Dissertations / Theses on the topic 'Adenosine-signalling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 23 dissertations / theses for your research on the topic 'Adenosine-signalling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Jackson, Andrew M. "Aâ†2â†B adenosine receptor signalling." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251985.
Full textAtterbury, Alison. "Development of adenosine signalling in the cerebellum." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/35147/.
Full textStockenhuber, Alexander. "The role of adenosine A2A receptor signalling in cardiac fibrosis." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:cfacf0d7-33c2-455f-97fe-4d5d6255a0a2.
Full textTagoe, Daniel Nii Aryee. "Downstream effectors of cyclic adenosine monophosphate signalling in Trypanosoma brucei." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6819/.
Full textYang, Gary Kaiyuan. "Involvement of adenosine signalling in the release of gastric and pancreatic peptides." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35862.
Full textBader, Almke [Verfasser]. "Integration of gap junction coupling in adenosine signalling of endothelial cells / Almke Bader." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2018. http://d-nb.info/1165251574/34.
Full textRaslan, Zaher. "Characterisation of cyclic adenosine monophosphate/protein kinase A signalling networks in blood platelets." Thesis, University of Hull, 2012. http://hydra.hull.ac.uk/resources/hull:6431.
Full textDomiziana, De Tommaso. "Astrocytes contribute to neuroinflammation during EAE by shaping the CNS microenvironment via Rai signalling." Doctoral thesis, Università di Siena, 2020. http://hdl.handle.net/11365/1105117.
Full textMurphy, Cody. "Transregulation of Cardiac Ischaemic Tolerance and Stress Kinase Signalling by A1 Adenosine and ¿-Opioid Receptors." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382690.
Full textThesis (Masters)
Master of Medical Research (MMedRes)
School of Medical Science
Griffith Health
Full Text
O'Rourke, Martin Gerard. "An investigation of the signalling pathways in mammalian tissues stimulated by an adenosine analogue and amphibian derived peptides." Thesis, University of Ulster, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393765.
Full textWyatt, Amanda Wyn. "Cell signalling mechanisms involved in adenosine-induced modulation of the L-Arginine nitric oxide pathway in human fetal endothelial cells." Thesis, King's College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270791.
Full textSACCHETTO, Valeria. "THE A3 ADENOSINE RECEPTOR: A LINK BETWEEN INFLAMMATION AND CANCER." Doctoral thesis, Università degli studi di Ferrara, 2010. http://hdl.handle.net/11392/2389332.
Full textTocco, Alice. "Le rôle de l’adénosine au cours de l'embryogenèse des vertébrés." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0153/document.
Full textExtracellular adenosine belongs to the purinergic signalling pathway and regulatesvarious physiological processes through activation of specific receptors named adora. Theextracellular concentration of adenosine is regulated by several ecto-enzymes involved eitherin its generation or in its degradation but also by nucleoside transporters enabling its exitoutside or entry inside the cell. In adults, the functions of adenosine are quite well known,however, the its involvement during embryogenesis remains poorly studied. An excess ofadenosine in early phases of development is lethal in mouse and sea urchins, demonstratingthe importance of the extracellular adenosine level regulation during embryogenesis. The aimof my phD is to understand the role of adenosine during embryogenesis using Xenopus as avertebrate model. Indeed, the first in vivo evidence of the implication of the purinergic signallingpathway during vertebrate development, and in particular of ADP during eye formation hasbeen demonstrated using this model. The first part of this project was to characterize all theadenosine signalling pathway actors in Xenopus in order to generate the first comprehensiveand comparative embryonic expression map of these genes. This work allowed me to selectthe alkaline phosphatase alpl for functional studies based on its specific expression profile, inthe retina and kidney. These functional studies, mostly carried out by knockdown experiments,constituted the second part of this phD and showed the implication of this enzyme during theeye and kidney development
Burns, L. E. A. "ATP dependent calcium signalling in guinea pig vas deferens." Thesis, Queen's University Belfast, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273289.
Full textAsplund, Persson Anna K. "Pharmacological evaluation of the NO/cGMP signalling system /." Linköping : Linköpings universitet, 2005. http://www.bibl.liu.se/liupubl/disp/disp2005/med919s.pdf.
Full textSilva, Andreia Marisa Cruz e. "Calcium signalling modulation in astrocytes by adenosine receptors." Master's thesis, 2011. http://hdl.handle.net/10451/8489.
Full textO modelo de sinapse actualmente aceite considera que para o processo de comunicação neuronal contribuem não só os neurónios pré- e pós-sináptico mas também um elemento peri-sináptico, os astrócitos. Estes constituem a população de células mais abundante no cérebro, formando juntamente com a micróglia e os oligodendrócitos a rede de células da glia. Presentemente, sabe-se que os astrócitos não são meros elementos passivos, comunicando activamente com as outras células através do seu mecanismo de excitabilidade que usa iões de cálcio (Ca2+) como mensageiro interno para desencadear a gliotransmissão. Este fenómeno é despoletado pela activação de receptores membranares e consiste na libertação de gliotransmissores (GT) como o glutamato, ATP e D-serina. A libertação de GT parece exercer uma função com características em certa medida semelhantes à libertação de neurotransmissores (NT) pelos neurónios. Esta conversa dinâmica e bidireccional entre neurónios e astrócitos depende da libertação de NT e GT que são reconhecidos por ambos os tipos de células. Desta forma, a libertação de NT do terminal pré-sináptico afecta o terminal pós-sináptico mas também os astrócitos envolventes, induzindo um aumento nos seus níveis intracelulares de Ca2+ [Ca2+]i. Em resposta, os astrócitos libertam GT, por um mecanismo não complemente elucidado, afectando novamente o terminal pós-sináptico e ainda a libertação de NT do terminal pré-sináptico. Através destes mecanismos, os astrócitos modulam a excitabilidade neuronal e a transmissão sináptica, havendo evidências de que também modulam fenómenos como a potenciação de longa duração que está intimamente ligada à memória e aprendizagem. As purinas, nomeadamente o ATP e a adenosina, modulam a gliotransmissão, regulando a transmissão sináptica e a comunicação neurónio-astrócito. O ATP desencadeia a sinalização por Ca2+, sendo um dos agentes dos primeiros eventos no processo de gliotransmissão em astrócitos. O aumento da [Ca2+]i mediado pelo ATP deve-se à activação de receptores metabotrópicos (P2YR), que levam à libertação de Ca2+ dos compartimentos intracelulares via fosfolipase C (PLC) e inositol (1,4,5)-trifosfato (IP3), e de receptores ionotrópicos (P2XR), que medeiam a entrada directa de Ca2+ do exterior da célula. O ATP é convertido extracelularmente em adenosina e ambas as purinas se acumulam simultânea ou sequencialmente, estando os seus níveis aumentados em situações patológicas. Os receptores para o ATP (metabotrópicos P2YR e ionotrópicos P2XR) e para a adenosina (metabotrópicos A1R, A2AR, A2BR e A3R) são coexpressos nos astrócitos, o que sugere uma possível interacção entre estas duas famílias de receptores. Da família dos receptores de ATP, o P2Y1R exerce um papel preponderante no desencadear da gliotransmissão. Sabe-se que a adenosina modula a sinalização de Ca2+ desencadeada por neurotransmissores e neuromoduladores como o glutamato e ATP, no entanto, não se compreende completamente quais os receptores de adenosina envolvidos neste processo. É de salientar ainda que os receptores