Academic literature on the topic 'Adhesive Interactions'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adhesive Interactions.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adhesive Interactions"
Mercedes Pastor-Blas, M. M. "Compatibility Improvement between Chlorinated Thermoplastic Rubber and Polychloroprene Adhesive." Rubber Chemistry and Technology 82, no. 1 (March 1, 2009): 18–36. http://dx.doi.org/10.5254/1.3548238.
Full textFeng, Chen, Fang Wang, Zheng Xu, Huilin Sui, Yong Fang, Xiaozhi Tang, and Xinchun Shen. "Characterization of Soybean Protein Adhesives Modified by Xanthan Gum." Coatings 8, no. 10 (September 26, 2018): 342. http://dx.doi.org/10.3390/coatings8100342.
Full textNarayanan, Amal, Ali Dhinojwala, and Abraham Joy. "Design principles for creating synthetic underwater adhesives." Chemical Society Reviews 50, no. 23 (2021): 13321–45. http://dx.doi.org/10.1039/d1cs00316j.
Full textTaylor, James T., Rebekka Harting, Samer Shalaby, Charles M. Kenerley, Gerhard H. Braus, and Benjamin A. Horwitz. "Adhesion as a Focus in Trichoderma–Root Interactions." Journal of Fungi 8, no. 4 (April 6, 2022): 372. http://dx.doi.org/10.3390/jof8040372.
Full textKlingelhofer, J., R. B. Troyanovsky, O. Y. Laur, and S. Troyanovsky. "Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions." Journal of Cell Science 113, no. 16 (August 15, 2000): 2829–36. http://dx.doi.org/10.1242/jcs.113.16.2829.
Full textKan, Anton, Ilenne Del Valle, Tim Rudge, Fernán Federici, and Jim Haseloff. "Intercellular adhesion promotes clonal mixing in growing bacterial populations." Journal of The Royal Society Interface 15, no. 146 (September 2018): 20180406. http://dx.doi.org/10.1098/rsif.2018.0406.
Full textWilson, James G. "Adhesive Interactions in Hemopoiesis." Acta Haematologica 97, no. 1-2 (1997): 6–12. http://dx.doi.org/10.1159/000203654.
Full textRosenfeld, Stephen J., and Harvey R. Gralnick. "Adhesive Interactions in Hemostasis." Acta Haematologica 97, no. 1-2 (1997): 118–25. http://dx.doi.org/10.1159/000203667.
Full textPradyawong, Sarocha, Guangyan Qi, Meng Zhang, Xiuzhi S. Sun, and Donghai Wang. "Effect of pH and pH-Shifting on Adhesion Performance and Properties of Lignin-Protein Adhesives." Transactions of the ASABE 64, no. 4 (2021): 1141–52. http://dx.doi.org/10.13031/trans.14465.
Full textLipke, Peter N., Jason M. Rauceo, and Albertus Viljoen. "Cell–Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy." International Journal of Molecular Sciences 23, no. 3 (January 20, 2022): 1110. http://dx.doi.org/10.3390/ijms23031110.
Full textDissertations / Theses on the topic "Adhesive Interactions"
Ren, Dakai. "Moisture-Cure Polyurethane Wood Adhesives: Wood/Adhesive Interactions and Weather Durability." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/29866.
Full textPh. D.
Cavenagh, James Durrell. "Adhesive interactions of leukaemic cells with endothelium." Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244210.
Full textDi, Fino Alessio. "Comparative approach to barnacle adhesive-surface interactions." Thesis, University of Newcastle upon Tyne, 2015. http://hdl.handle.net/10443/2838.
Full textLiu, Haijing. "Wet adhesion properties of oilseed proteins stimulated by chemical and physical interactions and bonding." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/35774.
