Academic literature on the topic 'Advanced nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Advanced nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Advanced nanomaterials"
Titus, Elby, João Ventura, João Pedro Araújo, and João Campos Gil. "Advanced nanomaterials." Applied Surface Science 424 (December 2017): 1. http://dx.doi.org/10.1016/j.apsusc.2017.05.104.
Full textPark, Sehyun, Hojoong Kim, Jong-Hoon Kim, and Woon-Hong Yeo. "Advanced Nanomaterials, Printing Processes, and Applications for Flexible Hybrid Electronics." Materials 13, no. 16 (August 13, 2020): 3587. http://dx.doi.org/10.3390/ma13163587.
Full textTaubert, Andreas, Fabrice Leroux, Pierre Rabu, and Verónica de Zea Bermudez. "Advanced hybrid nanomaterials." Beilstein Journal of Nanotechnology 10 (December 20, 2019): 2563–67. http://dx.doi.org/10.3762/bjnano.10.247.
Full textTitus, Elby, João Campos Gil, João Ventura, and João Pedro Araújo. "Preface: Advanced Nanomaterials." Journal of Applied Physics 120, no. 5 (August 7, 2016): 051601. http://dx.doi.org/10.1063/1.4960078.
Full textTiwari, Ashutosh. "Advanced Nanomaterials - Recent Developments." Advanced Materials Letters 7, no. 11 (November 1, 2016): 851. http://dx.doi.org/10.5185/amlett.2016.11001.
Full textTanaka, Takaho, and Konstantin Iakoubovskii. "Focus on Advanced Nanomaterials." Science and Technology of Advanced Materials 11, no. 5 (October 2010): 050201. http://dx.doi.org/10.1088/1468-6996/11/5/050201.
Full textEftekhari, Aziz, Solmaz Maleki Dizaj, Elham Ahmadian, Agata Przekora, Seyed Mahdi Hosseiniyan Khatibi, Mohammadreza Ardalan, Sepideh Zununi Vahed, et al. "Application of Advanced Nanomaterials for Kidney Failure Treatment and Regeneration." Materials 14, no. 11 (May 29, 2021): 2939. http://dx.doi.org/10.3390/ma14112939.
Full textAhmed, Faheem, Ameer Azam, Mohammad Mansoob Khan, and Samuel M. Mugo. "Advanced Nanomaterials for Biological Applications." Journal of Nanomaterials 2018 (August 29, 2018): 1–2. http://dx.doi.org/10.1155/2018/3692420.
Full textHuang, Haoyuan, and Jonathan F. Lovell. "Advanced Functional Nanomaterials for Theranostics." Advanced Functional Materials 27, no. 2 (November 7, 2016): 1603524. http://dx.doi.org/10.1002/adfm.201603524.
Full textPham, Thanh-Dong, Nguyen Van Noi, Ajit Kumar Sharma, and Van-Duong Dao. "Advanced Nanomaterials for Green Growth." Journal of Chemistry 2020 (March 16, 2020): 1–2. http://dx.doi.org/10.1155/2020/9567121.
Full textDissertations / Theses on the topic "Advanced nanomaterials"
Tsikourkitoudi, Vasiliki P. "Development of advanced nanomaterials for lithium-ion batteries." Thesis, Kingston University, 2016. http://eprints.kingston.ac.uk/37347/.
Full textZamani, Reza. "Structure nanoengineering of functional nanomaterials. Advanced electron microscopy study." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/145318.