A1 estão negativamente acoplados ao AMP cíclico (cAMP) através de uma proteína Gi inibitória, diminuindo a libertação de GT. Os receptores A2A estão positivamente acoplados ao cAMP através de uma proteína Gs estimuladora, potenciando a libertação de GT. Estudos anteriores mostram que a adenosina modula diferencialmente a internalização de GABA em astrócitos corticais através dos seus receptores membranares de alta afinidade A1 e A2A. É de salientar que esta modulação depende da cooperação entre os receptores A1 e A2A. O principal objectivo deste trabalho é avaliar o papel dos receptores de adenosina, em particular do A2A, na modulação da sinalização por Ca2+. Pretende-se também explorar a possível cooperação entre os receptores A1 e A2A de adenosina no efeito modulatório. As respostas de Ca2+ em astrócitos corticais primários foram estudas pela técnica de imagiologia de Ca2+, usando um microscópio invertido de epifluorescência. O fluoróforo escolhido foi o Fura-2AM que é altamente sensível ao Ca2+, ligando este ião de forma estável e reversível. Trata-se de um fluorocromo raciométrico, uma vez, que sofre um desvio no comprimento de onda do pico de absorvência quando ligado ao Ca2+, de 380 (F380) para 340 (F340) nm. O rácio F340/F380 é usado para avaliar as variações da [Ca2+]i. A internalização do fluoróforo processa-se durante 45 minutos a 37oC e ocorre de forma passiva devido aos grupos AM que atribuem carga global negativa. Já dentro da célula, os grupos AM são clivados por enzimas e o fluoróforo fica retido no interior da célula. As células foram local e brevemente (0,2 segundos) estimuladas com 10 μM ATP, a 22 oC, e a amplitude das respostas foi medida na presença de diferentes fármacos. Foi usado um análogo estável da adenosina, 2-cloroadenosina (CADO), um agonista e um antagonista selectivos para o receptor A2A, CGS 21680 e SCH 58261, respectivamente, e um antagonista selectivo para o receptor A1, DPCPX. No protocolo desenvolvido e optimizado no decurso do projecto, as células foram estimuladas de 5 em 5 minutos e obteve-se respostas para a situação controlo, apenas com tampão HEPES no meio, de seguida na presença do fármaco, que é mantido no meio de perfusão no mínimo durante 15-20 minutos, seguindo-se finalmente a lavagem com tampão HEPES ou com uma mistura de agonista/antagonista do receptor. Como controlo interno, foi ainda obtida a resposta máxima da célula a um estímulo supramáximo, 100 μM ATP. O desenvolvimento deste protocolo dependeu da optimização de uma serie de parâmetros como o período de intervalo entre estimulações, a concentração de ATP usada como estimulo, a duração de cada estimulação, a temperatura da incubação com o fluoróforo e a temperatura de perfusão usada durante toda o registo de sinais de Ca2+. As culturas primárias foram caracterizadas quanto às populações de células presentes, astrócitos, neurónios e micróglia, pela técnica de imunocitoquímica, recorrendo a anticorpos que marcam especificamente estas células. Detectou-se ainda a presença dos receptores de ATP, P2Y1, e de adenosina, A1 e A2A, pela técnica de western blot, aplicando anticorpos específicos para estas proteínas. Observei que a estimulação breve com 10 μM ATP (0,2 segundos) induz um transiente de Ca2+ rápido. A estimulação prolongada (≥ 20 segundos) com ATP induz uma resposta de Ca2+ bifásica, constituída por um pico inicial, seguindo-se um patamar na resposta. Segundo outros autores, o pico inicial é mediado por receptores P2Y e o patamar por receptores P2X. O envolvimento dos receptores P2Y no pico inicial foi comprovado na presença de baixa concentração de Ca2+ extracelular. O análogo estável da adenosina que apresenta afinidade semelhante para os receptores A1 e A2A, 1 μM CADO, potenciou marcadamente a resposta de Ca2+ desencadeada pelo ATP (aumento da resposta: 3,19 ± 0,30 vezes, n=72 células). O agonista selectivo para o receptor A2A, 30nM CGS 21680, imitou este efeito (2,92 ± 0,32 vezes, n=80 células). Estes efeitos foram completamente revertidos após remoção do agonista do meio de perfusão. O parâmetro ‘aumento da resposta’ é o rácio entre a amplitude da resposta ao ATP na presença do fármaco e a amplitude da resposta na ausência de fármaco. Foi ainda calculado o parâmetro ‘resposta controlo/resposta máxima’, tendo observado uma relação inversa entre os valores de aumento de resposta e resposta controlo/resposta máxima. Desta forma, as células que apresentam uma menor resposta controlo em relação à resposta máxima, determinada na presença de 100 μM ATP, sofrem um aumento mais elevado induzido pelos agonistas, CADO e CGS 21680. Tal variabilidade de respostas mostra que estamos perante uma população de células heterogéneas. Para estudar a possível cooperação e/ou interacção entre os receptores A1 e A2A, foram usados antagonistas específicos para estes receptores de forma a testar se revertiam a potenciação induzida pelos agonistas. Verifiquei que os antagonistas, 50 nM SCH 58261 e 50 nM DPCPX, por si só, não induziam variação apreciável na resposta de Ca2+. Surpreendentemente, a potenciação induzida pelo CADO (agonista não-selectivo A1 e A2A) e pelo CGS 21680 (agonista selectivo A2A) foi completamente revertida não só pelo antagonista específico do receptor A2A, SCH 58261, mas também pelo antagonista específico do receptor A1, DPCPX. Tais resultados mostram que a activação de ambos os receptores, A1 e A2A, é fundamental para que o efeito modulatório se verifique, sugerindo a cooperação entre estes receptores. A caracterização das culturas primárias pela técnica de imunocitoquímica mostrou que estas são constituídas maioritariamente por astrócitos (> 90%) e alguma micróglia. Desta forma, pode-se afirmar que estamos perante culturas primárias enriquecidas em astrócitos. A introdução de um passo extra de agitação ao dia 6 de cultura, antes de replaquear as células, permite obter culturas com uma maior percentagem de astrócitos (> 95%) em relação à micróglia. Recorrendo à técnica de western blot foi possível detectar a presença dos receptores de ATP, P2Y1, e de adenosina, A1 na cultura enriquecida em astrócitos. No entanto, usando esta técnica, não foi possível detectar os receptores A2A de adenosina. Uma vez, que a presença de receptores A2A já foi observada anteriormente em astrócitos corticais e que pela técnica de imagiologia de Ca2+, aqui aplicada, foram obtidas respostas a fármacos específicos para estes receptores, pode-se afirmar que estes receptores estão presentes nas culturas primárias usadas neste estudo. Provavelmente a sua densidade será baixa e desta forma difícil de quantificar por western blot. Os resultados aqui apresentados permitem concluir que a adenosina, através da activação de receptores A2A, facilita a sinalização por Ca2+ induzida pelo ATP, em astrócitos corticais. Mais ainda, a cooperação entre os receptores A1 e A2A, parece ser essencial para a modulação observada. O envolvimento de receptores A2A na modulação da sinalização de Ca2+ aqui demonstrado contrapõe resultados anteriores nos quais outros autores mostraram que estes receptores não tinham qualquer efeito sobre a modulação das respostas de Ca2+. Esses autores mostraram ainda que os receptores A2B de adenosina medeiam a modulação da sinalização por Ca2+. No entanto, no trabalho anterior foram usadas concentrações de fármacos não selectivas para os receptores correspondentes, o que poderá justificar as diferenças nos resultados obtidos. Os resultados aqui apresentados estão de acordo com o modelo tetramérico - A1-A1-A2A-A2A - de receptores de adenosina proposto para a modulação diferencial da internalização de GABA pela adenosina, em astrócitos corticais. Os resultados aqui obtidos apoiam um cenário semelhante para a modulação da sinalização de Ca2+ pela adenosina com possíveis implicações na libertação de GT. Trata-se por isso de um novo mecanismo de modulação sináptica indirecto que é provavelmente mediado pela cooperação dos receptores A1 e A2A de adenosina, permitindo uma regulação apertada e uma transição suave entre os estados inibitório e potenciador.