Full textDepartment of Grain Science and Industry
X. Susan Sun
The ecological and public health liabilities related with consuming petroleum resources have inspired the development of sustainable and environmental friendly materials. Plant protein, as a byproduct of oil extraction, has been identified as an economical biomaterial source and has previously demonstrated excellent potential for commercial use. Due to the intrinsic structure, protein-based materials are vulnerable to water and present relatively low wet mechanical properties. The purpose of this study focuses on increasing protein surface hydrophobicity through chemical modifications in order to improve wet mechanical strength. However, most of the water sensitive groups (WSG), such as amine, carboxyl, and hydroxyl groups, are also attributed to adhesion. Therefore, the goal of this research is to reduce water sensitive groups to an optimum level that the modified soy protein presents good wet adhesion and wet mechanical strength. In this research, we proposed two major approaches to reduce WSG: 1). By grafting hydrophobic chemicals onto the WSGs on protein surface; 2). By interacting hydrophobic chemicals with the WSGs. For grafting, undecylenic acid (UA), a castor oil derivative with 11-carbon chain with a carboxyl group at one end and naturally hydrophobic, was used. Carboxyl groups from UA reacted with amine groups from protein and converted amines into ester with hydrophobic chains grafting on protein surface. The successful grafting of UA onto soy protein isolate (SPI) was proved by both Infrared spectroscopy (IR) and ninhydrin test. Wood adhesive made from UA modified soy protein had reached the highest wet strength of 3.30 ± 0.24 MPa with fiber pulled out, which was 65% improvement than control soy protein. Grafting fatty acid chain was verified to improve soy protein water resistance. For interaction approach, soy oil with three fatty acid chains was used to modify soy protein. Soy oil was first modified into waterborne polyurethanes (WPU) to improve its compatibility and reactivity with aqueous protein. The main forces between WPU and protein were hydrogen bonding, hydrophobic interactions, and physical entanglement. Our results showed that WPU not only increased protein surface hydrophobicity with its fatty acid chains but also enhanced the three-dimensional network structure in WPU-SPI adhesives. WPU modification had increased wet adhesion strength up to 3.81 ± 0.34 MPa with fiber pulled out compared with 2.01 ± 0.46 MPa of SPI. Based on IR and thermal behavior changes observed by DSC, it was inferred that a new crosslinking network formed between WPU and SPI. To exam if the UA and WPU technologies developed using soy protein are suitable for other plant proteins, we selected camelina protein because camelina oil has superior functional properties for jet fuels and polymers. Like soy protein, camelina protein is also highly water sensitive. However, simply applied UA and WPU to camelina protein following the same methods used for soy proteins, we did not obtain the same good adhesion results compared to what we achieved with soy protein. After protein structure analysis, we realized that camelina protein is more compact in structure compared to soy protein that made it weak in both dry and wet adhesion strength. Therefore, for camelina protein, we unfolded its compact structure with Polymericamine epichlorohydrine (PAE) first to improve flexible chains with more adhesion groups for future reaction with UA or WPU. PAE with charged groups interacted camelina protein through electrostatic interaction and promoted protein unfolding to increase reactivity within protein subunits and between protein and wood cells. Therefore, the wet adhesion strength of camelina protein was improved from zero to 1.30 ± 0.23 MPa, which met the industrial standard for plywood adhesives in terms of adhesion strength. Then the wet adhesion strength of camelina protein was further improved after applying UA and WPU into the PAE modified camelina protein. In addition, we also found PAE unfolding significantly improved the dry adhesion strength of camelina protein from 2.39 ± 0.52 to 5.39 ± 0.50 MPa with 100% wood failure on two-layer wood test. Camelina meal which is even more economical than camelina protein was studied as wood adhesive. Through a combination of PAE and laccase modification method, the wet adhesion strength of camelina meal was improved as high as 1.04 ± 0.19MPa, which also met industrial standards for plywood adhesives. The results of this study had proven successful modification of oilseed protein to increase water resistance and wet mechanical strength. We have gained in-depth understanding of the relationship between protein structure and wet adhesion strength. The successful modification of plant proteins meeting the industrial needs for bio-adhesives will promote the development of eco-friendly and sustainable materials.
Zhao, Boxin Pelton Robert H. "The interactions of pressure sensitive adhesive with paper surfaces." *McMaster only, 2004.
Find full textTaubenberger, Anna Verena. "Quantifying adhesive interactions between cells and extracellular matrix by single-cell force spectroscopy." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-24758.
