Academic literature on the topic 'Adjoint discret'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adjoint discret.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adjoint discret"
Zhao, Shunliu, Matthew G. Russell, Amir Hakami, Shannon L. Capps, Matthew D. Turner, Daven K. Henze, Peter B. Percell, et al. "A multiphase CMAQ version 5.0 adjoint." Geoscientific Model Development 13, no. 7 (July 2, 2020): 2925–44. http://dx.doi.org/10.5194/gmd-13-2925-2020.
Full textNi, Angxiu. "Backpropagation in hyperbolic chaos via adjoint shadowing." Nonlinearity 37, no. 3 (January 30, 2024): 035009. http://dx.doi.org/10.1088/1361-6544/ad1aed.
Full textCapps, S. L., D. K. Henze, A. Hakami, A. G. Russell, and A. Nenes. "ANISORROPIA: the adjoint of the aerosol thermodynamic model ISORROPIA." Atmospheric Chemistry and Physics Discussions 11, no. 8 (August 19, 2011): 23469–511. http://dx.doi.org/10.5194/acpd-11-23469-2011.
Full textHekmat, Mohamad Hamed, and Masoud Mirzaei. "Development of Discrete Adjoint Approach Based on the Lattice Boltzmann Method." Advances in Mechanical Engineering 6 (January 1, 2014): 230854. http://dx.doi.org/10.1155/2014/230854.
Full textLarour, Eric, Jean Utke, Anton Bovin, Mathieu Morlighem, and Gilberto Perez. "An approach to computing discrete adjoints for MPI-parallelized models applied to Ice Sheet System Model 4.11." Geoscientific Model Development 9, no. 11 (November 1, 2016): 3907–18. http://dx.doi.org/10.5194/gmd-9-3907-2016.
Full textWu, Hangkong, Xuanlong Da, Dingxi Wang, and Xiuquan Huang. "Multi-Row Turbomachinery Aerodynamic Design Optimization by an Efficient and Accurate Discrete Adjoint Solver." Aerospace 10, no. 2 (January 21, 2023): 106. http://dx.doi.org/10.3390/aerospace10020106.
Full textTowara, Markus, Michel Schanen, and Uwe Naumann. "MPI-Parallel Discrete Adjoint OpenFOAM." Procedia Computer Science 51 (2015): 19–28. http://dx.doi.org/10.1016/j.procs.2015.05.181.
Full textNiwa, Yosuke, Hirofumi Tomita, Masaki Satoh, Ryoichi Imasu, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, et al. "A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0) – Part 1: Offline forward and adjoint transport models." Geoscientific Model Development 10, no. 3 (March 17, 2017): 1157–74. http://dx.doi.org/10.5194/gmd-10-1157-2017.
Full textAgarwal, Ravi P., Safi S. Rabie, and Samir H. Saker. "On Discrete Weighted Lorentz Spaces and Equivalent Relations between Discrete ℓp-Classes." Fractal and Fractional 7, no. 3 (March 14, 2023): 261. http://dx.doi.org/10.3390/fractalfract7030261.
Full textCao, Junying, Zhongqing Wang, and Ziqiang Wang. "A Uniform Accuracy High-Order Finite Difference and FEM for Optimal Problem Governed by Time-Fractional Diffusion Equation." Fractal and Fractional 6, no. 9 (August 28, 2022): 475. http://dx.doi.org/10.3390/fractalfract6090475.
Full textDissertations / Theses on the topic "Adjoint discret"
Dittmann, Florian. "Study and Optimisation of Supersonic Ejectors for Heat Recovery Refrigeration Cycles." Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLM029.
Full textSupersonic ejectors for heat recovery refrigeration cycles are modelled, studied and optimised based on numerical fluid mechanics and the discrete adjoint method. The study is supported by an analysis of the relations between the complex flow phenomena, the thermodynamic limits and the cycle performance. A generalised 1D model is developed and used to conceive ejectors and predict their entrainment ratio in order to determine the optimal cycle conditions. The resolution of the Reynolds averaged Navier-Stokes equations complemented by the k-ω SST turbulence model and a cubic equation of state for the refrigerant R134a enables the flow analysis and shape optimisation. The latter relies on the discrete adjoint method to efficiently evaluate the gradient of the objective function with respect to an arbitrary number of design variables. It is shown that the method, applied here for the first time to a transonic flow of a refrigerant in an ejector, is capable of generating a well performing ejector shape from a failed design, despite the apparent discontinuity of the objective function at the critical point. The predicted efficiencies with the optimised shapes exceed those of the best ejectors on the market by around 15%
Marcelet, Meryem. "Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure." Phd thesis, Paris, ENSAM, 2008. http://tel.archives-ouvertes.fr/tel-00367508.
