To see the other types of publications on this topic, follow the link: Additive mapping.

Dissertations / Theses on the topic 'Additive mapping'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Additive mapping.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Fisher, Brian A. "Part Temperature Effects in Powder Bed Fusion Additive Manufacturing of Ti-6Al-4V." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1154.

Full text
Abstract:
To ensure the widespread adoption of metal Additive Manufacturing (AM) processes, a complete understanding of the interactions between process variables is necessary. The process variables of beam power, beam velocity, deposition geometry, and beam diameter have been shown in prior works to have major effects on resultant melt pool and solidification characteristics, but this list is incomplete. Without accounting for part temperatures prior to deposition, unintended outcomes may result. In the current work, Ti-6Al-4V is studied in the Powder Bed Fusion (PBF) processes to gain an in-depth understanding of how part temperature interactions with other process variables affect physical properties of the process such as melt pool size and variability, part distortion, porosity, and microstructural characteristics. This research is performed through a combination of finite element modelling, single melt track experiments, full part production, and in-situ monitoring in order to gain a full understanding of the underlying relationships between part temperature and part outcomes. In the Arcam Electron Beam Melting (EBM®) process, this knowledge is used to generate a feedback control strategy to constrain prior beta grain width to remain constant while part surface temperatures are allowed to vary. In the Laser Powder Bed Fusion (LPBF) process, deposition is investigated at elevated substrate temperatures and several findings show that unintended part temperature increases can lead to undesirable consequences while prescribed part temperature changes can increase the available processing window and allow for more uniform deposition. This work also shows that both global temperature changes due to substrate heating and local temperature changes due to the choice of scan strategy can be combined into one metric: the temperature encountered by the melt pool during deposition. A combination of destructive and non-destructive characterization methods are utilized to understand and measure the changes to the melt pool and microstructural development that are seen during deposition. The feasibility of using a commercial high speed camera as a tool for thermography is characterized and the ability to discern cooling rates and thermal gradients within and surrounding the melt pool provide validation for trends in melt pool properties generated from simulations. This work provides a greater understanding of the role of part temperature during deposition and presents methodologies to account for the changes to the melt pool and resultant part due to both prescribed and unintended temperature changes during deposition.
APA, Harvard, Vancouver, ISO, and other styles
2

Gockel, Joy E. "Integrated Control of Solidification Microstructure and Melt Pool Dimensions In Additive Manufacturing Of Ti - 6Al - 4V." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/374.

Full text
Abstract:
Additive manufacturing (AM) offers reduced material waste and energy usage, as well as an increase in precision. Direct metal AM is used not only for prototyping, but to produce final production parts in the aerospace, medical, automotive and other industries. Process mapping is an approach that represents process outcomes in terms of process input variables. Solidification microstructure process maps are developed for single bead and thin wall deposits of Ti-6Al-4V via an electron beam wire feed and electron beam powder bed AM process. Process variable combinations yielding constant beta grain size and morphology are identified. Comparison with the process maps for melt pool geometry shows that by maintaining a constant melt pool cross sectional area, a constant grain size will also be achieved. Additionally, the grain morphology boundaries are similar to curves of constant melt pool aspect ratio. Experimental results are presented to support the numerical predictions and identify a proportional size scaling between beta grain widths and melt pool widths. Results demonstrate that in situ, indirect control of solidification microstructure is possible through direct melt pool dimension control. The ability to control solidification microstructure can greatly accelerate AM process qualification potentially allow for tailored microstructure to the desired application.
APA, Harvard, Vancouver, ISO, and other styles
3

Nagel, Mona. "Exploring digital innovations : mapping 3D printing within the textile and sportswear industry." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-22000.

Full text
Abstract:
Digital innovations are about to overtake the supply chain systems and revolutionize the way of producing products. With the use of technology in the value chain a sustainable development can be generated and developed. The usage of digital tools for manufacturing can minimize waste and further develop sustained processing. 3D printing is a technology that produces products by adding layer by layer of material. The additive manufacturing process theoretically produces no waste and aims for a sustainable and efficient processing. The textile and sportswear industry adopted this process for high fashion or functional performance products. Especially in the sportswear sector the process shows great potential. Brands like Adidas, Nike and Underarmour adopted the process in order to create midsoles for performance shoes. This research aims to identify the potential of 3D printing for the textile and sportswear industry. The purpose of this research is to explore the advantages and disadvantages of 3D printing within the textile industry and sportswear value chain, to survey where are potential solutions to reduce waste. The qualitative research consists of a theoretical and empirical part. The study begins with a systematic literature review that presents the state of the art of 3D printing in the textile and sportswear industry. In order to add empirical data, interviews with five experts from academia and industry have been conducted. The experts work with 3D printing and three of them with 3D printing and textiles. The case study methodology was chosen in order to compare a small number of cases and their approaches. In order to answer the research questions, the empirical data was thematically analyzed and one overarching theme and seven sub themes emerged. The sub themes were compared to the effects and challenges of 3D printing for the textile and sportswear value chain that emerged from the literature review. The findings show that there are several advantages as design freedom and customization and disadvantages as slow production speed and costs. 3D printing is mostly used as an additional process when implementing the process in the textile and sportswear value chain.
APA, Harvard, Vancouver, ISO, and other styles
4

