Academic literature on the topic 'ADiCT'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'ADiCT.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "ADiCT"
Wu, Qing Yan, Ling Mi, and Zun Wei Fu. "Boundedness ofp-Adic Hardy Operators and Their Commutators onp-Adic Central Morrey and BMO Spaces." Journal of Function Spaces and Applications 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/359193.
Full textKim, Min-Soo, Taekyun Kim, and Jin-Woo Son. "On Multiple Twistedp-adicq-Eulerζ-Functions andl-Functions." Abstract and Applied Analysis 2008 (2008): 1–14. http://dx.doi.org/10.1155/2008/793297.
Full textJang, Lee-Chae. "A Newq-Analogue of Bernoulli Polynomials Associated withp-Adicq-Integrals." Abstract and Applied Analysis 2008 (2008): 1–6. http://dx.doi.org/10.1155/2008/295307.
Full textMok, Chung Pang. "The exceptional zero conjecture for Hilbert modular forms." Compositio Mathematica 145, no. 1 (January 2009): 1–55. http://dx.doi.org/10.1112/s0010437x08003813.
Full textYamagami, Atsushi, and Yūki Matsui. "On Some Formulas for Kaprekar Constants." Symmetry 11, no. 7 (July 5, 2019): 885. http://dx.doi.org/10.3390/sym11070885.
Full textKim, Daeyeoul, and Min-Soo Kim. "Symmetry Fermionic -Adic -Integral on for Eulerian Polynomials." International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/424189.
Full textGreenberg, Ralph, and Glenn Stevens. "p-adicL-functions andp-adic periods of modular forms." Inventiones Mathematicae 111, no. 1 (December 1993): 407–47. http://dx.doi.org/10.1007/bf01231294.
Full textTeitelbaum, Jeremy T. "Values ofp-adicL-functions and ap-adic Poisson kernel." Inventiones Mathematicae 101, no. 1 (December 1990): 395–410. http://dx.doi.org/10.1007/bf01231508.
Full textColeman, Robert, and Ehud de Shalit. "p-Adic regulators on curves and special values ofp-adicL-functions." Inventiones mathematicae 93, no. 2 (June 1988): 239–66. http://dx.doi.org/10.1007/bf01394332.
Full textVerma, Ashish. "Depression among Indian Internet Addict Adolescents." Indian Journal of Youth & Adolescent Health 06, no. 04 (June 24, 2020): 12–18. http://dx.doi.org/10.24321/2349.2880.201917.
Full textDissertations / Theses on the topic "ADiCT"
Verdasca, Carla Sofia Marques. "Crenças, atitudes e comportamentos de saúde e de risco de adictos em comunidades terapêuticas." Master's thesis, Universidade de Évora, 2010. http://hdl.handle.net/10174/19060.
Full textVenjakob, Otmar. "Iwasawa theory of r-adic [rho-adic] Lie extensions." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961907630.
Full textFurusho, Hidekazu. "ρ-adic multiple zeta values 1 : ρ-adic multiple polylogarithms and the ρ-adic KZ equation." 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/148595.
Full textBrown, Bryan. "Addicted to the Addict: Hollywood's Sinuous Relationship With the Drug-Addict in the 1970s." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/906.
Full textAmbrosi, Emiliano. "l-adic,p-adic and geometric invariants in families of varieties." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLX019/document.
Full textThis thesis is divided in 8 chapters. Chapter ref{chapterpreliminaries} is of preliminary nature: we recall the tools that we will use in the rest of the thesis and some previously known results. Chapter ref{chapterpresentation} is devoted to summarize in a uniform way the new results obtained in this thesis.The other six chapters are original. In Chapters ref{chapterUOIp} and ref{chapterneron}, we prove the following: given a smooth proper morphism $f:Yrightarrow X$ over a smooth geometrically connected base $X$ over an infinite finitely generated field of positive characteristic, there are lots of closed points $xin |X|$ such that the rank of the N'eron-Severi group of the geometric fibre of $f$ at $x$ is the same of the rank of the N'eron-Severi group of the geometric generic fibre. To prove this, we first study the specialization of the $ell$-adic lisse sheaf $R^2f_*Ql(1)$ ($ellneq p$), then we relate it with the specialization of the F-isocrystal $R^2f_{*,crys}mathcal O_{Y/K}(1)$ passing trough the category of overconvergent F-isocrystals. Then, the variational Tate conjecture in crystalline cohomology, allows us to deduce the result on the N'eron-Severi groups from the results on $R^2f_{*,crys}mathcal O_{Y/K}(1)$. These extend to positive characteristic results of Cadoret-Tamagawa and Andr'e in characteristic zero.Chapters ref{chaptermarcuzzo} and ref{chapterpadic} are devoted to the study of the monodromy groups of (over)convergent F-isocrystals. Chapter ref{chaptermarcuzzo} is a joint work with Marco D'Addezio. We study the maximal tori in the monodromy groups of (over)convergent F-isocrystals and using them we prove a special case of a conjecture of Kedlaya on homomorphism of convergent $F$-isocrystals. Using this special case, we prove that if $A$ is an abelian variety without isotrivial geometric isogeny factors over a function field $F$ over $overline{F}_p$, then the group $A(F^{mathrm{perf}})_{tors}$ is finite. This may be regarded as an extension of the Lang--N'eron theorem and answer positively to a question of Esnault. In Chapter ref{chapterpadic}, we define $overline Q_p$-linear category of (over)convergent F-isocrystals and the monodromy groups of their objects. Using the theory of companion for overconvergent F-isocrystals and lisse sheaves, we study the specialization theory of these monodromy groups, transferring the result of Chapter ref{chapterUOIp} to this setting via the theory of companions.The last two chapters are devoted to complements and refinement of the results in the previous chapters. In Chapter ref{chaptertate}, we show that the Tate conjecture for divisors over finitely generated fields of characteristic $p>0$ follows from the Tate conjecture for divisors over finite fields of characteristic $p>0$. In Chapter ref{chapterbrauer}, we prove uniform boundedness results for the Brauer groups of forms of varieties in positive characteristic, satisfying the $ell$-adic Tate conjecture for divisors. This extends to positive characteristic a result of Orr-Skorobogatov in characteristic zero
Ludwig, Judith. "p-adic Langlands functoriality." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/25095.