Purines, namely ATP and adenosine, modulate gliotransmission, regulating synaptic transmission and ultimately neuron-astrocyte communication. ATP triggers the signalling of free calcium ions (Ca2+), which is the substrate for gliotransmission, in astrocytes. ATP is extracellularly converted into adenosine and both purines can be accumulated simultaneously or sequentially, acting on a plethora of membrane astrocytic receptors. Adenosine modulates GABA uptake in cortical astrocytes through A1 (A1R) and A2A (A2AR) receptors. Most importantly, this modulation is dependent on tight A1R-A2AR cooperation. Therefore, the aim of this project was to evaluate the role of adenosine receptors, mainly A2AR, in Ca2+ signalling modulation and also to explore the possible cross-talk between A1R and A2AR in this modulation. Ca2+ responses of cortical primary astrocytes were studied by Ca2+ imaging technique using Fura-2AM, at 22oC. Cells were locally and briefly (0.2 seconds) stimulated with 10μM ATP and the amplitude of fluorescence signals was measured in the presence of different drugs. Cultures were further characterized by immunocytochemistry and western blot techniques. A stable adenosine analogue, 2-Chloroadenosine (1 μM), markedly enhanced ATP-induced Ca2+ responses (fold increase: 3.19 ± 0.30, n=72 cells). An A2AR selective agonist, CGS 21680 (30nM), mimicked this effect (2.92 ± 0.32, n=80 cells). The potentiation mediated by both agonists was not only completely reverted by an A2AR selective antagonist, SCH 58261 (50nM), but also by an A1R selective antagonist, DPCPX (50nM). Primary enriched astrocytic cultures are constituted mainly by astrocytes (> 90%) and microglial cells. The presence of ATP, P2Y1R, and adenosine, A1R, but not A2AR could be demonstrated for primary astrocytic cultures. Nevertheless, selective agonists and antagonist used in Ca2+ imaging have proven the presence of functional A2AR. It is concluded that adenosine, through A2AR activation, potentiates ATP-induced Ca2+ signalling in astrocytes. Furthermore, A1R-A2AR cooperation seems to be required for this modulation.
Caiazzo, Elisabetta. "Adenosine signalling pathway as modulator of the inflammatory response." Tesi di dottorato, 2016. http://www.fedoa.unina.it/11125/1/tesi%20%20dottorato%20Elisabetta%20Caiazzo.pdf.
Full textRibeiro, Joana Filipa Gonçalves. "Astrocytic CB1R-mediated calcium signalling: impact in glutamate transport and interaction with adenosine receptors." Master's thesis, 2018. http://hdl.handle.net/10451/35250.
Full textOs astrócitos são células multifuncionais que coexistem com os neurónios no sistema nervoso central, cuja morfologia pode variar conforme localização e/ou função. Na sinapse, interagem direta e indiretamente com os terminais pré-sinápticos, pós-sinápticos, e astrócitos vizinhos, uma vez que possuem recetores específicos para neurotransmissores, sendo capazes de libertar gliotransmissores que, por sua vez, se ligam a recetores presentes nos terminais nervosos. Esta comunicação bidirecional entre astrócitos e neurónios leva então ao conceito de sinapse tripartida. Além da gliotransmissão, os astrócitos também são responsáveis pela maioria da captação de glutamato nas sinapses. O glutamato é o principal neurotransmissor excitatório com um papel crucial na sinalização neuronal. Após ter cumprido a sua função como neurotransmissor, é necessário a saída rápida deste da fenda sináptica de modo a impedir excitotoxicidade. Para tal, astrócitos e neurónios expressam transportadores de glutamato. A atividade destes transportadores é controlada de forma fina por vários componentes intra e extracelulares como fatores de crescimento, neuromoduladores, sinalização de cálcio, etc. Atualmente, cannabis é a droga ilícita mais consumida nos países desenvolvidos. A planta cannabis sativa possui centenas de substâncias psicoativas, como o THC, que se ligam a recetores específicos no cérebro e periferia que, iniciando uma cascada de eventos, levam aos efeitos psicoativos da cannabis, já conhecidos. Hoje em dia sabe-se que os mamíferos são capazes de produzir e degradar endocanabinóides que também se ligam a estes recetores funcionando como neurotransmissores retrógrados. O sistema endocanabinóide passou a ser conhecido por um sistema regulador homeostático com uma sinalização intra e intercelular. Os recetores de canabinóides mais estudados são os recetores de cannabinóides tipo 1 (CB1R) e recetores de cannabinóides tipo 2 (CB2R). O CB1R tem uma expressão mais dominante no sistema nervoso central (SNC) enquanto o recetor CB2 é mais expresso no sistema imunitário. Durante a transmissão sináptica, os terminais pré-sinápticos libertam neurotransmissores na fenda sináptica que, por sua vez, se vão ligar aos recetores expressos nos terminais pós-sinápticos. Uma vez ligados, dependendo do tipo de neurónio/célula, os neurotransmissores podem conduzir a uma variedade de respostas, como inibição, excitação e/ou síntese de segundos mensageiros. Por vezes, os terminais pós-sinápticos respondem ao estímulo através da síntese de endocanabinóides. Estes, por sua vez, são libertados na fenda sináptica ligando-se e ativando os recetores canabinóides. No cérebro, a atividade desses recetores pode afetar múltiplas funções biológicas, como perceção da dor, digestão, aprendizagem, memória, ansiedade e funções cognitivas. Isso é feito através da regulação da transmissão sináptica e da plasticidade, como a inibição da libertação do transmissor, o controlo da excitabilidade neuronal e a regulação da plasticidade sináptica de curto e longo prazo. O CB1R é um recetor acoplado à proteína G (GPCR) do sistema canabinóide com sete domínios transmembranares. A expressão deste não é uniforme ao longo do cérebro, sendo mais expresso no cerebelo, gânglios basais e córtex. Todavia, a baixa expressão do recetor não significa necessariamente que a sua função não é relevante. Nos neurónios, os CB1Rs são geralmente acoplados a Gi/o e, em alguns casos, a Gs, enquanto que nos astrócitos há evidências deste recetor estar acoplado a Gq/11. Nestas células, sabe-se que a ativação deste recetor leva à mobilização de cálcio das reservas intracelulares através da atividade de fosfolipase C (PLC). Semelhante ao CB1R, os recetores de adenosina são um grupo de proteínas GPCR que são ativadas por ligação com a adenosina. Até à data, quatro subtipos de recetores de adenosina foram descobertos e clonados: A1, A2A, A2B e A3. Os recetores A1 e A3 de adenosina são inibitórios sendo acoplados a Gi/o inibindo a acumulação de cAMP e a atividade de proteína quinase A (PKA), enquanto que os receptores A2A e A2B são excitatórios, acoplados a proteínas Gs cuja ativação leva ao aumento de cAMP e ativação de PKA. No SNC, a adenosina é considerada um neuromodulador potente e os recetores A1 e A2A de adenosina estão associados a funções cerebrais críticas, como a libertação e captação de neurotransmissores e plasticidade sináptica. Nos astrócitos, a atividade dos recetores A2A de adenosina está correlacionada com a captação diminuída de aspartato e a regulação da memória, enquanto que os recetores A1 estão correlacionados com a ativação da PLC, sono e fatores de crescimento. O objetivo deste estudo foi entender melhor a sinalização de cálcio mediada pelo CB1R e averiguar a sua relevância na atividade de transportadores de glutamato em astrócitos, assim como estudar a interação entre os recetores de adenosina e o CB1R em astrócitos. Para este fim, foram realizados ensaios de imunocitoquímica, imagiologia de cálcio e captação de glutamato radioativo em culturas primárias de astrócitos. As culturas primárias de astrócitos foram preparadas do córtex cerebral de Sprague Dawley com 0-2 dias, sendo usadas células com 3 semanas em cultura. Nos ensaios de imagiologia de cálcio, foi observada a evolução do cálcio intracelular ao longo do tempo, incubando a cultura de astrócitos com uma sonda FURA-2AM. Nos ensaios de captação