Full textMarcelet, Meryem. "Etude et mise en oeuvre d'une méthode d'optimisation de forme couplant simulation numérique en aérodynamique et en calcul de structure." Phd thesis, Paris, ENSAM, 2008. http://www.theses.fr/2008ENAM0039.
Full textThis work is mainly dedicated to the sensitivity analysis of a static aeroelastic system with respect to design parameters governing its jig-shape. First, a framework able to predict the static aeroelastic equilibrium has been set up. The fluid behavior can be governed either by the nonlinear Euler equations or by the Navier-Stokes Reynolds averaged (RANS) equations. They are numerically solved by an ONERA CFD solver: elsA. The structural behavior is governed by the Euler-Bernoulli equations within the context of beam theory. The aerodynamic loads are transferred to the structure using the matrix of the influence coefficients, also called the flexibility matrix. Only the bending and the twisting aerodynamic load components are consistently transmitted to the structure, and only the bending and the torsional displacements of the structure are calculated under the small displacement hypothesis. The deformation induced on the fluid domain mesh is analytically prescribed using an analogy to solid mechanics. Finally, the resulting coupled aeroelastic system of equations is solved by an iterative process inspired from the fixed-point algorithm. Second, a framework aiming at computing the gradients of the functions of interest (objective and constraints) with respect to a vector of shape parameters related to the jig-shape of the aeroelastic system previously depicted, has been raised. These gradients can be computed either by the discrete direct differentiation method or by the discrete adjoint vector method. In both cases, a coupled linear system of equations has to be solved, which is carried out using a doubly lagged iterative process. Finally, this framework has been applied to the computation of the gradients of the drag and lift aerodynamic coefficients with respect to different shape parameters for three aerodynamic configurations of growing complexity: Euler equations solved on a multiblock mesh with matching boundaries, RANS equations on a monoblock mesh, and, at last, RANS equations solved on a multiblock mesh with non-matching boundaries. The analytical gradients have been validated through the comparison with the finite difference gradients. A last part of this work has been dedicated to the evaluation of the performances of four surrogate models within the shape optimization of a bidimensional turbomachinery configuration
Mura, Gabriele Luigi. "Mesh sensitivity investigation in the discrete adjoint framework." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/17384/.
Full textRothauge, Kai. "The discrete adjoint method for high-order time-stepping methods." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/60285.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Schneider, Rene. "Applications of the discrete adjoint method in computational fluid dynamics." Thesis, University of Leeds, 2006. http://etheses.whiterose.ac.uk/1343/.
Full textWalther, Andrea. "Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1214221752009-12115.
Full textWalther, Andrea. "Discrete Adjoints: Theoretical Analysis, Efficient Computation, and Applications." Doctoral thesis, Technische Universität Dresden, 2007. https://tud.qucosa.de/id/qucosa%3A23715.
Full textRoth, Rolf [Verfasser]. "Multilevel Optimization of Turbulent Flows by Discrete Adjoint Techniques / Rolf Roth." München : Verlag Dr. Hut, 2012. http://d-nb.info/1025821424/34.
Full textTowara, Markus [Verfasser], Uwe [Akademischer Betreuer] Naumann, and Wolfgang [Akademischer Betreuer] Schröder. "Discrete adjoint optimization with OpenFOAM / Markus Towara ; Uwe Naumann, Wolfgang Schröder." Aachen : Universitätsbibliothek der RWTH Aachen, 2018. http://d-nb.info/1187346942/34.
Full textBooks on the topic "Adjoint discret"
Edmunds, D. E., and W. D. Evans. Capacity and Compactness Criteria. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0008.
Full textBook chapters on the topic "Adjoint discret"
Wong, M. W. "Self-Adjoint Operators." In Discrete Fourier Analysis, 113–16. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0116-4_16.