Full textInteraktionen zwischen Zellen und ihrer Umgebung sind maßgeblich an der Regulierung zellulärer Funktionen beteiligt und daher notwendig für die Organisation von Zellen in Geweben und komplexen Organismen. Zellinteraktionen mit der extrazellulären Matrix (EZM) werden hauptsächlich durch Integrine vermittelt. Situationen, in denen Integrin- EZM Interaktionen verändert sind, können Krankheiten verursachen und spielen zudem eine wichtige Rolle bei der Invasion von Krebszellen. Daher besteht ein großes Interesse darin, die molekularen Mechanismen, die Integrin-EZM Interaktionen regulieren, besser zu verstehen. Wie können Zell-EZM Interaktionen untersucht werden? Obwohl es mehrere Methoden gibt, mit denen Zelladhäsion untersucht werden kann, sind die wenigsten dazu geeignet, Zelladhäsionskräfte zu quantifizieren. Einzelzellspektroskopie erfasst die Adhäsionskräfte einzelner Zellen quantitativ und ermöglicht dadurch eine differenzierte Betrachtung der Adhäsion individueller Zellen. Eine Variante der Einzelzellspektroskopie basiert auf der Rasterkraftmikroskopie (AFM); diese Technik wurde in der vorliegenden Arbeit verwendet. Ein Vorteil von AFM- Einzelzellspektroskopie besteht darin, dass Zellen mit hoher zeitlicher und räumlicher Präzision manipuliert werden können. Zelladhäsionskräfte können zudem über einen großen Kraftbereich hinweg untersucht werden. Dabei ermöglicht es die hohe Kraftauflösung, einzelne Integrin-Ligandenbindungen in lebenden Zellen zu untersuchen. Die vorliegende Arbeit gliedert sich in sechs Kapitel. Kapitel eins gibt Hintergrundinformationen über Zell-EZM Wechselwirkungen. In Kapitel zwei werden verschiedene Adhäsionsassays einander gegenüber gestellt. Das theoretische Bell-Evans Modell, mit dessen Hilfe die gewonnenen Daten interpretiert wurden, wird in Kapitel drei diskutiert. Im Anschluss werden drei Projekte, welche das Herzstück dieser Doktorarbeit bilden, in Kapiteln vier bis sechs näher ausgeführt. Im ersten Projekt (Kapitel vier) wurde die Adhäsion von α2β1-Integrin exprimierenden CHO Zellen zu Kollagen I, dem häufigsten strukturellen Protein in Wirbeltieren, quantitativ untersucht. Zunächst wurden α2β1-Kollagen-Interaktionen auf Einzelmolekülebene analysiert. Mithilfe der dynamischen Kraftspektroskopie wurden für diese Bindung Dissoziationsrate koff (1.3 ± 1.3 sec-1) und Potentialbarrierenbreite xu (2.3 ± 0.3 Å) bestimmt. Daraufhin wurde die α2β1-vermittelte Adhäsion über einen Zeitraum von zehn Minuten untersucht. Dadurch konnten Einblicke in die Kinetik von α2β1-integrin vermittelter Zelladhäsion sowie in die zugrunde liegenden Regulationsmechanismen gewonnen werden. Im zweiten Projekt (Kapitel fünf) wurde die Rolle von kryptischen Integrin-Bindungsstellen in Kollagen I untersucht. Die zuvor verwendeten Kollagenoberflächen wurden thermisch denaturiert, wodurch versteckte RGD (Arg-Gly-Asp)-Sequenzen freigelegt wurden. Die partielle Denaturierung hatte- verglichen mit nativem Kollagen I- eine erhöhte Adhäsion von Präosteoblasten (MC3T3-E1) zur Folge, was auf das Binden zusätzlicher Integrine zurückgeführt wurde. Im Unterschied zu nativem Kollagen wurde die Zelladhäsion zu denaturiertem Kollagen I u.a. durch αv- and α5β1-Integrine vermittelt. Präosteoblasten zeigten verstärktes Zellspreiten sowie höhere Motilität auf denaturiertem Kollagen I; zudem wurde ein erhöhtes Differenzierungpotential der Präosteoblasten festgestellt. Die in diesem Projekt erhaltenen Einblicke bilden eine hilfreiche Basis für die Entwicklung optimierter Oberflächen für diverse Zell- und Gewebekulturanwendungen. Im dritten Projekt (Kapitel sechs) wurde der Einfluss des Fusionproteins BCR/ABL, charakteristisch für chronische myeloische Leukämie, auf die Adhäsion von myeloischen Vorläuferzellen untersucht. Dazu wurde die Adhäsion von BCR/ABL transformierten Vorläuferzellen (32D Zellen) bzw. Kontrollzellen zu Stromazellen (M2-10B4) sowie verschiedenen EZM Proteinen untersucht. BCR/ABL erhöhte die Zelladhäsion der myeloischen Vorläuferzellen signifikant. Dieser Effekt wurde durch die Zugabe von Imatinib, welches die Tyrosinkinaseaktivität von BCR/ABL inhibiert, aufgehoben. Die BCR/ABL-verstärkte Zelladhäsion korrelierte mit erhöhten β1-Integrin-konzentrationen. Da die Adhäsion von Leukämiezellen im Knockenmark bekanntermaßen kritisch für die Entwicklung von Resistenzen gegenüber verschiedenen Wirkstoffen ist, könnten die Ergebnisse dieser Studie eine Grundlage für die Entwicklung optimierter Target-Therapien sein. In den drei beschriebenen Projekten wurde AFM Einzelzellspektroskopie verwendet, um Integrin- vermittelte Adhäsion auf molekularer Ebene zu untersuchen. Die Ergebnisse zeigen, dass AFM-Einzelzellspektroskopie ein vielseitiges Werkzeug darstellt, das überaus geeignet dazu ist, Zelladhäsion- ausgehend von Einzelmolekülinteraktionen bis hin zur Entstehung komplexerer Adhäsionsstellen- auf der Kraftebene zu verfolgen
Choudhury, Devapriya. "Functional implications of macromolecular recognition : assembly of adhesive pili and enzyme substrate interactions /." Uppsala : Swedish Univ. of Agricultural Sciences (Sveriges lantbruksuniv.), 2001. http://epsilon.slu.se/avh/2001/91-576-5820-X.pdf.