Full textScanlon, M. G. T. "ƿ-adic Fourier analysis." Thesis, Durham University, 2003. http://etheses.dur.ac.uk/3712/.
Full textEis, Pavel. "Datová sada pro klasifikaci síťových zařízení pomocí strojového učení." Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2021. http://www.nusl.cz/ntk/nusl-445543.
Full textWald, Christian. "A p-adic quantum group and the quantized p-adic upper half plane." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18201.
Full textA quantum group is a noncommutative noncocommutative Hopf algebra. In this thesis we deform the locally convex Hopf algebra of locally analytic functions on GL(2,O), where O is the valuation ring of a finite extension of the p-adic numbers. We show that this deformation is a noncommutative noncocommutative locally convex Hopf algebra, i.e. a p-adic quantum group. Our main result is that the strong dual of our deformation is a Fréchet Stein algebra, i.e. a projective limit of Noetherian Banach algebras with right flat transition maps. This was shown in the commutative case by P. Schneider and J. Teitelbaum. For our proof in the noncommutative case we use ideas of M. Emerton, who gave an alternative proof of the Fréchet Stein property in the commutative case. For the proof we describe completions of the quantum enveloping algebra and use partial divided powers. An important class of locally analytic representations of GL(2,K) is constructed from global sections of line bundles on the p-adic upper half plane. We construct a noncommutative analogue of an affine version of the p-adic upper half plane which we expect to give rise to interesting representations of our p-adic quantum group. We construct this space by using the Manin quantum plane, the Bruhat-Tits tree for PGL(2,K) and the theory of algebraic microlocalization.
Newton, James. "Levels of p-adic automorphic forms and a p-adic Jacquet-Langlands correspondence." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/7032.
Full textBooks on the topic "ADiCT"
Stein, Michael. The Addict. New York: HarperCollins, 2009.
Find full textBaldó, Blanca. Adicta al miedo. Caracas: Fundarte, Alcaldía de Caracas, 1991.
Find full textPerrin-Riou, Bernadette. p-adic L-functions and p-adic representations. Providence, RI: American Mathematical Society, 2000.
Find full textThe joy addict: Poems. Pittsburgh: Carnegie Mellon University Press, 1998.
Find full textBeaton, M. C. Death of an Addict. New York: Grand Central Publishing, 2001.
Find full textHarms, James. The joy addict: Poems. Pittsburgh: Carnegie Mellon University Press, 1998.
Find full textBeaton, M. C. Death of an addict. New York: Time Warner, 2001.
Find full textMind of an addict. Portsmouth, N.H: P.E. Randall Publisher, 1993.
Find full textBeaton, M. C. Death of an addict. Waterville, Me: Thorndike Press, 2005.
Find full textBeaton, M. C. Death of an addict. New York: The Mysterious Press, 1999.
Find full textBook chapters on the topic "ADiCT"
Sajadi, Behzad, Maxim Lazarov, and Aditi Majumder. "ADICT: Accurate Direct and Inverse Color Transformation." In Computer Vision – ECCV 2010, 72–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15561-1_6.
Full textEpstein, Orit Badouk. "“Suicide Addict”." In Shame Matters, 148–68. London: Routledge, 2021. http://dx.doi.org/10.4324/9781003175612-10.
Full textHuber, Roland. "Adic spaces." In Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, 36–107. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-663-09991-8_2.
Full textPowell, Elliott H. "Addict(ive) Sex." In Popular Music and the Politics of Hope, 173–86. New York : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.4324/9781315165677-12.