Full textLotz, Johannes, Uwe Naumann, Max Sagebaum, and Michel Schanen. "Discrete Adjoints of PETSc through dco/c++ and Adjoint MPI." In Euro-Par 2013 Parallel Processing, 497–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40047-6_51.
Full textGiles, M. B. "Discrete Adjoint Approximations with Shocks." In Hyperbolic Problems: Theory, Numerics, Applications, 185–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55711-8_16.
Full textCatlin, Donald E. "Adjoints, Projections, Pseudoinverses." In Estimation, Control, and the Discrete Kalman Filter, 92–113. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-4528-5_4.
Full textSchmüdgen, Konrad. "Discrete Spectra of Self-adjoint Operators." In Graduate Texts in Mathematics, 265–80. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4753-1_12.
Full textFichtner, Andreas. "The Frequency-Domain Discrete Adjoint Method." In Full Seismic Waveform Modelling and Inversion, 189–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15807-0_10.
Full textShu, Hanlin, Liangzhi Cao, Qingming He, Tao Dai, Zhangpeng Huang, and Hongchun Wu. "Study on Unstructured-Mesh-Based Importance Sampling Method of Monte Carlo Simulation." In Springer Proceedings in Physics, 431–44. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1023-6_38.
Full textAnil, N., N. K. S. Rajan, Omesh Reshi, and S. M. Deshpande. "A Low Dissipative Discrete Adjoint m-KFVS Method." In Computational Fluid Dynamics 2008, 619–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01273-0_82.
Full textTowara, Markus, Johannes Lotz, and Uwe Naumann. "Discrete Adjoint Approaches for CHT Applications in OpenFOAM." In Computational Methods in Applied Sciences, 163–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-57422-2_11.
Full textBrezillon, Joël, and Mohammad Abu-Zurayk. "Aerodynamic Inverse Design Framework Using Discrete Adjoint Method." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 489–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35680-3_58.
Full textConference papers on the topic "Adjoint discret"
Biava, Massimo, Mark Woodgate, and George N. Barakos. "Fully Implicit Discrete Adjoint Methods." In 53rd AIAA Aerospace Sciences Meeting. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1491.
Full textFrey, Christian, Hans-Peter Kersken, and Dirk Nu¨rnberger. "The Discrete Adjoint of a Turbomachinery RANS Solver." In ASME Turbo Expo 2009: Power for Land, Sea, and Air. ASMEDC, 2009. http://dx.doi.org/10.1115/gt2009-59062.
Full textSchäfer, Fellcitas, Luca Magri, and Wolfgang Polifke. "A Hybrid Adjoint Network Model for Thermoacoustic Optimization." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59866.
Full textMartins, Joaquim R. R. A., Charles Mader, and Juan Alonso. "ADjoint: An Approach for Rapid Development of Discrete Adjoint Solvers." In 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-7121.
Full textZhang, Chaolei, and Zhenping Feng. "Aerodynamic Shape Design Optimization for Turbomachinery Cascade Based on Discrete Adjoint Method." In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45805.
Full textMa, Can, Xinrong Su, and Xin Yuan. "Discrete Adjoint Solution of Unsteady Turbulent Flow in Compressor." In ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/gt2015-42948.
Full textWalther, Benjamin, and Siva Nadarajah. "An Adjoint-Based Optimization Method for Constrained Aerodynamic Shape Design of Three-Dimensional Blades in Multi-Row Turbomachinery Configurations." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26604.
Full textWu, Hangkong, Shenren Xu, Xiuquan Huang, and Dingxi Wang. "The Development and Verification of a Fully Turbulent Discrete Adjoint Solver Using Algorithmic Differentiation." In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-59610.
Full textLu, Juan, Chaolei Zhang, and Zhenping Feng. "Aerodynamic Optimization and Inverse Design of 2D and 3D Turbine Cascades Using the Discrete Adjoint Method." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95284.
Full textChung, June, Jeonghwan Shim, and Ki D. Lee. "Inverse Design of 3D Compressor Blades With Adjoint Method." In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45419.
Full textReports on the topic "Adjoint discret"
Slater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5973682.
Full textSlater, C. O. DRC2: A code with specialized applications for coupling localized Monte Carlo adjoint calculations with fluences from two-dimensional R-Z discrete ordinates air-over-ground calculations. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10110196.
Full text