Full textTucker, David. "Assessing the cellular and adhesive interactions in in vitro models of mantle cell lymphoma." Thesis, University of Plymouth, 2017. http://hdl.handle.net/10026.1/10235.
Full textMasek, Lisa Christina. "The study of adhesive interactions between haemopoietic progenitor cells and bone marrow sinusoidal endothelial cells." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242854.
Full textKryworuchko, Marko Andrii. "Regulation of CD44 and its adhesive interactions with the extracellular matrix component, hyaluronan, by cytokines in normal and transformed human B lymphocytes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0015/NQ46528.pdf.
Full textBooks on the topic "Adhesive Interactions"
Yu, Jing. Adhesive Interactions of Mussel Foot Proteins. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-06031-6.
Full textRovensky, Yury A. Adhesive Interactions in Normal and Transformed Cells. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2.
Full textservice), SpringerLink (Online, ed. Adhesive Interactions in Normal and Transformed Cells. Totowa, NJ: Springer Science+Business Media, LLC, 2011.
Find full textEdward, Bittar E., Garrod D. R, North Alison J, and Chidgey Martin A. J, eds. The adhesive interaction of cells. Stamford, Conn: JAI Press Inc., 1999.
Find full textL, Gordon J., ed. Vascular endothelium: Interactions with circulating cells. Amsterdam: Elsevier, 1991.
Find full textJ, Nelson W., ed. Membrane protein-cytoskeleton interactions. San Diego: Academic Press, 1996.
Find full textRussell, Stevenson Bruce, Gallin Warren J, and Paul David Louis, eds. Cell-cell interactions: A practical approach. Oxford: IRL Press at Oxford University Press, 1992.
Find full textWhittard, John Edward. Heterocyclic interactions between families of cell-adhesion molecules. Manchester: University of Manchester, 1996.
Find full textBjerketorp, Joakim. Novel adhesive proteins of pathogenic Staphylococci and their interaction with host proteins. Uppsala: Swedish University of Agricultural Sciences, 2004.
Find full textP, Fleming Tom, ed. Cell-cell interactions: A practical approach. 2nd ed. Oxford: Oxford University Press, 2002.
Find full textBook chapters on the topic "Adhesive Interactions"
Rovensky, Yury A. "Intercellular Adhesive Interactions." In Adhesive Interactions in Normal and Transformed Cells, 185–211. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_9.
Full textDejana, Elisabetta, Lindsey Needham, and John Gordon. "Endothelial Cell Adhesive Interactions." In Endothelial Cell Dysfunctions, 153–68. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4899-0721-9_9.
Full textFrojmovic, M. M. "Platelet Biorheology: Adhesive Interactions in Flow." In Handbook of Platelet Physiology and Pharmacology, 315–41. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5049-5_14.
Full textSmith, C. W., O. Abbassi, S. B. Shappell, D. C. Anderson, L. V. McIntire, and T. K. Kishimoto. "Adhesive Interactions of Neutrophils with Endothelial Cells." In Host Defense Dysfunction in Trauma, Shock and Sepsis, 431–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77405-8_50.