Full textEn este trabajo hemos estudiado materiales avanzados con las últimas tecnologías y metodologías de microscopía electrónica, las que tienen un impacto importante en el desarrollo de la ciencia de materiales. El objetivo principal ha sido estudiar fenómenos como el politipismo, morfologías inusuales, ramificación, ‘ramificación politípica’, manipulación de la estructura de banda, ordenación de los cationes, polaridad, crecimiento e interfase epitaxial, alojamiento de una fase secundaria en una base, etc. para razonar la influencia de aquellos fenómenos en las propiedades y aplicaciones, por ejemplo la termoelectricidad, el funcionamiento de unión p-n, la eficiencia de las celdas solares, las propiedades optoelectrónicas, la respuesta de los sensores, etc. Distintos semiconductores han sido caracterizados: nanopartículas de calcogenuros complejos, nanohilos de óxidos de metales, y nanohilos del grupo III-V. Hemos estudiado los materiales en escala nanométrica por medio de métodos avanzados de microscopía electrónica de transmisión (TEM). El capítulo 1 es una breve introducción a la tesis, en la que se exponen los objetivos principales del trabajo, los últimos avances (state-of-the-art), los retos, y las nuevas posibilidades. En el capítulo 2 se explica la metodología de TEM utilizada para estudiar los semiconductores. Los capítulos 3 a 5 se componen de los resultados. El capítulo 3 está basado en el análisis de las nanopartículas de calcogenuros complejos. La sección de resultados contiene tres partes: monoestructurados, multiestructurados, y heteroestructuradas de tipo core-shell. En caso de nanopartículas cuaternarias de CCTSe, las nanopartículas ramifican y forman polipodes, que es el caso de un estudio elaborado porque el mecanismo de la ramificación es interesante. En capítulo 4 se trabaja con los nanohilos de óxidos de metales que sirven para muchas aplicaciones como celdas solares o sensores de gas. En nuestro caso, con el objetivo de mejorar la funcionalidad de los aparatos, hemos estudiado heteroestructuras. En el capítulo 5 prácticamente la misma aproximación está escogida, pero esta vez con nanohilos del grupo III-V. Aquí hemos enfatizado la importancia del crecimiento epitaxial de heteroestructuras. Por último, en el capítulo 6 hemos hablado de las conclusiones generales y las perspectivas para la investigación futura.
Russo, Lorenzo. "Designing advanced nanomaterials for next generation in vitro diagnostics: development of optical and electrochemical biosensors for determination of viral and bacterial infections based on hollow AuAg nanoparticles." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/666751.
Full textIn this PhD thesis, the rational design of advanced nanomaterials with controlled properties was applied for their employment in biosensing, leading to the development of two diagnostic platforms for the determination of viral and bacterial infections. Firstly, a highly reproducible and robust synthetic method for the production of monodisperse AuAg alloy NSs based on GRR was developed. The protocol described allows the precise control over the particles’ morphology, in terms of shell thicknesses and void sizes, the relative composition and topological distribution of their constituting noble metals, as well as their surface roughness and porosity. This synthetic predictability, tested over a range of sizes, has been achieved through a systematic study of the convoluted interplay of each co-reagent, together with a detailed characterization of the material’s composition and structure through an array of techniques. Moreover, the analysis of AuAg NSs’ plasmonic properties evolution during their structural transformation, which spanned through almost the whole visible spectrum up to NIR wavelengths, revealed a tight dependence with their morphological and compositional features. These results, also confirmed by calculations based on Mie’s theory, provided the basis for their application as signal enhancers in the SERS-based LFA developed. Secondly, for the first time the electrochemical behavior of AuAg NSs was reported. Triggered by the controlled corrosion of Ag atoms contained in the particles’ residual cores and thin alloy shells, the voltammetric study of these hollow nanocrystals has been found to be strongly dependent on their relative elemental composition and, partially, to their size and morphology. Indeed, a peculiar electrocatalytic effect appeared only for AuAg NSs possessing a high-enough Au/Ag ratio to let the catalytic electrodeposition of Ag+ on the NSs’ surfaces occur at potentials less negative than Ag standard reduction one. Interestingly, this unreported feature was shown to be triggered only by the mild oxidating character