at each time-step, each normal node removes the extreme values in its neighborhood and updates its value as a weighted average of its own value and the remaining values. We show that traditional topological metrics (such as connectivity of the network) fail to capture such dynamics. Thus, we introduce a topological property termed as network robustness and show that this concept, together with its variants, is the key property to characterize the behavior of a class of resilient algorithms that use purely local information. We then investigate the robustness properties of complex networks. Specifically, we consider common random graph models for complex networks, including the preferential attachment model, the Erdos-Renyi model, and the geometric random graph model, and compare the metrics of connectivity and robustness in these models. While connectivity and robustness are greatly different in general (i.e., there exist graphs which are highly connected but with poor robustness), we show that the notions of robustness and connectivity are equivalent in the preferential attachment model, cannot be very different in the geometric random graph model, and share the same threshold functions in the Erdos-Renyi model, which gives us more insight about the structure of complex networks. Finally, we provide a construction method for robust graphs.
APA, Harvard, Vancouver, ISO, and other styles
20

Nayak, Gaurav Kumar. "Data-efficient Deep Learning Algorithms for Computer Vision Applications." Thesis, 2022. https://etd.iisc.ac.in/handle/2005/6094.

Full text
Abstract:
The performance of any deep learning model depends heavily on the quantity and quality of the available training data. The generalization of the trained deep models improves with the availability of a large number of training samples and hence these models are often referred to as ‘data-hungry’. However, large scale datasets may not always be available in practice due to proprietary/privacy reasons or because of the high cost of generation, annotation, transmission and storage of data. Hence, efficient utilization of available data is of utmost importance, and this gives rise to a class of ML problems, which is often referred to as “data-efficient deep learning”. In this thesis we study the various types of such problems for diverse applications in computer vision, where the aim is to design deep neural network-based solutions that do not rely on the availability of large quantities of training data to attain the desired performance goals. Under the aforementioned thematic area, this thesis focuses on three different scenarios, namely - (1) learning in the absence of training data, (2) learning with limited training data and (3) learning using selected subset of training data. Absence of training data: Pre-trained deep models hold their learnt knowledge in the form of model parameters that act as ‘memory’ for the trained models and help them generalize well on unseen data. In the first part of this thesis, we present solutions to a diverse set of ‘zero-shot’ tasks, where in absence of any training data (or even their statistics) the trained models are leveraged to synthesize data-representative samples. We dub them Data Impressions (DIs), which act as proxy to the training data. As the DIs are not tied to any specific application, we show their utility in solving several CV/ML tasks under the challenging data-free setup, such as unsupervised domain adaptation, continual learning as well as knowledge distillation (KD). We also study the adversarial robustness of lightweight models trained via knowledge distillation using DIs. Further, we demonstrate the efficacy of DIs in generating data-free Universal Adversarial Perturbations (UAPs) with better fooling rates. However, one limiting factor of this solution is the relatively high computation (i.e., several rounds of backpropagation) to synthesize each sample. In fact, the other natural alternatives such as GAN based solutions also suffer from similar computational overhead and complicated training procedures. This motivated us to explore the utility of target class-balanced ‘arbitrary’ data as transfer set, which achieves competitive distillation performance and can yield strong baselines for data-free KD. We have also proposed data-free solutions beyond classification by extending zero-shot distillation to the object detection task, where we compose the pseudo transfer set by synthesizing multi-object impressions from a pretrained faster RCNN model. Another concern with the deployment of given trained models is their vulnerability against adversarial attacks. The popular adversarial training strategies rely on availability of original training data or explicit regularization-based techniques. On the contrary, we propose test-time adversarial defense (detection and correction framework), which can provide robustness in absence of training data and their statistics. We observe significant improvements in adversarial accuracy with minimal drop in clean accuracy against state-of-the-art ‘Auto Attack’ without having to retrain the model. Further, we explore an even more challenging problem setup and make the first attempt to provide adversarial robustness to ‘black box’ models (i.e., model architecture, weights, training details are inaccessible) under a complete data-free set up. Our method minimizes adversarial contamination on perturbed samples via proposed ‘wavelet noise remover’ (WNR) that remove coefficients corresponding to high frequency components which are most likely to be corrupted by adversarial attack, and recovers the lost image content by training a ‘regenerator’ network. This results in a high boost in adversarial accuracy when WNR combined with the trained regenerator network is prepended to black box network. Limited training data: In the second part, we assume the availability of a few training samples, where access to trained models may or may not be provided. In the few-shot setup, existing works obtain robustness using sophisticated meta-learning techniques which rely on the generation of adversarial samples in every episode of training - thereby making it computationally expensive. We propose the first computationally cheaper non-meta learning approach for robust few-shot learning that does not require any adversarial sample. We perform pretraining using self-distillation to make the feature representation of low-frequency samples close to original samples of base classes. Similarly, we also improve the discriminability of low-frequency query set features that further boost the robustness. Our method obtains massive improvement in adversarial performance while being ≈5x faster compared to state-of-the-art adversarial meta-learning methods. However, empirical robustness methods do not guarantee robustness of the trained models against all the adversarial perturbations possible within a given threat model. Thus, we also propose a novel problem of certified robustness of pretrained models in limited data settings. Our method provides a novel sample-generation strategy that synthesize ‘boundary’ and ‘interpolated’ samples to augment the limited training data and uses them in training the denoiser (prepended to pretrained classifier) via aligning the feature representations at multiple granularities (both instance and distribution levels). We achieve significant improvements across diverse sample budgets and noise levels in the white-box and observe similar performance under challenging black-box setup. Selected subset of training data: In the third part, we enforce efficient utilization via intelligently doing selective sampling on existing training datasets to obtain representative samples for the target task such as distillation, incremental learning and person-reid. Adversarial attacks recently have shown robustness bias, where certain subgroups in a dataset (e.g. based on class, gender, etc.) are less robust than others. Existing works characterize a subgroup’s robustness bias by only checking individual sample’s proximity to the decision boundary. We propose a holistic approach for quantifying adversarial vulnerability of a sample by combining different perspectives and further develop a trustworthy system to alert the humans about the incoming samples that are highly likely to be misclassified. Moreover, we demonstrate the utility of the proposed metric for data (and time)-efficient knowledge distillation which achieves better performance compared to competing baselines. Other applications such as incremental learning and video based person-reid can also be framed as a subset selection problem where representative samples need to be selected. We leverage DPP (Determinantal Point Process) for choosing the relevant and diverse samples. In Incremental learning, we propose a new variant of k-DPP that uses the RBF kernel (termed as “RBF k-DPP”) for challenging task of animal pose estimation and further tackle class imbalance by using image warping as an augmentation technique to generate varied poses for a given image, leading to further gains in performance. In video based re-id, we propose SLGDPP method which exploits the sequential nature of the frames in video while avoiding noisy and redundant (correlated) frames, resulting in outperforming the baseline sampling methods.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography