Academic literature on the topic 'Adsorption optimization'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adsorption optimization.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adsorption optimization"
Adewoye, LT, SI Mustapha, AG Adeniyi, JO Tijani, MA Amoloye, and LJ Ayinde. "OPTIMIZATION OF NICKEL (II) AND CHROMIUM (III) REMOVAL FROM CONTAMINATED WATER USING SORGHUM BICOLOR." Nigerian Journal of Technology 36, no. 3 (June 30, 2017): 960–72. http://dx.doi.org/10.4314/njt.v36i3.41.
Full textGugushe, Aphiwe Siyasanga, Azile Nqombolo, and Philiswa N. Nomngongo. "Application of Response Surface Methodology and Desirability Function in the Optimization of Adsorptive Remediation of Arsenic from Acid Mine Drainage Using Magnetic Nanocomposite: Equilibrium Studies and Application to Real Samples." Molecules 24, no. 9 (May 9, 2019): 1792. http://dx.doi.org/10.3390/molecules24091792.
Full textAristov, Yuriy I., Ivan S. Glaznev, and Ilya S. Girnik. "Optimization of adsorption dynamics in adsorptive chillers: Loose grains configuration." Energy 46, no. 1 (October 2012): 484–92. http://dx.doi.org/10.1016/j.energy.2012.08.001.
Full textSujatha, S., R. Sivarethinamohan, A. Oorkalan, V. Senthilkumar, B. Anuradha, B. Veluchamy, P. Prabhu, Magda H. Abdellattif, and Abdulmohsen Khalaf Dhahi Alsukaibi. "Exclusion of Chromium(VI) Ion in Grueling Activated Carbon Fabricated from Manilkara zapota Tree Wood by Adsorption: Optimization by Response Surface Methodology." Journal of Nanomaterials 2022 (April 23, 2022): 1–9. http://dx.doi.org/10.1155/2022/8157815.
Full textJin, Xue Yuan, Hong Liu, and San Fu Zhu. "Optimization for Purification Technology of Platycodins by Macroreticular Resin." Advanced Materials Research 781-784 (September 2013): 852–55. http://dx.doi.org/10.4028/www.scientific.net/amr.781-784.852.
Full textMobed, M., and T. M. S. Chang. "Adsorption of chitin derivatives onto liposomes: Optimization of adsorption conditions." Journal of Microencapsulation 15, no. 5 (January 1998): 595–607. http://dx.doi.org/10.3109/02652049809008243.
Full textAkulinin, E. I., A. A. Ishin, S. A. Skvortsov, D. S. Dvoretsky, and S. I. Dvoretsky. "Optimization of Adsorption Processes with Cyclic Variable Pressure in Gas Mixture Separation." Advanced Materials & Technologies, no. 3 (2017): 051–60. http://dx.doi.org/10.17277/amt.2017.03.pp.051-060.
Full textHassan, M. M., K. F. Loughlin, and M. E. Biswas. "Optimization of continuous countercurrent adsorption systems." Separations Technology 6, no. 1 (February 1996): 19–27. http://dx.doi.org/10.1016/0956-9618(95)00137-9.
Full textKo, Daeho, and Il Moon. "Multiobjective Optimization of Cyclic Adsorption Processes." Industrial & Engineering Chemistry Research 41, no. 1 (January 2002): 93–104. http://dx.doi.org/10.1021/ie010288g.
Full textAsanu, Mohammed, Dejene Beyene, and Adisu Befekadu. "Removal of Hexavalent Chromium from Aqueous Solutions Using Natural Zeolite Coated with Magnetic Nanoparticles: Optimization, Kinetics, and Equilibrium Studies." Adsorption Science & Technology 2022 (July 5, 2022): 1–22. http://dx.doi.org/10.1155/2022/8625489.
Full textDissertations / Theses on the topic "Adsorption optimization"
Vetukuri, Sree Rama Raju. "Advanced Optimization Strategies for Periodic Adsorption Processes." Research Showcase @ CMU, 2011. http://repository.cmu.edu/dissertations/30.
Full textVerde, Trindade María. "MODELLING AND OPTIMIZATION OF AN ADSORPTION COOLING SYSTEM FOR AUTOMOTIVE APPLICATIONS." Doctoral thesis, Universitat Politècnica de València, 2015. http://hdl.handle.net/10251/54120.
Full text[ES] Esta tesis doctoral se centra en el modelado de un sistema de adsorción diseñado para proporcionar aire acondicionado de vehículos a partir del calor residual disponible en el circuito de refrigeración de agua/glicol del motor. El sistema se basa en el calentamiento/enfriamiento secuencial de dos reactores que contienen un material adsorbente sólido que desorbe o absorbe vapor de agua. La condensación del vapor se lleva a cabo mediante un circuito de refrigeración, mientras que la posterior evaporación del agua condensada se emplea para producir agua fría, que se emplea finalmente en enfriar el aire de la cabina. El modelo desarrollado es completamente dinámico y se basa en modelos cero dimensionales de parámetros concentrados, para todos y cada uno de los componentes del sistema global incluyendo el motor, los reactores, el circuito de calentamiento, el circuito de enfriamiento, el circuito de agua fría y la cabina del vehículo. El modelo del reactor contempla el no equilibrio de los procesos de adsorción o desorción y es capaz de trabajar con cualquier par de materiales adsorbentes. No obstante el estudio se ha restringido a gel de sílice y zeolita que se encuentran entre los materiales más adecuados para esta aplicación. El modelo se emplea para simular un ciclo de conducción estándar del vehículo, evaluando el calor disponible instantáneamente en el sistema de refrigeración del motor, y el comportamiento dinámico del sistema descrito adsorción-Aire Acondicionado, permitiendo como resultado principal la estimación de la evolución de la temperatura de la cabina a lo largo el ciclo. El modelo del sistema global se ha desarrollado en el marco del entorno de programación MATLAB Simulink. El modelo del sistema de adsorción se ha validado primero contra resultados experimentales demostrando las excelentes capacidades del modelo para predecir el comportamiento dinámico del sistema. A continuación, el modelo se ha aplicado para analizar la influencia de los principales parámetros de diseño del reactor, y de los principales parámetros de operación, sobre el rendimiento del sistema: la capacidad y coeficiente de operación (COP), con el fin de proporcionar directrices para el diseño y operación óptima de este tipo de sistemas. Por último, el modelo ha sido empleado para analizar el funcionamiento y prestaciones del sistema en su conjunto (motor, sistema de absorción, los circuitos de calefacción y refrigeración, circuito de agua fría, y la cabina) a lo largo de un ciclo de conducción estándar, bajo diferentes estrategias de operación en lo que se refiere al estado inicial del material adsorbente en los reactores, y las condiciones de operación, para el caso de un coche, y para el de un camión. Los resultados muestran las dificultades de la activación del sistema en los periodos iniciales del ciclo, cuando el motor se está calentando, y las dificultades para sincronizar el funcionamiento del sistema con la disponibilidad de energía térmica excedente del motor, así como la limitación en la capacidad de enfriamiento del sistema diseñado, que no resulta capaz de satisfacer los requerimientos mínimos de confort dentro de la cabina en los días calurosos o de enfriarlo con suficiente rapidez cuando el vehículo ha estado estacionado bajo el sol durante varias horas. Parte de este estudio de doctorado se ha llevado a cabo en el marco de un proyecto de I + D denominado " Thermally Operated Mobile Air Conditioning Systems - TOPMACS", financiado parcialmente por la UE en el marco del programa FP6, y que perseguía la evaluación de la viabilidad y el potencial de aplicación de soluciones de sistemas de adsorción activadas por el calor residual del motor para el aire acondicionado de vehículos.
[CAT] Aquesta tesi doctoral es centra en el model d'un sistema d'adsorció dissenyat per a proporcionar aire acondicionat a vehicles a partir de la calor residual disponible al circuit de refrigeració d'aigua / glicol del motor. El sistema es basa en l'escalfament / refredament seqüencial de dos reactors que contenen un material adsorbent sòlid que desorbeix o absorbeix vapor d'aigua. La condensació del vapor es porta a terme mitjançant un circuit de refrigeració, mentre que la posterior evaporació de l'aigua condensada s'utilitza per a produir aigua freda, que s'empra finalment en refredar l'aire de la cabina. El model desenvolupat és completament dinàmic i es basa en models zero dimensionals de paràmetres concentrats, per a tots i cada un dels components del sistema global incloent el motor, els reactors, el circuit d'escalfament, el circuit de refredament, el circuit d'aigua freda i la cabina del vehicle. El model del reactor contempla el no equilibri dels processos d'adsorció o desorció i és capaç de treballar amb qualsevol parell de materials adsorbents. No obstant això, l'estudi s'ha restringit a gel de sílice i zeolita que es troben entre els materials més adequats per a aquesta aplicació. El model s'utilitza per a simular un cicle de conducció estàndard del vehicle, avaluant la calor disponible instantàniament en el sistema de refrigeració del motor, i el comportament dinàmic del sistema descrit Adsorció-Aire Acondicionat, permetent com a resultat principal l'estimació de l'evolució de la temperatura de la cabina al llarg del cicle. El model del sistema global s'ha desenvolupat en l'entorn de programació MATLAB Simulink. El model del sistema d'adsorció s'ha validat primer amb resultats experimentals demostrant les excel¿lents capacitats del model per a predir el comportament dinàmic del sistema. A continuació, el model s'ha aplicat per analitzar la influència dels principals paràmetres de disseny del reactor, i dels principals paràmetres d'operació, sobre el rendiment del sistema: la capacitat i coeficient d'operació (COP), amb la finalitat de proporcionar directrius per al disseny i operació òptima d'aquest tipus de sistemes. Finalment, el model ha estat utilitzat per analitzar el funcionament i prestacions del sistema en el seu conjunt (motor, sistema d'absorció, els circuits de calefacció i refrigeració, circuit d'aigua freda, i la cabina) al llarg d'un cicle de conducció estàndard, sota diferents estratègies d'operació pel que fa a l'estat inicial del material adsorbent en els reactors, i les condicions d'operació, per al cas d'un cotxe, i per al d'un camió. Els resultats mostren les dificultats de l'activació del sistema en els períodes inicials del cicle, quan el motor s'està escalfant, i les dificultats per sincronitzar el funcionament del sistema amb la disponibilitat d'energia tèrmica excedent del motor, així com la limitació en la capacitat de refredament del sistema dissenyat, que no resulta capaç de satisfer els requeriments mínims de confort dins de la cabina en els dies calorosos o de refredar amb suficient rapidesa quan el vehicle ha estat estacionat sota el sol durant diverses hores. Part d'aquest estudi de doctorat s'ha dut a terme en el marc d'un projecte d'I + D denominat "Thermally Operated Mobile Air Conditioning Systems - TOPMACS", finançat parcialment per la UE en el marc del programa FP6, i que perseguia l'avaluació de la viabilitat i el potencial d'aplicació de solucions de sistemes d'adsorció activats per la calor residual del motor per a l'aire condicionat de vehicles.
Verde Trindade, M. (2015). MODELLING AND OPTIMIZATION OF AN ADSORPTION COOLING SYSTEM FOR AUTOMOTIVE APPLICATIONS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/54120
TESIS
Yeung, King-ho, and 楊景豪. "An optimization model for a solar hybrid water heating and adsorption ice-making system." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B29632432.
Full textPANDIAN, ARIVAZHAGAN. "Optimization of the Information Collection Rule’s Adsorption/Elution Method for Virus Detection and Enumeration." University of Cincinnati / OhioLINK, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=ucin975357716.
Full textSatam, Sayali S. "Optimization of Wet Friction Systems Based on Rheological, Adsorption, Lubricant and Friction Material Characterization." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1503358825451407.
Full textVoigt, David Robert 1954. "Optimization of combined air stripping and activated carbon adsorption for VOC removal from groundwater." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/191962.
Full textSmith, Nafeesah. "Development of capacitive deionisation electrodes: optimization of fabrication methods and composition." University of the Western Cape, 2020. http://hdl.handle.net/11394/7710.
Full textMembrane Capacitive Deionisation (MCDI) is a technology used to desalinate water where a potential is applied to an electrode made of carbonaceous materials resulting in ion adsorption. Processes and materials for the production of electrodes to be applied in Membrane Capacitive Deionisation processes were investigated. The optimal electrode composition and synthesis approached was determined through analysis of the salt removal capacity and the rate at which the electrodes absorb and desorb ions. To determine the conductivity of these electrodes, the four point probe method was used. Contact angle measurements were performed to determine the hydrophilic nature of the electrodes. N2 adsorption was done in order to determine the surface area of carbonaceous materials as well as electrodes fabricated in this study. Scanning electron microscopy was utilised to investigate the morphology. Electrodes were produced with a range of research variables; (i) three different methods; slurry infiltration by calendaring, infiltration ink dropwise and spray-coating, (ii) electrodes with two different active material/binder ratios and a constant conductive additive ratio were produced in order to find the optimum, (iii) two different commercially available activated carbon materials were used in this study (YP50F and YP80F), (iv) two different commercially available electrode substrates were utilised (JNT45 and SGDL), (v) different slurry mixing times were investigated showing the importance of mixing, and (vi) samples were treated at three different temperatures to establish the optimal drying conditions. Through optimization of the various parameters, the maximum adsorption capacity of the electrode was incrementally increased by 36 %, from 16 mg·g-1 at the start of the thesis to 25 mg·g-1 at the end of the study.
Bentley, Jason A. "Systematic process development by simultaneous modeling and optimization of simulated moving bed chromatography." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/47531.
Full textYesuf, Jemil N. "Determination of single and multi-component adsorption isotherms using nonlinear error functions and spreadsheet optimization technique /." Available to subscribers only, 2006. http://proquest.umi.com/pqdweb?did=1136096201&sid=12&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textHentzschel, Christina M. [Verfasser]. "Optimization of the Liquisolid Technology : Identification of Highly Effective Tableting Excipients for Liquid Adsorption / Christina M. Hentzschel." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2011. http://d-nb.info/1010759698/34.
Full textBooks on the topic "Adsorption optimization"
J, McGuire Michael, and AWWA Research Foundation, eds. Optimization and economic evaluation of granular activated carbon for organic removal. Denver, CO: American Water Works Association Research Foundation, American Water Works Association, 1989.
Find full textW, Hand David, and United States. National Aeronautics and Space Administration., eds. Development of a rational modeling approach for the design, and optimization of the multifiltration unit: Final summary report. [Washington, DC: National Aeronautics and Space Administration, 1996.
Find full textWood, Kevin R., Y. A. Liu, and Yueying Yu. Design, Simulation and Optimization of Adsorptive and Chromatographic Separations. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527815029.
Full textSapienza, Alessio. Dynamics of Adsorptive Systems for Heat Transformation: Optimization of Adsorber, Adsorbent and Cycle. Springer, 2018.
Find full textLiu, Y. A., Kevin R. Wood, and Yueying Yu. Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach. Wiley & Sons, Incorporated, John, 2018.
Find full textLiu, Y. A., Kevin R. Wood, and Yueying Yu. Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach. Wiley & Sons, Incorporated, John, 2018.
Find full textLiu, Y. A., Kevin R. Wood, and Yueying Yu. Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach. Wiley & Sons, Limited, John, 2018.
Find full textLiu, Y. A., Kevin R. Wood, and Yueying Yu. Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach. Wiley & Sons, Limited, John, 2018.
Find full textLiu, Y. A., Kevin R. Wood, and Yueying Yu. Design, Simulation and Optimization of Adsorptive and Chromatographic Separations: A Hands-On Approach. Wiley & Sons, Incorporated, John, 2018.
Find full textBook chapters on the topic "Adsorption optimization"
LeVan, M. Douglas. "Thermal Swing Adsorption: Regeneration, Cyclic Behavior, and Optimization." In Adsorption: Science and Technology, 339–55. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2263-1_18.
Full textTina, Tolic, Klepo Lejla, Topcagic Anela, Copra-Janicijevic Amira, Omar Chahin, Kresic Dragan, and Ostojic Jelena. "Optimization of Glyphosate Adsorption Conditions on Pyrophyllite." In IFMBE Proceedings, 883–900. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-49062-0_92.
Full textLuo, Lingai. "Intensification of Adsorption Process in Porous Media." In Heat and Mass Transfer Intensification and Shape Optimization, 19–43. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4742-8_2.
Full textGupta, T. B., D. H. Lataye, and S. T. Kurwadkar. "Adsorption of Crystal Violet Dye: Parameter Optimization Using Taguchi’s Experimental Methodology." In Advanced Engineering Optimization Through Intelligent Techniques, 653–65. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8196-6_57.
Full textRoušar, Ivo, Martin Čekal, and Pavel Ditl. "Pressure Swing Adsorption - The Optimization of Multiple Bed Units." In Precision Process Technology, 483–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1759-3_37.
Full textSlokar, Y. M., N. S. Nkiriti, K. Huysman, and B. Petrusevski. "Optimization of IOCP coating to improve arsenic adsorption capacity." In Arsenic in the Environment: Bridging Science to Practice for Sustainable Development As2021, 341–42. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003317395-140.