Scime, Luke Robson. "Methods for the Expansion of Additive Manufacturing Process Space and the Development of In-Situ Process Monitoring Methodologies." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1183.

Full text
Abstract:
Metal Additive Manufacturing (AM) promises an era of highly flexible part production, replete with unprecedented levels of design freedom and inherently short supply chains. But as AM transitions from a technology primarily used for prototyping to a viable manufacturing method, many challenges must first be met before these dreams can become reality. In order for machine users to continue pushing the design envelope, process space must be expanded beyond the limits currently recommended by the machine manufacturers. Furthermore, as usable process space expands and demands for reduced operator burden and mission-critical parts increase, in-situ monitoring of the processes will become a greater necessity. Processing space includes both the parameters (e.g. laser beam power and travel velocity) and the feedstock used to build a part. The correlation between process parameters and process outcomes such as melt pool geometry, melt pool variability, and defects should be understood by machine users to allow for increased design freedom and ensure part quality. In this work, an investigation of the AlSi10Mg alloy in a Laser Powder Bed Fusion (L-PBF) process is used as a case study to address this challenge. Increasing the range (processing space) of available feedstocks beyond those vetted by the machine manufacturers has the potential to reduce costs and reassure industries sensitive to volatile global supply chains. In this work, four non-standard metal powders are successfully used to build parts in an L-PBF process. The build quality is compared to that of a standard powder (supplied by the machine manufacturer), and correlations are found between the mean powder particle diameters and as-built part quality. As user-custom parameters and feedstocks proliferate, an increased degree of process outcome variability can be expected, further increasing the need for non-destructive quality assurance and the implementation of closed-loop control schema. This work presents two Machine Learning-based Computer Vision algorithms capable of autonomously detecting and classifying anomalies during the powder spreading stage of L-PBF processes. While initially developed to serve as the monitoring component in a feedback control system, the final algorithm is also a powerful data analytics tool – enabling the study of build failures and the effects of fusion processing parameters on powder spreading. Importantly, many troubling defects (such as porosity) in AM parts are too small to be detected by monitoring the entire powder bed; for this reason, an autonomous method for detecting changes in melt pool morphology via a high speed camera is presented. Finally, Machine Learning techniques are applied to the in-situ melt pool morphology data to enable the study of melt pool behavior during fusion of non-bulk part geometries.
APA, Harvard, Vancouver, ISO, and other styles
5

Sheridan, Luke Charles. "An Adapted Approach to ProcessMapping Across Alloy Systems and Additive Manufacturing Processes." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1471861921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gygi, Cameron Scott. "Crack Healing in 304L Stainless Steel Using Additive Manufacturing and Friction Stir Processing (FSP)." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/6530.

Full text
Abstract:
Continuing an investigation on using FSP to heal stress corrosion cracks (SCC) in welds on nuclear reactors, this study seeks to use AM in addition to FSP to aid crack repair. Previous studies address that current repair technology on nuclear reactors involves the use of TIG welding which can allow helium atoms to aggregate and form voids at the grain boundaries. This weakens the material and renders the repair ineffective. Another previous study evaluated the effectiveness of FSP alone in repairing SCC which did have defects depending on the parameters used during FSP. This study evaluated the use of AM in addition to FSP. Literature is available on FSP and AM separately and literature is available on technologies that used both them together. However, the current processes that are available that use both AM and FSP can be expensive and may be impractical for some purposes. This study shows a new process that is both less expensive and more practical in SCC repair. Initial proof of concept trials was performed on 1018 mild steel using both wire fed additive and insert additive technologies. A slot would be removed and filled in with an additive process and processed using FSP. Because of poor repeatability, substantial distortion, and voids present this study went forward using insert technologies in further experiments rather than wire wed additive technologies. In addition, the depth and width of the insert or area where the added material would be placed was varied in initial trails. Tensile testing was performed on initial steel trials and the stainless steel experiments and it demonstrated a correlation between depth of the added material and the tensile strength. Micro-hardness mapping performed on initial steel trials also showed hardening in the FSP stir zone. Three-point bend tests were performed to show that an existing crack underneath the FSP zone would not propagate through the nugget. All evaluations supported a substantial increase in yield strength increased after FSP.
APA, Harvard, Vancouver, ISO, and other styles
7

Lindell, David. "Process Mapping for Laser Metal Deposition of Wire using Thermal Simulations : A prediction of material transfer stability." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85474.