of the electrolyte used, without the need of any other co-reagent or oxidizer. These findings constituted the rational basis for developing AuAg NSs with desirable properties to be applied in the electrochemical assay described. Taking advantage of the tunable plasmonic properties of AuAg NSs, the development of a SERS-based LFA for the sensitive and quantitative detection of MxA, a biomarker commonly associated to viral infections, was achieved. Thanks to the enhanced plasmons intensities displayed by AuAg NSs, resulting from the plasmonic cavity effect commonly observed in hollow nanostructures, their surfaces acted as a continuous hot-spot, amplifying any Raman signal emitted by the reporters thereby attached. Moreover, the possibility to precisely adjust AuAg NSs’ LSPR maximum wavelength to match the NIR excitation laser used during SERS measurements allowed to further improve the overall analytical performance. Thus, AuAg NSs were easily conjugated with anti-MxA antibodies and integrated in a LFA in order to reveal its presence in spiked serum samples. After careful optimization of the point-of-care platform parameters, MxA protein could be successfully detected down to the analytically-relevant LOD of few ng/mL. Finally, the capability to precisely modulate AuAg NSs elemental composition lead to the design of a proof-of-concept electrochemical assay for the rapid detection of two model bacterial strains, Escherichia coli and Salmonella typhimurium. AuAg NSs were used as electrochemical reporters because of the ease of generation of the electrochemical signal, triggered by the sole mild oxidating character of the biological sample matrix. Besides, the polymeric coating of the hollow particles provided the non-specific, affinity-based interaction with bacterial cells in solution, avoiding the need for costly and fragile antibodies. With this low-cost strategy, E.coli could be detected in PBS down to 102 CFU/mL, while the semi-selective discrimination of the current-concentration profiles of the two model bacterial strains was also achieved.
Lin, Yan. "Advanced nanomaterials for fuel cell catalysts characterization of bimetallic nanoparticles /." Diss., Online access via UMI:, 2006.
Find full textShmeliov, Aleksey. "Transmission electron imaging and diffraction characterisation of 2D nanomaterials." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:4bc4d60f-4db0-43d2-9119-cb0a0366090e.
Full textLiu, Kewei. "FABRICATION OF STRUCTURED POLYMER AND NANOMATERIALS FOR ADVANCED ENERGY STORAGE AND CONVERSION." University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1542022285390711.
Full textMelinte, Georgian. "Advanced 3D and in-situ TEM approaches applied to carbon-based and zeolitic nanomaterials." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAE009/document.
Full textIn this thesis, advanced Transmission Electron Microscopy (TEM) techniques are used to characterize and fabricate new nanomaterials with applications in nanoelectronics and catalysis. Three types of functionalized materials are investigated: nanopatterned few-layer graphene (FLG), carbon nanotubes(CNTs) and mesoporous zeolites. The nanopatterning process of FLG flakes by iron nanoparticles (NPs) is studied using an approach combining electron tomography (ET) and environmental TEM. The role of the nanoparticle faceting and of the FLG topographic parameters has been quantitatively determined leading to the first determination of the operating mechanism of the patterning process. The mass transfer of metallic-based NPs between two carbon nanostructures was studied as well in real-time by using a TEMSTMholder. The protocol of controlling the mass transfer, the chemical and structural transformations of the NPs, the growth mechanism of the new NPs and other related phenomena were carefully investigated.The last part deals with the low-dose ET investigation of the porosity induced in two classes of zeolites,ZSM-5 and zeolite Y, by an innovative fluoride-based chemical treatment
Oben, Delphine. "Synthesis of advanced hybrid polymeric nanomaterials and characterization of novel silsesquioxanes with desirable superhydrophobic coating properties." Thesis, Open University, 2016. http://oro.open.ac.uk/48062/.
Full textWang, Weiliang. "Novel functional nano-coatings on glass by spray deposition." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:45bd0d35-111e-4855-96f1-edf109e65b7b.
Full textSearle, Andrew. "Application of nanostructured emitters for high efficiency lighting." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:81731b64-c40b-4c76-9c90-dae7c956e29f.
Full textBooks on the topic "Advanced nanomaterials"
Nishide, Hiroyuki, and Kurt E. Geckeler. Advanced nanomaterials. Weinheim: Wiley-VCH, 2010.