Full textTalukdar, Preetisagar, Pranjal Pratim Das, and Manuj Kumar Hazarika. "Enthalpy–Entropy Compensation and Adsorption Characteristics of Legumes Using ANN Modeling." In Food Product Optimization for Quality and Safety Control, 233–64. Includes bibliographical references and index.: Apple Academic Press, 2020. http://dx.doi.org/10.1201/9781003003144-10.
Full textPotschka, A., A. Küpper, J. P. Schlöder, H. G. Bock, and S. Engell. "Optimal Control of Periodic Adsorption Processes: The Newton-Picard Inexact SQP Method." In Recent Advances in Optimization and its Applications in Engineering, 361–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12598-0_31.
Full textGuo, Denghui, and Yuan Chen. "Optimization Design and Analysis of an Adaptive Variable Magnetic Adsorption Climbing Robot." In Mechanisms and Machine Science, 484–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-0142-5_47.
Full textGanvir, V. N., M. L. Meshram, and R. R. Patil. "Optimization of Adsorption Capacity of Prepared Activated Carbon Using Response Surface Methodology." In Novel Water Treatment and Separation Methods, 233–44. Toronto ; Waretown, NJ : Apple Academic Press, 2017. | "Outcome of national conference REACT- 16, organized by the Laxminarayan Institute of Technology, Nagpur, Maharashtr , India, in 2016"--Introduction. || Includes bibliographical references and index.: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315225395-17.
Full textConference papers on the topic "Adsorption optimization"
Aliyev, Agadadash, Fakhraddin Yusubov, Rauf Babayev, and Afag Guliyeva. "Modeling and optimization of adsorption processes." In 2012 IV International Conference "Problems of Cybernetics and Informatics" (PCI). IEEE, 2012. http://dx.doi.org/10.1109/icpci.2012.6486366.
Full textHassan, Huzairy, Mohd Azmier Ahmad, Lim Chia Hooi, and Olugbenga Solomon Bello. "Optimization of chlorophenols adsorption using OPEFB biosorbent." In INTERNATIONAL CONFERENCE ON TRENDS IN CHEMICAL ENGINEERING 2021 (ICoTRiCE2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0113812.
Full textRamotowski, M., and N. Shamsundar. "Optimization of a Simplified Vapor Adsorption Cycle." In ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0978.
Full textAlmeida, Renata M. R. G., Marlei B. Pasotto, and Carlos O. Hokka. "Optimization of the continuous clavulanic acid adsorption process." In Proceedings of the III International Conference on Environmental, Industrial and Applied Microbiology (BioMicroWorld2009). WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814322119_0073.
Full textAlshehri, Mansoor. "Modelling of adsorption of Ni atoms on nano-sheets." In 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO). IEEE, 2019. http://dx.doi.org/10.1109/icmsao.2019.8880283.
Full textNarayanan, Shankar, Xiansen Li, Sungwoo Yang, Ian McKay, Hyunho Kim, and Evelyn N. Wang. "Design and Optimization of High Performance Adsorption-Based Thermal Battery." In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17472.
Full textAkulinin, Evgeny. "OPTIMIZATION OF ENERGY-SAVING VACUUM PRESSURE SWING ADSORPTION UNIT." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b41/s19.127.
Full textWartenberg, Nicolas, Margaux Kerdraon, Mathieu Salaun, Lena Brunet-Errard, Christophe Fejean, and David Rousseau. "Evaluation and Optimization of Adsorption Reduction Strategies on Chemical EOR Economics." In International Petroleum Technology Conference. IPTC, 2021. http://dx.doi.org/10.2523/iptc-21810-ms.
Full textRanes, Anne, Patrick Phelan, Rafael Pacheco, Anastasios Frantzis, and Lionel Metchop. "Optimization of the Adsorber in an Adsorption Solar-Powered Cooling System." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81833.
Full textMulloth, Lila, Mini Varghese, and Bernadette Luna. "Power Optimization Options for a Universal Temperature-Swing Adsorption Compressor Design." In 40th International Conference on Environmental Systems. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-6037.
Full textReports on the topic "Adsorption optimization"
Spencer, Barry B., and Stephanie H. Bruffey. Initial Series of Ruthenium Adsorption Optimization Studies. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1479744.
Full text