Full text
Abstract:
Additive manufacturing (AM) is a quickly rising method of manufacturing due to its ability to increase design freedom. This allows the manufacturing of components not possible by traditional subtractive manufacturing. AM can greatly reduce lead time and material waste, therefore decreasing the cost and environmental impact. The adoption of AM in the aerospace industry requires strict control and predictability of the material deposition to ensure safe flights.  The method of AM for this thesis is Laser Metal Deposition with wire (LMD-w). Using wire as a feedstock introduces a potential problem, the material transfer from the wire to the substrate. This requires all process parameters to be in balance to produce a stable deposition. The first sign of unbalanced process parameters are the material transfer stabilities; stubbing and dripping. Stubbing occurs when the energy to melt the wire is too low and the wire melts slower than required. Dripping occurs when too much energy is applied and the wire melts earlier than required.  These two reduce the predictability and stability that is required for robust manufacturing.  Therefore, the use of thermal simulations to predict the material transfer stability for LMD-w using Waspaloy as the deposition material has been studied.  It has been shown that it is possible to predict the material transfer stability using thermal simulations and criterions based on preexisting experimental data. The criterion for stubbing checks if the completed simulation result produces a wire that ends below the melt pool. For dripping two criterions shows good results, the dilution ratio is a good predictor if the tool elevation remains constant. If there is a change in tool elevation the dimensionless slenderness number is a better predictor.  Using these predictive criterions it is possible to qualitatively map the process window and better understand the influence of tool elevation and the cross-section of the deposited material.
Additiv tillverkning (AT) är en kraftigt växande tillverkningsmetod på grund av sin flexibilitet kring design och möjligheten att skapa komponenter som inte är tillverkningsbara med traditionell avverkande bearbetning.  AT kan kraftigt minska tid- och materialåtgång och på så sett minskas kostnader och miljöpåverkan. Införandet av AT i flyg- och rymdindustrin kräver strikt kontroll och förutsägbarhet av processen för att försäkra sig om säkra flygningar.  Lasermetalldeponering av tråd är den AT metod som hanteras i denna uppsats. Användandet av tråd som tillsatsmaterial skapar ett potentiellt problem, materialöverföringen från tråden till substratet. Detta kräver att alla processparametrar är i balans för att få en jämn materialöverföring. Är processen inte balanserad syns detta genom materialöverföringsstabiliteterna stubbning och droppning. Stubbning uppkommer då energin som tillförs på tråden är för låg och droppning uppkommer då energin som tillförs är för hög jämfört med vad som krävs för en stabil process. Dessa två fenomen minskar möjligheterna för en kontrollerbar och stabil tillverkning.  På grund av detta har användandet utav termiska simuleringar för att prediktera materialöverföringsstabiliteten för lasermetalldeponering av tråd med Waspaloy som deponeringsmaterial undersökts. Det har visat sig vara möjligt att prediktera materialöverföringsstabiliteten med användning av termiska simuleringar och kriterier baserat på tidigare experimentell data. Kriteriet för stubbning kontrolleras om en slutförd simulering resulterar i en tråd som når under smältan.  För droppning finns två fungerande kriterier, förhållandet mellan svetshöjd och penetrationsdjup om verktygshöjden är konstant, sker förändringar i verktygshöjden är det dimensionslös ”slenderness” talet ett bättre kriterium.  Genom att använda dessa kriterier är det möjligt att kvalitativt kartlägga processfönstret och skapa en bättre förståelse för förhållandet mellan verktygshöjden och den deponerade tvärsnittsarean.
APA, Harvard, Vancouver, ISO, and other styles
8

Serquera, Jaime. "Sound synthesis with cellular automata." Thesis, University of Plymouth, 2012. http://hdl.handle.net/10026.1/1189.