de glutamato, foi vista a quantidade de glutamato radioativo incorporada pelos astrócitos. A captação mediada pelo transportador GLAST ou GLT-1 é dada pela diferença entre o transporte total (na ausência de qualquer antagonista) e o transporte obtido quando um destes transportadores é bloqueado. Em imunocitoquímica, a expressão do CB1R, assim como dos principais transportadores de glutamato GLT-1 e GLAST, foi encontrada em culturas primárias de astrócitos. A expressão dos transportadores GLAST e GLT-1 não foi uniforme. O GLT-1 apresentou uma expressão mais alta na área ao redor do núcleo enquanto que o GLAST aparentou ter uma expressão mais alta na membrana e no espaço intracelular. Em imagiologia de cálcio, a presença do agonista seletivo do CB1R induziu transientes de cálcio, sendo que a amplitude e a frequência destes era dependente da concentração de agonista. Na presença de um antagonista seletivo do CB1R, o efeito foi abolido, levando à conclusão que a sinalização de cálcio induzida por ACEA é mediada pela ativação do CB1R. Esta sinalização de cálcio foi abolida na presença de um depletor de reservas de cálcio intracelulares enquanto que, em condição de baixa concentração de cálcio extracelular, a amplitude e frequência diminuíram. Na presença de um antagonista de PLC (U73122), o efeito também foi abolido. Quando a proteína Gi/o foi inibida na presença de um antagonista especifico, PTx, a frequência destes diminuía sem alterações na amplitude, sugerindo fortemente algum tipo de participação por parte de um recetor que não o CB1R acoplado a Gi/o na sinalização de cálcio. Quando o crosstalk entre CB1R e A2AR foi avaliado, observou-se que a pré-ativação de A2AR diminuiu a frequência e a amplitude dos transientes de cálcio mediados por CB1R. Por outro lado, quando o A2AR foi inibido, a frequência de transientes mediada por CB1R aumentou quando comparada à incubação de ACEA isolado. Quando o recetor de adenosina A1 foi previamente inibido, a frequência de transientes induzida pelo CB1R pareceu diminuir. Em ensaios de uptake de glutamato, a presença de ACEA aumentou a captação de glutamato em astrócitos, através de um aumento da constante cinética Vmax na atividade do transportador GLAST sem diferença em Km. Na presença do antagonista do CB1R, este efeito foi abolido, assim como na presença de antagonista de PLC. Já na presença de um antagonista de PKC, uma proteína abaixo na sinalização da via de sinalização de PLC, observou-se uma potenciação do transporte, o que indica que esta proteína é provavelmente não participativa na via. Para saber se a sinalização de cálcio e potenciação do transporte de glutamato mediadas pela ativação do CB1R são efeitos paralelos ou em série, ativou-se o CB1R na presença de um quelante de cálcio. Nesta condição, não se observou potenciação de transporte de glutamato, o que leva a crer que a sinalização de cálcio iniciada pela ativação de CB1R leva à potenciação da atividade do transportador GLAST. Concluindo, em astrócitos, a ativação do CB1R induz transientes de cálcio intracelulares cuja amplitude e frequência têm um comportamento dose-resposta. A ativação de PLC e as reservas de cálcio intracelulares são essenciais para a ocorrência destes transientes. Isto sugere fortemente o acoplamento de Gq/11 ao CB1R, que está de acordo com estudos anteriores. Por sua vez, estes transientes aumentam o transporte de glutamato através do aumento da atividade do transportador GLAST, numa via independente de PKC. A inibição do recetor de adenosina A2A aumenta a sinalização de cálcio mediada pelo CB1R, implicando uma interação direta entre estes dois recetores.
Astrocytes are the major glial cell type in the central nervous system (CNS) being responsible for many actions in the CNS. Astrocytes express several types of G-protein coupled receptors, namely the cannabinoid type one receptors (CB1R) that are activated by endocannabinoids released from neurons. Usually these receptors are coupled to Gi/o proteins although there are reports of Gq/11 coupling. In astrocytes, CB1R activation leads to phospholipase C (PLC)-dependent Ca2+ mobilization from internal cellular stores, which will then have key roles in brain function. Astrocytes also express adenosine A2A receptors (A2AR) that, when activated by adenosine, have several modulatory effects, such as the control of glutamate transport. Thus, both type of receptors, CB1R and A2AR, are of pivotal importance in modulation of neuronal excitability. Interaction between CB1R and A2AR have been well studied in neurons, nevertheless nothing is known concerning this crosstalk in astrocytes. From the several roles of astrocytes in the CNS, the glutamate uptake mediated by specific glutamate transporters is one of the most relevant functions, since this function prevents excitotoxicity due to glutamate accumulation in the synaptic cleft. To achieve the suitable glutamate transport from the extracellular space, astrocytes express mainly the glutamate transporters GLAST and GLT-1. Having in mind the lack of information regarding the effect of CB1R in astrocytes, the main aim of this work was to study the role of CB1R activation-mediated calcium signaling upon GLAST transporter in rat primary astrocytic cultures. This study was designed to better understand the role of CB1R activation on astrocytic calcium signalling and to study its relevance upon glutamate transport. Furthermore, this work aimed to study the crosstalk between CB1R and A2AR upon calcium signaling and glutamate uptake. Primary astrocytic cultures from cortex were prepared from Sprague Dawley pups (0-2 days old). Calcium signaling and [3H]-glutamate uptake experiments were performed with 18-23 DIC astrocytes. Calcium signaling experiments were performed using FURA-2AM dye and specific transport mediated by GLAST was achieved by the difference of total glutamate transport and transport in presence of UCPH-101, a specific blocker of this transporter. In primary cultures of astrocytes it was observed that CB1R activation with ACEA led to calcium transients, whose amplitude and frequency was dose-dependent for the two tested ACEA concentrations (0.5 and 1.0 μM). The occurrence of these transients was abolished in the presence of antagonists of CB1R, AM251 (1 μM), of PLC, U73122 (3 μM) and a chelator of intracellular calcium stores, CPA (10 μM). Low extracellular calcium concentration decreased both frequency and amplitude of the transients while inhibition of Gi/o protein, with PTx (5μg/ml), decreased significantly frequency with no significant changes in amplitude. By performing glutamate uptake assays, it was observed that GLAST was the main glutamate transporter in primary astrocytic cultures. CB1R activation increased significantly the Vmax kinetic constant of the GLAST transporter. This potentiation involved PLC and calcium signalling, but was PKC independent. When evaluating the crosstalk between CB1R and A2AR, it was observed that activation of A2AR decreased both frequency and amplitude of CB1R-mediated calcium transients. On the other hand, when the A2AR was inhibited, CB1R-mediated transients frequency was higher when compared to ACEA incubation alone. When adenosine A1 receptor was previously inhibited, the CB1R-elicited transients ‘frequency seemed to be decreased. In conclusion, CB1R activation triggers calcium transients in astrocytes by PLC activation, in a dose-dependent manner. This calcium signaling then enhances glutamate transport probably by increasing the number of functional GLAST transporters in the plasma membrane. In parallel, adenosine A2AR activation decreases CB1R activity. This highly suggests that, in a synapse context, endocannabinoids released by post-synaptic neurons will activate astrocytic CB1Rs, increasing glutamate transport and contributing to clear up excessive glutamate at the synaptic cleft, and that this effect is possibly controlled by adenosine A2A receptors.
Jerónimo-Santos, André. "Brain-derived neurotrophic factor and adenosine signalling on amyloid-β peptide induced toxicity : impact on hippocampal function." Doctoral thesis, 2014. http://hdl.handle.net/10451/15639.
Full textBrain-derived neurotrophic factor (BDNF) and its high-affinity full-length receptor, TrkB-FL, play a central role in the nervous system by providing trophic support to neurons and by regulating synaptic transmission and plasticity. BDNF signalling is impaired in Alzheimer’s disease (AD), a neurodegenerative disorder characterized, among other features, by the accumulation of the amyloid-β (Aβ) peptide. Although the mechanisms implicated in the reduction of BDNF signalling in AD were not clarified, the reestablishment of BDNF actions is considered as a promising strategy for AD treatment. In last decade it became clear that most of synaptic actions of BDNF, including the ones upon synaptic transmission, plasticity or upon neurotransmitter release, are fully dependent on adenosine A2A receptors (A2AR) activation. However, evidences indicate that A2AR antagonists can prevent the deficits in AD animal models. Given the lack of data clarifying the mechanisms behind the changes on BDNF signalling, namely changes on TrkB receptors, and the knowledge that A2AR activation facilitates most of BDNF synaptic actions, the main goal of this project was to study the impact of Aβ peptides and A2AR on BDNF signalling. This work revealed that in rat primary neuronal cultures Aβ selectively increases mRNA levels for the truncated TrkB-T1 and TrkB-T2 isoforms without affecting TrkB fulllength (TrkB-FL) mRNA levels. Moreover, Aβ increases protein levels of total pool of truncated TrkB receptors (TrkB-Tc) and decreases TrkB-FL protein levels. This effect is explained by the Aβ-induced calpain-mediated cleavage on TrkB-FL receptors, downstream of Shc binding site, which results in the formation of a new truncated TrkB receptor (TrkB-T’) and a new intracellular fragment (TrkB-ICD), which is also detected in post-mortem human brain samples. In hippocampal slices it was observed that Aβ impairs BDNF function in a calpaindependent way, upon modulation of GABA and glutamate release from hippocampal nerve terminals, and upon modulation of long-term potentiation (LTP). Finally, the exogenous BDNF strongly reduces the Aβ-induced activation of caspase-3 and calpain in neuronal cultures, an effect not affected by A2AR agonist or antagonist. Moreover, for the first time it was shown that chronic in vivo blockade of A2AR by a selective antagonist, prevents the facilitatory action of BDNF upon ex-vivo CA1 hippocampal LTP and decreases both mRNA and protein levels of the TrkB-FL receptor in rat hippocampus. In conclusion, the present work shows that Aβ induces a TrkB-FL cleavage mediated by calpain and impairs BDNF-mediated effects in synaptic plasticity and neurotransmitter release in a calpain-dependent way. While the BDNF action upon synaptic plasticity is abolished under chronic in vivo A2AR blocking conditions, the protective actions of this neurotrophin against Aβ toxicity were found to be dependent on A2AR activation.
O factor neurotrófico derivado do cérebro (Brain-derived neurotrophic factor- BDNF) e o seu receptor de alta afinidade, TrkB-FL, desempenham um papel central no sistema nervoso, dado que promovem suporte trófico aos neurónios e que regulam a transmissão e plasticidade sinápticas. A sinalização mediada pelo BDNF encontra-se diminuída na doença de Alzheimer (Alzheimer’s disease -AD), uma doença neurodegenerativa na qual ocorre acumulação do péptido beta amilóide (amyloid-beta -Aβ). Apesar dos mecanismos envolvidos na redução da sinalização mediada pelo BDNF na AD não serem totalmente conhecidos, o restabelecimento das acções do BDNF tem sido considerado como uma estratégia promissora para a terapêutica desta doença. Na última década tornou-se claro que a maioria das acções sinápticas do BDNF, incluindo as acções na transmissão e plasticidade sinápticas e também na libertação de neurotransmissores, é dependente da activação dos receptores A2A da adenosina (A2AR). Contudo, o uso de antagonistas dos A2AR tem sido apontado como uma possível estratégia terapêutica para o tratamento da AD. Dada a falta de evidências que clarifiquem os mecanismos envolvidos nas alterações da sinalização mediada pelo BDNF e o conhecimento de que a activação dos A2AR facilita a maioria das acções sinápticas do BDNF, o objectivo principal desta tese foi estudar o impacto dos péptidos Aβ e dos A2AR na sinalização mediada pelo BDNF. Este trabalho revelou que, em culturas primárias de neurónios corticais, o Aβ aumenta os níveis de mRNA dos receptores TrkB truncados, TrkB-T1 e TrkB-T2, sem afectar os níveis de mRNA dos receptores TrkB completos, TrkB-FL. Por outro lado, verificou-se que o Aβ aumenta os níveis proteicos do conjunto de receptores TrkB truncados e que diminui os níveis proteicos dos receptores TrkB-FL, por um mecanismo independente da proliferação glial e da activação de caspases. Foi ainda possível concluir que o Aβ induz a clivagem, mediada por calpaínas, dos receptores TrkB-FL, esta clivagem dá-se após o local de ligação da Shc e antes do início do domínio de cinase de tirosina, pelo que origina um novo receptor TrkB truncado (TrkB-T’), contendo o local de ligação à Shc, e um novo fragmento intracelular (TrkBintracellular domain- ICD), contendo a totalidade do domínio da cinase. No entanto, a presença destes fragmentos, não mostrou afectar a fosforilação do receptor TrkB-FL induzida pela exposição ao BDNF. Interessantemente, foi possível detectar o fragmento TrkB-ICD em uma amostra, post-mortem, de cérebro humano. Mostrou-se também que a inibição das calpaínas previne as alterações dos níveis proteicos das isoformas do TrkB, induzidas pelo Aβ, sem afectar as alterações ao nível do mRNA do TrkB. Por outro lado, este trabalho revelou que o BDNF exógeno reduz a activação da caspase-3 e das calpaínas induzida pelo Aβ, de uma forma independentemente dos A2AR. Em fatias de hipocampo de ratos adultos, este trabalho mostrou que o Aβ diminui as acções do BDNF na plasticidade sináptica, nomeadamente na potenciação de longa duração (Long-term potentiation, LTP) na área CA1 do hipocampo, bem como no seu efeito sobre libertação de neurotransmissores (GABA e glutamato) de sinaptosomas. Notavelmente, o inibidor das calpaínas, MDL28170, mostrou restabelecer os efeitos do BDNF, na presença do péptido Aβ, tanto na plasticidade sináptica como na libertação de neurotransmissores. Este trabalho permitiu ainda concluir que o bloqueio crónico dos A2AR, in-vivo, através da administração de um antagonista selectivo (KW-6002), previne o efeito potenciador do BDNF na LTP, registada ex-vivo na área CA1 do hipocampo, e que diminui os níveis de mRNA e de proteína do receptor TrkB-FL, no hipocampo de rato. Em suma, o presente trabalho revelou que o péptido Aβ induz a clivagem dos receptores TrkB-FL, mediada pelas calpaínas, e que bloqueia as acções mediadas pelo BDNF na plasticidade sináptica e na libertação de GABA e glutamato por um mecanismo dependente da actividade das calpaínas. Se por um lado, o efeito do BDNF na plasticidade sináptica é perdido aquando da inibição crónica dos A2AR, o efeito protector desta neurotrofina contra a toxicidade induzida pelo Aβ mostrou-se independente da activação dos A2AR.
Fundação para a Ciência e a Tecnologia (FCT)
Nambi, Subhalaxmi. "Cyclic AMP-Regulated Protein Lysine Acetylation In Mycobacteria." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2450.
Full textMorais, Patrícia Sofia Alçada Tomás de. "THE ROLE OF ADENOSINE A2A RECEPTOR IN THE MIGRATION OF CORTICAL PRINCIPAL NEURONS." Doctoral thesis, 2018. http://hdl.handle.net/10316/81354.
Full textNeuronal migration is a fundamental step during brain development. Indeed, the impairment of neuronal migration is one of the major causes of cortical malformation, which has been associated with several neurological and psychiatric disorders. Therefore, it is of upmost importance to unravel the mechanisms driving neuronal migration. In this regard, it was recently shown that adenosine type 2A receptor (A2AR) controls interneuron migration and insertion into the hippocampal circuitry. The work developed during this thesis aimed to evaluate if A2AR is also involved in the migration of cortical principal neurons. For that purpose, it was first evaluated the impact of the genetic deletion (A2AR-KO) or the pharmacological blockade of A2AR on mice cortical neurons migration during embryonic development. In comparison to their wild-type littermates, embryos lacking the A2AR showed impaired migration of cells labelled with BrdU at embryonic day 14.5 (E14.5) and traced at E17.5. Similarly, embryos exposed to the A2AR antagonist SCH58261 (daily 0.1mg/kg intraperitoneal (i.p.) injection in pregnant females from E13.5 to E16.5) displayed impaired migration when compared with embryos exposed to vehicle. This should be due to A2A receptors expressed by migratory neurons since in utero electroporation (IUE) of a plasmid encoding shRNA specific for A2AR (E14.5-E17.5) also impaired migration. The impairment of neuronal migration occurs mostly in the intermediate zone (IZ), where it was observed an accumulation of neurons. Nowadays, it is well-known that there are two fundamental steps for neurons at the IZ to be able to proceed their migration into the cortical plate (CP). It is required a transition from a multipolar to a bipolar shape, followed by the establishment of an axon-like leading process. Accordingly, in cultured mice cortical neurons, it was found that the pharmacological blockade of A2AR with the selective antagonist SCH58261 (50 nM) from day in vitro 0 (DIV0) leads not only to a reduction of the number of axons (SMI-31 positive neurites) but also of their length, analysed at DIV3. This was also appraised in vivo, as it was observed that the knockdown of A2AR led to an impairment of both neuronal polarization and axonal elongation in migratory neurons as well. Furthermore, it was also observed a similar impairment of cell migration in the CD73-KO mice, which lacks the ecto-5'-nucleotidase (e-5NT) that converts extracellular AMP into adenosine, indicating that the adenosine that is activating the A2AR derives from the extracellular catabolism of ATP. This is further heralded by the observation of immunoreactivity for the vesicular nucleotide transporter (VNUT) in mice developing cortex at E13.5 and E17.5. Altogether, these results show that A2A receptors activated by ATP-derived adenosine are involved in the migration of cortical principal neurons, in particular for the transition from the IZ into the CP by controlling the establishment of neuronal polarity and axonal elongation. In order to determine if the ability of A2A receptors to control axon formation is selective or not to cortical neurons, it was performed the same evaluation in cultured rat hippocampal neurons. It was found that the pharmacological activation of A2AR with the selective agonist CGS21680 (30 nM) induced the formation of abnormal secondary axons and neither the blockade or activation of A2A receptors interfered with the formation of the normal axon. These results show that A2AR is also able to control axon formation in hippocampal neurons. In contrast to the observed in cortical cells, the pharmacological blockade of A2A receptors did not inhibit axon formation of rat hippocampal neurons, but instead it is the activation of these receptors that interfered with axon formation, inducing the formation of aberrant secondary axons. Thus, there is a remarkable difference in the control of axon formation by A2AR in cortical and hippocampal neurons. While in cortical neurons there is a tonic regulation of axon formation by A2AR, in hippocampal neurons these receptors are not required for the normal formation of the axon. Furthermore, preliminary results showed that this should be attained by a modulation of collapsin response mediator protein-2 (CRMP-2) phosphorylation, a microtubule-associated protein that plays a crucial role in neurodevelopment, either in axon specification, guidance and outgrowth, and in cortical principal neuron migration. In contrast with the peripheral nervous system (PNS), which demonstrates a remarkable axonal regeneration ability, in the adult mammalian central nervous system (CNS) it is notorious that, after injury, damaged axons are mostly unable to regenerate, leading to the impairment of normal function. Therefore, the comprehension of the differences between those two systems may provide novel potential therapeutic strategies for axon repair. In that sense, during this work it was also explored the role of purinergic receptors in nerve regeneration, in particular the metabotropic P2Y1 receptor (P2Y1R) and A2AR, since it is expected a rapid increase in extracellular ATP levels and its metabolites upon nerve injury. There are systems that have the capacity to self-regenerate after injury, being excellent models to comprehend the mechanisms underlying regeneration. Of these, the sciatic nerve lesion represents a commonly used approach to evaluate naturally occurring mechanisms of regeneration after damage and here, it was used to address the involvement of purinergic receptors during this process. The preliminary results obtained reveal that in the presence of MRS2500 (0.8 mM), a P2Y1R antagonist, it was observed a decrease of 50.6% in the number of myelinated fibres recovered. On the other hand, the antagonism of A2AR did not significantly modify the number of regenerated myelinated fibres. Though, it remains to elucidate if it is the regeneration or the myelination of fibres that are being compromised after P2Y1R blockade. To answer this question, it is necessary to evaluate the number of demyelinated and non-myelinated fibres as well. Altogether, this thesis provides evidences supporting the involvement of A2A receptors in the migration of cortical principal neurons through the modulation of neuronal polarization and axonal elongation, two cellular events fundamental for neuronal migration, most likely through the de-repression of CRMP-2. The impact of this work may be beyond the contribution to the understanding of the physiology of development, since caffeine, the psychoactive drug most consumed in the world, is an antagonist of A2A receptors.
A migração neuronal é um passo fundamental no desenvolvimento cerebral. A diminuição ou bloqueio da migração neuronal são algumas das principais causas de má formação cortical e têm vindo a ser associadas a diversas patologias neurológicas e psiquiátricas. É, portanto, importante desvendar os mecanismos que regem a migração neuronal. Recentemente foi demonstrado que os recetores de adenosina do tipo 2A (A2AR) controlam a migração e inserção dos interneurónios na rede de neurónios do hipocampo. O trabalho que deu corpo a esta tese visou avaliar se os A2AR desempenham também um papel na migração dos neurónios corticais principais. Para este fim, tentou avaliar-se em primeiro lugar o impacto da eliminação genética (A2AR-KO) ou o bloqueio farmacológico dos A2AR nos neurónios corticais principais de murganho durante o desenvolvimento embrionário. Quando comparados com a restante ninhada wild-type, os embriões sem expressão dos A2AR apresentaram alteração da migração celular em células marcadas com BrdU ao dia embrionário 14.5 (E14.5) e analisadas a E17.5. De igual modo, embriões expostos ao antagonista dos A2AR, SCH58261 (injeção intraperitoneal (i.p.) de 0.1mg/kg/dia em fêmeas gestantes desde E13.5 a E16.5), apresentaram alteração da migração neuronal quando comparados com embriões expostos apenas ao veículo. Provavelmente, isto ocorre devido aos A2AR expressos pelos neurónios em migração, já que a eletroporação in utero (IUE) de um plasmídeo que expressa para um shRNA seletivo para os A2AR (E14.5-E17.5) também afetou a migração. Esta alteração na migração neuronal ocorreu principalmente na zona intermédia (IZ), onde se observou uma acumulação neuronal. Atualmente, sabe-se que existem dois passos fundamentais para que os neurónios na IZ prossigam a sua migração para a placa cortical (CP). É necessária uma transição de uma forma multipolar para uma bipolar, seguida do aparecimento de um prolongamento similar ao que dá origem ao axónio. Do mesmo modo, em culturas de neurónios corticais de murganhos foi observado que o bloqueio farmacológico dos A2AR com o antagonista seletivo SCH58261 (50 nM), desde o dia in vitro 0 (DIV0), conduz não só à redução do número de axónios (neurites positivas para SMI-31) como também do seu comprimento, avaliado a DIV3. Observações in vivo levaram a conclusões similares, uma vez que se observou que a eliminação dos A2AR conduziu a uma alteração quer da polarização, quer do alongamento axonal em neurónios em migração. Adicionalmente, foi observada uma alteração na migração celular em murganhos CD73-KO, que não expressam a enzima ecto-5'-nucleotidase (5'-NT) que converte AMP em adenosina, o que indica que a adenosina que ativa os A2AR provêm do catabolismo extracelular do ATP. Esta hipótese é apoiada pela observação de imunoreactividade para o transportador nucleotídico vesicular (VNUT) a E13.5 e a E17.5 no córtex de murganhos em desenvolvimento. Em conjunto, estes resultados demonstram que os recetores A2A ativados pela adenosina derivada do ATP estão relacionados com a migração dos neurónios corticais principais, em particular durante a transição da IZ para a CP, através da regulação da polaridade neuronal e alongamento axonal. Para determinar se a capacidade dos A2AR para controlar a formação do axónio é seletiva dos neurónios corticais, o mesmo tipo de análise foi efetuada em culturas de neurónios de hipocampo de murganho. Foi observado que a ativação farmacológica dos A2AR com o agonista seletivo CGS21680 (30 nM) induziu a formação de axónios secundários aberrantes, mas nem o bloqueio nem a ativação dos A2AR interferiram com a formação do axónio principal. Estes resultados mostram que os A2AR estão também envolvidos no controlo da formação de axónios nos neurónios do hipocampo. Ao contrário do observado nas células corticais, o bloqueio farmacológico dos A2AR não inibiu a formação de axónios nos neurónios do hipocampo de murganho, mas a ativação destes recetores alterou a formação axonal, induzindo o aparecimento anómalo de axónios secundários. Desta forma, existe uma diferença notável no controlo mediado pelos A2AR na formação de axónios nos neurónios corticais e do hipocampo. Enquanto que, em neurónios corticais há uma regulação tónica da formação de axónios pelos A2AR, em neurónios do hipocampo estes recetores não são necessários à formação do axónio principal. Adicionalmente, resultados preliminares mostram que esta formação pode ser conseguida pela modulação da fosforilação da proteína mediadora de resposta da colapsina-2 (CRMP-2), uma proteína associada aos microtúbulos que desempenha um papel crucial no neuro desenvolvimento, tanto na especificação, condução e crescimento do axónio, como na migração de neurónios corticais. Em contraste com o sistema nervoso periférico (SNP), que revela uma marcada capacidade de regeneração axonal, no sistema nervoso central (SNC) do mamífero adulto é notório que, após lesão, os axónios danificados são predominantemente incapazes de regenerar, ficando funcionalmente comprometidos. A compreensão das diferenças entre estes dois sistemas pode, portanto, permitir identificar estratégias terapêuticas inovadoras para a reparação dos axónios. Desta forma, durante este trabalho foi também explorado o papel dos recetores purinérgicos na regeneração nervosa, em particular o recetor metabotrópico P2Y1 (P2Y1R) e o A2AR, uma vez que se antecipa um aumento súbito dos níveis de ATP extracelular, bem como dos seus metabolitos após lesão nervosa. Os sistemas com capacidade regenerativa apresentam-se como modelos de excelência para compreender os mecanismos subjacentes a essa regeneração. De entre eles, a lesão do nervo ciático é um método comum para avaliar os mecanismos de regeneração despoletados pelo dano, que foi usado neste trabalho para abordar o envolvimento dos recetores purinérgicos nesse processo. Os resultados preliminares obtidos demonstraram que na presença de MRS2500 (0.8 mM), um antagonista dos P2Y1R, ocorreu uma diminuição de 50.6% no número de fibras mielinizadas recuperadas. Por outro lado, o antagonismo dos A2AR não revelou diferenças estatisticamente significativas no número de fibras mielinizadas regeneradas. É necessário ainda determinar se o bloqueio dos P2Y1R está a comprometer a regeneração ou a mielinização das fibras. A resposta a esta questão requer a avaliação do número de fibras desmielinizadas e não-mielinizadas. No seu conjunto, esta tese fornece indícios que suportam o envolvimento dos A2AR na migração dos neurónios corticais principais através da modulação da polarização neuronal e alongamento axonal, dois processos celulares fundamentais para a migração neuronal, muito provavelmente pela de-repressão da CRMP-2. O impacto deste trabalho pode ainda estender-se além da compreensão da fisiologia do desenvolvimento, dado que a cafeína, a substância psicoativa mais consumida no mundo, é um antagonista dos A2AR.
Rocha, João Miguel Miranda da. "Characterization of the intracelular signalling pathways mediating the effects of purinergic receptors in dendritic and axonal formation and outgrowth." Master's thesis, 2019. http://hdl.handle.net/10316/88082.
Full textAdenosine triphosphate (ATP) is best known as the key molecule in bioenergetics and in multiple cellular processes, but it is now well-recognized as an extracellular signalling molecule as well. ATP can signal directly through the activation of P2Rs or indirectly through P1Rs activated by adenosine formed upon the extracellular catabolism of ATP by ecto-nucleotidases. In the adult brain, purinergic receptors display a widespread regional and cellular distribution, fulfilling a neurotransmitter and neuromodulatory role, controlling astrocytic function or formatting microgliaresponsiveness. Purinergic signaling also plays a role in brain development ranging from neurogenesis to neuronal migration, neuritogenesis and synaptogenesis. Particularly regarding neuronal development, it has been shown that P2Rs bidirectionally regulates axonal growth, promoting axonal elongation through P2Y1R and inhibiting it through P2Y13R and P2X7R. A2ARs also promotes axonal growth and dendritic branching in ratcortical neurons. Unpublished data from our group showed that A2ARs is not only involved in axonal growth but also in axon formation. This was observed both in vitro inmice cortical neurons and in vivo, since it is required for cortical principal neurons migration in the transition from the intermediate zone (IZ) to the cortical plate (CP).The bidirectional regulation of axonal growth by P2Rs was shown to be mediated by a convergent but differential regulation of adenylate cyclase 5 and PI3K-Akt-GSK3βpathway. The A2AR-driven axonal outgrowth in rat cortical neurons was also shown to involve PI3K. Yet, how the purinergic receptors are able to control both dendritic and axonal development remains ill-defined. One protein that might be targeted and mediating the effects of purinergic receptors in neuronal development is collapsin response mediator protein 2 (CRMP2), a microtubule-associated protein shown to contribute to dendritogenesis and axon specification and outgrowth, and critical in cortical principal neurons migration, precisely in the IZ-CP transition. CRMP2 is negatively regulated by phosphorylation by two independent pathways, one mediated by cyclin-dependent kinase (Cdk5) that phosphorylates S522, priming the phosphorylation of T514 by GSK3β, and the other mediated by Rho kinase at T555, also a target of PKC. Thus, to start addressing the putative involvement of CRMP2 regulation in the effects induced by purinergic receptors, it was necessary to evaluate the involvement of each of these kinases namely PKC, GSK3 and Rho kinase.E18-derived rat hippocampal neurons cultured in the presence of the selective A2AR agonist, CGS21680 (30 nM), from day in vitro 0 (DIV0) to DIV3 displayed an increase in the number of axons per neuron and longer axons, an effect not observed in cellselectroporated with shRNA-A2AR. Thus, in contrast to the observed in mice cortical neurons, where A2AR is tonically necessary for the formation of the normal axon, in rathippocampal neurons A2ARs are not involved in the formation of the normal axon.Instead, the exogenous activation of A2AR induces the formation of secondary axons. Moreover, A2ARs activation decreased dendritic length. Preliminary data indicate that all these effects depend on BDNF activity. Furthermore, we observed that P2Y1R does notcontrol axon formation, but it promotes axon outgrowth. The agonist of P2Y1, P2Y12 and P2Y13 receptors, ADPβS (5 μM), and the P2Y1R selective agonist, MRS2365 (100 nM), induced an increase in axon length, while the P2Y1R antagonist, MRS2179 (10 μM), caused a decrease in axon length, showing a tonic action of P2Y1R controlling axon outgrowth. The pharmacological blockade of P2X7R with BBG (100 nM) increased axonal length, indicating that P2X7R is tonically inhibiting axonal growth also in rat hippocampalneurons whilst not modifying dendritic morphology, as previously reported.All these effects were then evaluated in the presence of the kinase inhibitors. Itwas found that A2AR-driven axon elongation involves GSK3, whereas axon formation induced by A2AR was prevented in the presence of PKC and Rho kinase inhibitors. The inhibition of dendritic growth by A2ARs activation depends on PKC and Rho kinase. P2Y1Rpromotes axonal outgrowth through a PKC- and GSK3-dependent mechanism, whereas the inhibition of dendritic growth involves PKC- and Rho kinase.The identification of the enzymes involved in the control of dendritic and axonal development by A2AR- and P2Y1R - support and set the grounds to characterize the involvement of CRMP2 and hence fully identify the signaling pathways recruited by purinergic signaling in the control of neuronal development. Besides, this study also revealed region-specificity in the control of neuronal development by purinergic signalling that is now mandatory to be fully elucidated.
Adenosina trifosfato (ATP) tem um papel central como molécula energética e em múltiplos processos celulares, mas também desempenha um papel na sinalização extracelular. O ATP pode sinalizar ou pela ativação direta dos recetores P2 (P2Rs) ou através dos recetores P1 (P1Rs) ativados pela adenosina formada a partir do catabolismo extracelular de ATP pelas ecto-nucleotidases. No cérebro adulto, os recetores purinérgicos apresentam uma distribuição generalizada, contribuindo para afisiologia sináptica astrocítica e da microglia. A sinalização purinérgica também tem um papel no desenvolvimento do cérebro, nomeadamente na neurogénese, migração neuronal, neuritogénese e sinaptogénese. Em relação ao desenvolvimento neuronal, foi mostrado que os P2Rs podem regular bidireccionalmente o crescimento axonial, aumentando através dos P2Y1R e inibindo através dos P2Y13R e P2X7R. Os A2AR também promovem o crescimento axonial e a ramificação das dendrites em neurónios corticais de rato. Resultados não publicados do nosso grupo mostram que os A2AR estão também envolvidos na formação do axónio. Isto foi observado quer in vitro em neurónios corticais de ratinho, quer in vivo, sendo um processo necessário para a migração dos neurónios corticais principais na transição da zona intermédia (IZ) para a placa cortical (CP).Relativamente às vias de sinalização envolvidas, foi mostrado que a regulação bidirecional do crescimento axonial pelos P2Rs é mediada pela regulação convergente mas diferencial da adenilato ciclase 5 e da via PI3K-Akt-GSK3β. Foi mostrado também que o crescimento promovido pelos A2AR envolve PI3K. Contudo ainda não se sabe qual o(s) mecanismo(s) a jusante que medeia(m) o controlo por parte dos recetores purinérgicos do desenvolvimento das dendrites e axónios. Uma proteína que pode estar envolvida é a proteína collapsin response mediator protein 2 (CRMP2), uma proteínaassociada aos microtúbulos envolvida na dendritogénese e na especificação e crescimento axonial, e essencial na migração dos neurónios corticais principais, precisamente na transição IZ-CP. A CRMP2 é regulada negativamente por fosforilação através de duas vias independentes, uma mediada pela enzima cdk5 que fosforila o resíduo S522, que permite a fosforilação de T514 pela GSK3β, e a outra mediada pela Rho cinase no resíduo T555, que também pode ser fosforilada pela PKC. Para avaliar o possível envolvimento da CRMP2, foi neste estudo avaliado o envolvimento de cada um destas enzimas cinases, nomeadamente PKC, GSK3 e Rho cinase, nos efeitos induzidos pelos recetores purinérgicos.Em culturas primárias de neurónios de hipocampo de rato derivados de embriões E18, a exposição ao agonista seletivo dos A2AR, CGS21680 (30 nM), desde o dia in vitro 0 (DIV0) até DIV3 induziu um aumento no número de axónios e no seu comprimento, um efeito que não foi observado em neurónios eletroporados com shRNA-A2AR. Portanto, ao contrário do observado em neurónios corticais de ratinho, os A2AR não estão envolvidos na formação do axónio normal em neurónios de hipocampo de rato. Em vez disso, a ativação exógena dos A2AR promove a formação de axónios secundários. Em relação às dendrites, a ativação dos A2AR diminuiu o o seu comprimento. Resultados preliminares mostram que todos estes efeitos dependem de BDNF. Em relação ao P2Y1R, os resultados obtidos indicam que este recetor não controla a formação do axónio, mas promove o seu crescimento. O agonista dos recetores P2Y1,12,13, ADPβS (5 μM), e o agonista seletivo de P2Y1, MRS2365 (100 nM), induziram um aumento no comprimento do axónio, enquanto que o bloqueio farmacológico dos P2Y1R, com MRS2179 (10 μM), induziu uma diminuição no comprimento do axónio, demonstrando uma ação tónica dos P2Y1R no crescimento axonial. O bloqueio farmacológico do P2X7R com BBG (100 nM) aumentou o comprimento dos axónios, indicando uma inibição tónica do crescimento axonial, nãotendo modificado a morfologia das dendrites.Relativamente ao envolvimento das diferentes enzimas, os resultados demonstraram que o crescimento axonial induzido pela ativação dos A2AR envolve GSK3, enquanto que a formação de axónios secundários foi prevenida pela presença de inibidores da PKC e da Rho cinase. A inibição do crescimento das dendrites induzido pelo A2AR depende de PKC e Rho cinase. O P2Y1R promove o crescimento axonial por um mecanismo dependente de PKC e GSK3, enquanto que a inibição do crescimento das dendrites envolve PKC e Rho cinase.A identificação destas enzimas envolvidas no controlo do desenvolvimento de dendrites e axónios pelos A2AR e P2Y1R suportam a hipótese de haver um envolvimento de CRMP2 no controlo do desenvolvimento neuronal pelos recetores purinérgicos. Para além disso definem como poderá ser feita essa regulação, que terá que ser avaliadaexperimentalmente. Além disso, este estudo revelou que existem diferenças no controlo do desenvolvimento neuronal pelo sistema purinérgico em diferentes regiões que também será importante elucidar.
Outro - Esta dissertação foi financiada pelo Fundo Europeu de Desenvolvimento Regional (FEDER), através do Programa Operacional Regional Centro 2020 sob o projeto CENTRO-01-0145-FEDER-000008: BrainHealth2020, através do COMPETE 2020 - Programa Operacional Competitividade e Internacionalização e através de fundos nacionais via FCT - Fundação para a Ciência e a Tecnologia sob projetos POCI-01-0145-FEDER-028160 e UID/NEU/04539/2019.
Hedges, Christopher. "The effects of physiological acidosis on skeletal muscle mitochondrial function, ROS balance, and intracellular signalling." Thesis, 2017. https://vuir.vu.edu.au/35976/.
Full text