Full textGordon, M. Y., D. Clarke, C. R. Dowding, and M. Siczkowski. "Adhesive Interactions in the Regulation of Haemopoiesis." In Modern Trends in Human Leukemia IX, 93–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-76829-3_17.
Full textRovensky, Yury A. "Introduction." In Adhesive Interactions in Normal and Transformed Cells, 1–5. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_1.
Full textRovensky, Yury A. "Conclusions." In Adhesive Interactions in Normal and Transformed Cells, 213–15. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_10.
Full textRovensky, Yury A. "The Extracellular Matrix." In Adhesive Interactions in Normal and Transformed Cells, 7–12. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_2.
Full textRovensky, Yury A. "Cytoskeleton." In Adhesive Interactions in Normal and Transformed Cells, 13–35. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_3.
Full textRovensky, Yury A. "Pseudopodia and Adhesion Structures." In Adhesive Interactions in Normal and Transformed Cells, 37–56. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-304-2_4.
Full textConference papers on the topic "Adhesive Interactions"
King, Michael R. "Cell-Surface Adhesive Interactions in Microchannels and Microvessels." In ASME 2003 1st International Conference on Microchannels and Minichannels. ASMEDC, 2003. http://dx.doi.org/10.1115/icmm2003-1011.
Full textImai, Yohsuke, Hitoshi Kondo, Young Ho Kang, Takuji Ishikawa, Chwee Teck Lim, and Takami Yamaguchi. "A Numerical Model of Adhesion Property of Malaria Infected Red Blood Cells in Micro Scale Blood Flows." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206456.
Full textSchoeller, Harry, Aaron Knobloch, Hua Xia, David Shaddock, Chris Kapusta, Kevin Durocher, and Jungyun Cho. "Adhesive Tiecoat/Polyimide Interactions in High Temperature Flex Packaging." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33419.
Full textKHAMMASSI10.12783/asc36/35835, SABRINE, and MOSTAPHA TARFAOUI. "ENHANCED FRACTURE TOUGHNESS OF ADHESIVE JOINTS WITH DOPING EPOXY BY GRAPHENE NANOPLATELETS." In Thirty-sixth Technical Conference. Destech Publications, Inc., 2021. http://dx.doi.org/10.12783/asc36/35835.
Full textBastida, E., and L. Almirall. "EFFECTS OF 13-H0DE AND HETEs ON TUMOR CELL/ENDOTHELIAL CELL INTERACTIONS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643947.
Full textNachman, R. L., R. L. Silverstein, and A. S. Asch. "THROMBOSPONDIN: CELL BIOLOGY OF AN ADHESIVE GLYCOPROTEIN." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1644653.
Full textSarvestani, Alireza. "A Theoretical Analysis for the Effect of Substrate Elasticity on Cellular Adhesion." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13311.
Full textSarvestani, Alireza. "Kinetics of Membrane Spreading on Compliant Bio-Adhesive Substrates." In ASME 2010 First Global Congress on NanoEngineering for Medicine and Biology. ASMEDC, 2010. http://dx.doi.org/10.1115/nemb2010-13321.
Full textWernik, Jacob M., and Shaker A. Meguid. "Multiscale Modeling of Nano-Reinforced Structural Adhesive Bonds." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64978.
Full textLarson, Lyndon, Yin Tang, Adriana Zambova, Cassandra Hale, Sushumna Iruvanti, Taryn Davis, Hai Longworth, and Richard Langlois. "Fundamental investigation of lid interactions with TIM1 and adhesive materials for advanced flip chip packaging." In 2015 IEEE 65th Electronic Components and Technology Conference (ECTC). IEEE, 2015. http://dx.doi.org/10.1109/ectc.2015.7159873.
Full textReports on the topic "Adhesive Interactions"
Frihart, Charles R. Adhesive interactions with wood. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 2004. http://dx.doi.org/10.2737/fpl-gtr-149.
Full textLillard. Jr, James W. CXCL13-CXCR5 Interaction and Prostate Cancer Cell Firm Adhesion and Bone Metastasis. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada484348.
Full textMorrison, Mark, Joshuah Miron, Edward A. Bayer, and Raphael Lamed. Molecular Analysis of Cellulosome Organization in Ruminococcus Albus and Fibrobacter Intestinalis for Optimization of Fiber Digestibility in Ruminants. United States Department of Agriculture, March 2004. http://dx.doi.org/10.32747/2004.7586475.bard.
Full text