Full textKhrennikov, Andrei Yu, and Marcus Nilson. "P-Adic Numbers and P-Adic Analysis." In P-adic Deterministic and Random Dynamics, 5–29. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2660-7_2.
Full textGouvêa, Fernando Q. "p-adic Numbers." In Universitext, 41–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-22278-2_4.
Full textMurty, M. Ram. "p-adic Methods." In Problems in Analytic Number Theory, 147–70. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_10.
Full textMurty, M. Ram. "p-adic Methods." In Problems in Analytic Number Theory, 423–46. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3441-6_20.
Full textLang, Serge. "p-adic Preliminaries." In Graduate Texts in Mathematics, 314–28. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-0987-4_14.
Full textSerovajsky, Simon. "p-adic numbers." In Sequential Models of Mathematical Physics, 129–53. Boca Raton, Florida : CRC Press, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429470417-9.
Full textConference papers on the topic "ADiCT"
Vines, Paul, Franziska Roesner, and Tadayoshi Kohno. "Exploring ADINT." In CCS '17: 2017 ACM SIGSAC Conference on Computer and Communications Security. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3139550.3139567.
Full text"ADiT." In 2007 14th International Conference on Mixed Design of Integrated Circuits and Systems. IEEE, 2007. http://dx.doi.org/10.1109/mixdes.2007.4286259.
Full textJUYUMAYA, Jesus, and Sofia LAMBROPOULOU. "p-ADIC FRAMED BRAIDS AND p-ADIC MARKOV TRACES." In Intelligence of Low Dimensional Topology 2006 - The International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770967_0010.
Full textSCHOLZE, PETER. "p-ADIC GEOMETRY." In International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0032.
Full textHartatik, Firdaus Yuni, and Nixie Devina Rahmadiani. "Self-Forgiveness in Former Drug Addict (A Case Study on Former Methamphetamine Addict)." In Proceedings of the 4th ASEAN Conference on Psychology, Counselling, and Humanities (ACPCH 2018). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/acpch-18.2019.38.
Full textAndré, Yves. "Toward p-adic Stokes phenomena? Singularities of p-adic differential equations." In The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0001.
Full textDumas, Jean-Guillaume. "Q-adic transform revisited." In the twenty-first international symposium. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390768.1390780.
Full textDolzmann, Andreas, and Thomas Sturm. "P-adic constraint solving." In the 1999 international symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/309831.309894.
Full textGhosh, Somnath, Vahdat Khashayar, and Brandy McKelvy. "Polarized Treasures Of The Drug Addict." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a2938.
Full textChao Lu, Xinkai Li, and Luxi Shan. "Periodicity of the P-adic Expansion after Arithmetic Operations in P-adic Field." In 2012 IEEE/ACIS 11th International Conference on Computer and Information Science (ICIS). IEEE, 2012. http://dx.doi.org/10.1109/icis.2012.85.
Full textReports on the topic "ADiCT"
Marshak, Ronni. Confessions of a Groupon Addict. Boston, MA: Patricia Seybold Group, October 2010. http://dx.doi.org/10.1571/psgp11-04-10cc.
Full textHovland, P. D., and B. Norris. Users' Guide to ADIC 1.1. Office of Scientific and Technical Information (OSTI), August 2004. http://dx.doi.org/10.2172/834712.
Full textVolkow, N. D., and J. S. Fowler. Brain imaging studies of the cocaine addict: Implications for reinforcement and addiction. Office of Scientific and Technical Information (OSTI), July 1995. http://dx.doi.org/10.2172/93949.
Full textDAI, YANG, ALEXEY B. BORISOV, KEITH BOYER, and CHARLES K. RHODES. A p-Adic Metric for Particle Mass Scale Organization with Genetic Divisors. Office of Scientific and Technical Information (OSTI), December 2001. http://dx.doi.org/10.2172/791885.
Full textWu, Po-Ting, C. H. Bischof, and P. D. Hovland. Using ADIFOR and ADIC to provide Jacobians for the SNES component of PETSc. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/567514.
Full textDesbarats, A. J., M. B. Parsons, J. B. Percival, Y. T. J. Kwong, and S. Beauchemin. Characterization of the flow and chemistry of Adit Drainage, Bralorne Mine, Bralorne, B.C. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2010. http://dx.doi.org/10.4095/261502.
Full textLu, Chao. A Computational Library Using P-adic Arithmetic for Exact Computation With Rational Numbers in Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, November 2005. http://dx.doi.org/10.21236/ada456488.
Full textLu, Chao. Algorithms and Implementation for P-adic Cyclic Codes Using Exact Arithmetic Library Developed for Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, January 2007. http://dx.doi.org/10.21236/ada473068.
Full textLu, Chao. Extension of P-adic Exact Scientific Computational Library (ESCL) to Compute the Exponential of Rational Matrix. Fort Belvoir, VA: Defense Technical Information Center, February 2008. http://dx.doi.org/10.21236/ada478962.
Full text