Find full textHosseinkhani, Hossein. Nanomaterials in Advanced Medicine. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019. http://dx.doi.org/10.1002/9783527818921.
Full textGiri, P. K., D. K. Goswami, and A. Perumal, eds. Advanced Nanomaterials and Nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34216-5.
Full textRahmandoust, Moones, and Majid R. Ayatollahi, eds. Nanomaterials for Advanced Biological Applications. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10834-2.
Full textGautam, Ravindra Kumar. Advanced Nanomaterials for Wastewater Remediation. Boca Raton : Taylor & Francis Group, a CRC title, part of the: CRC Press, 2016. http://dx.doi.org/10.1201/9781315368108.
Full textOnishi, Taku, ed. Theoretical Chemistry for Advanced Nanomaterials. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0006-0.
Full textBonča, Janez, and Sergei Kruchinin, eds. Advanced Nanomaterials for Detection of CBRN. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2030-2.
Full textLu, Wen, Jong-Beom Baek, and Liming Dai, eds. Carbon Nanomaterials for Advanced Energy Systems. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118980989.
Full textOzoemena, Kenneth I., and Shaowei Chen, eds. Nanomaterials in Advanced Batteries and Supercapacitors. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-26082-2.
Full textSingh, Lakhveer, and Durga Madhab Mahapatra, eds. Adapting 2D Nanomaterials for Advanced Applications. Washington, DC: American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1353.
Full textBook chapters on the topic "Advanced nanomaterials"
Fei, Dan, Songjun Li, Christian Cimorra, and Yi Ge. "Advanced Nanoparticles in Medical Biosensors." In Biosensor Nanomaterials, 37–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635160.ch2.
Full textBoddeti, Govindh, Venu Reddy, and B. S. Diwakar. "Nanomaterials for Advanced Microbiology." In Nanotechnology for Advances in Medical Microbiology, 207–25. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9916-3_8.
Full textChoudhury, Soumyadip, and Manfred Stamm. "Hybrid Nanostructured Materials for Advanced Lithium Batteries." In Hybrid Nanomaterials, 1–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch1.
Full textSrivastava, Suneel Kumar, and Vikas Mittal. "Advanced Nanostructured Materials in Electromagnetic Interference Shielding." In Hybrid Nanomaterials, 241–320. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119160380.ch5.
Full textAl-Khalaf, Alaa K. H., and Falah H. Hussein. "Green and Sustainable Advanced Nanomaterials." In Green and Sustainable Advanced Materials, 93–106. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119407089.ch4.
Full textFulekar, M. H., and Bhawana Pathak. "Advanced Instruments: Characterization of Nanomaterials." In Environmental Nanotechnology, 193–224. Boca Raton : Taylor & Francis, CRC Press, 2018.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315157214-8.
Full textTahir, Muhammad Bilal, and Khalid Nadeem Riaz. "Hybrid Nanomaterials for Advanced Photocatalysis." In Nanomaterials and Photocatalysis in Chemistry, 117–32. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0646-5_6.
Full textWang, X. D., Z. L. Wang, H. J. Jiang, L. Zhu, C. P. Wong, and J. E. Morris. "Nanomaterials and Nanopackaging." In Materials for Advanced Packaging, 503–45. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-78219-5_15.
Full textKralj, Anita Kovač. "Advanced Silver and Oxide Hybrids of Catalysts During Formaldehyde Production." In Intelligent Nanomaterials, 91–106. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119242628.ch4.
Full textFigovsky, O., D. Beilin, and N. Blank. "Advanced Material Nanotechnology in Israel." In Nanomaterials: Risks and Benefits, 275–86. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-9491-0_21.
Full textConference papers on the topic "Advanced nanomaterials"
Wujcik, Evan K., and Yang Lu. "Advanced Nanomaterials for Bio-Monitoring." In SoutheastCon 2018. IEEE, 2018. http://dx.doi.org/10.1109/secon.2018.8479069.
Full textGreen, Martin A. "Nanomaterials for Photovoltaics." In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.jsa1a.1.
Full textFaraon, Victor, Rodica-Mariana Ion, Simona-Florentina Pop, Raluca Van-Staden, and Jacobus-Frederick Van-Staden. "Porphyrins as molecular nanomaterials." In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies, edited by Paul Schiopu and George Caruntu. SPIE, 2010. http://dx.doi.org/10.1117/12.882110.
Full textBi, Yong-guang, and Meng-qian Huang. "Preparation with Orthogonal Hydroxyapatite Nanomaterials." In 2015 International Conference on Advanced Material Engineering. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814696029_0066.
Full textMinh, Le Quoc, Tran Kim Anh, Nguyen Thanh Binh, and Vu Doan Mien. "New nanomaterials for photonic application." In 2ND ASEAN - APCTP WORKSHOP ON ADVANCED MATERIALS SCIENCE AND NANOTECHNOLOGY: (AMSN 2010). AIP, 2012. http://dx.doi.org/10.1063/1.4732487.
Full textLee, HeaYeon, and JuKyung Lee. "Advanced Biomimetic Nanodevice Using Nanotechnology Addressable Lipid Rafts Nanoarrays Toward Advanced Nanomaterials." In ASME 2013 2nd Global Congress on NanoEngineering for Medicine and Biology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/nemb2013-93286.
Full textHan, Ke. "Characterization and Technology of Nanomaterials." In 2016 4th International Conference on Advanced Materials and Information Technology Processing (AMITP 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/amitp-16.2016.9.
Full textPelayo García de Arquer, F., and Edward H. Sargent. "Solution-processed nanomaterials for advanced optoelectronic and energy applications." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/noma.2017.nom4c.1.
Full textYin, Huajie, Hongjie Tang, Xiuxin Wang, Yan Gao, and Zhiyong Tang. "Application of Nanomaterials and Nanostructures in Fuel Cells." In Advanced Optoelectronics for Energy and Environment. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/aoee.2013.asa4b.2.
Full textFaraon, Victor A., Simona F. Pop, Raluca M. Senin, Sanda M. Doncea, and Rodica M. Ion. "Porphyrin-zeolite nanomaterials for hydrogen peroxide decomposition." In Advanced Topics in Optoelectronics, Microelectronics, and Nanotechnologies 2012, edited by Paul Schiopu and Razvan Tamas. SPIE, 2012. http://dx.doi.org/10.1117/12.966386.
Full textReports on the topic "Advanced nanomaterials"
Biris, Alexandru S., and Vladimir P. Zharov. Advanced Functional Nanomaterials for Biological Processes. Fort Belvoir, VA: Defense Technical Information Center, January 2014. http://dx.doi.org/10.21236/ada599898.
Full textGrubbs, Robert H., and Andrew J. Boydston. Advanced Nanomaterials from Functional Cyclic Polymers. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada546967.
Full textChen, Junhong. Advanced Nanomaterials for High-Efficiency Solar Cells. Office of Scientific and Technical Information (OSTI), November 2013. http://dx.doi.org/10.2172/1108223.
Full textKennedy, Alan, Jonathon Brame, Taylor Rycroft, Matthew Wood, Valerie Zemba, Charles Weiss, Matthew Hull, Cary Hill, Charles Geraci, and Igor Linkov. A definition and categorization system for advanced materials : the foundation for risk-informed environmental health and safety testing. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/41803.
Full textHaber, Lynne, Anthony Bednar, Alan Kennedy, Mark Ballentine, and Richard Canady. Methods evaluation for assessing release of manufactured nanomaterials from polymers, consistent with the NanoGRID framework : Advanced and Additive Materials : Sustainability for Army Acquisitions. Engineer Research and Development Center (U.S.), August 2019. http://dx.doi.org/10.21079/11681/33704.
Full text