Full text
Abstract:
This thesis reports on new music technology research which investigates the use of cellular automata (CA) for the digital synthesis of dynamic sounds. The research addresses the problem of the sound design limitations of synthesis techniques based on CA. These limitations fundamentally stem from the unpredictable and autonomous nature of these computational models. Therefore, the aim of this thesis is to develop a sound synthesis technique based on CA capable of allowing a sound design process. A critical analysis of previous research in this area will be presented in order to justify that this problem has not been previously solved. Also, it will be discussed why this problem is worthwhile to solve. In order to achieve such aim, a novel approach is proposed which considers the output of CA as digital signals and uses DSP procedures to analyse them. This approach opens a large variety of possibilities for better understanding the self-organization process of CA with a view to identifying not only mapping possibilities for making the synthesis of sounds possible, but also control possibilities which enable a sound design process. As a result of this approach, this thesis presents a technique called Histogram Mapping Synthesis (HMS), which is based on the statistical analysis of CA evolutions by histogram measurements. HMS will be studied with four different automatons, and a considerable number of control mechanisms will be presented. These will show that HMS enables a reasonable sound design process. With these control mechanisms it is possible to design and produce in a predictable and controllable manner a variety of timbres. Some of these timbres are imitations of sounds produced by acoustic means and others are novel. All the sounds obtained present dynamic features and many of them, including some of those that are novel, retain important characteristics of sounds produced by acoustic means.
APA, Harvard, Vancouver, ISO, and other styles
9

Rosa, Alessandro Samuel. "Funções de predição espacial de propriedades do solo." Universidade Federal de Santa Maria, 2012. http://repositorio.ufsm.br/handle/1/5551.

Full text
Abstract:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
The possibility of mapping soil properties using soil spatial prediction functions (SSPFe) is a reality. But is it possible to SSPFe to estimate soil properties such as the particlesize distribution (psd) in a young, unstable and geologically complex geomorphologic surface? What would be considered a good performance in such situation and what alternatives do we have to improve it? With the present study I try to find answers to such questions. To do so I used a set of 339 soil samples from a small catchment of the hillslope areas of central Rio Grande do Sul. Multiple linear regression models were built using landsurface parameters (elevation, convergence index, stream power index). The SSPFe explained more than half of data variance. Such performance is similar to that of the conventional soil mapping approach. For some size-fractions the SSPFe performance can reach 70%. Largest uncertainties are observed in areas of larger geological heterogeneity. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, SSPFe built on land-surface parameters are efficient in estimating the psd of the soils in regions of complex geology. However, there still are questions that I couldn t answer! Is soil mapping important to solve the main social and environmental issues of our time? What if our activities were subjected to a social control as in a direct democracy, would they be worthy of receiving any attention?
A possibilidade de mapear as propriedades dos solos através do uso de funções de predição espacial de solos (FPESe) é uma realidade. Mas seria possível construir FPESe para estimar propriedades como a distribuição do tamanho de partículas do solo (dtp) em um superfície geomorfológica jovem e instável, com elevada complexidade geológica e pedológica? O que seria considerado um bom desempenho nessas condições e que alternativas temos para melhorá-lo? Com esse trabalho tento encontrar respostas para essas questões. Para isso utilizei um conjunto de 339 amostras de solo de uma pequena bacia hidrográfica de encosta da região Central do RS. Modelos de regressão linear múltiplos foram construídos com atributos de terreno (elevação, índice de convergência, índice de potência de escoamento). As FPESe explicaram mais da metade da variância dos dados. Tal desempenho é semelhante àquele da abordagem tradicional de mapeamento de solos. Para algumas frações de tamanho o desempenho das FPESe pode chegar a 70%. As maiores incertezas ocorrem nas áreas de maior heterogeneidade geológica. Assim, melhorias significativas nas predições somente poderão ser alcançadas se dados geológicos acurados forem disponibilizados. Enquanto isso, FPESe construídas a partir de atributos de terreno são eficientes em estimar a dtp de solos de regiões com geologia complexa e elevada instabilidade. Mas restam dúvidas que não consegui resolver! O mapeamento de solos é importante para a resolução dos principais problemas sociais e ambientais do nosso tempo? E se nossas atividades estivessem submetidas ao controle da população como em uma democracia direta, seriam elas dignas de receber atenção?
APA, Harvard, Vancouver, ISO, and other styles
10

Oulton, David. "Selected papers on colorimetric theory and colour modeling." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/selected-papers-on-colorimetric-theory-and-colour-modeling(e4f13600-5d8e-45a8-afce-846647130dfb).html.

Full text
Abstract:
The annotated papers that are submitted as part of this thesis consider the phenomenon of colour at the fundamental, technical, and application levels, and they were written and published by Oulton between 1990 and 2009. The papers disclose significant insights by the author into colorimetric modeling theory and report aspects of the author's work that have led to commercially successful practical applications. The academic significance of these papers is evident in their citation record; their practical value is shown by a number of successful industrial collaboration programmes, and through the award of national prizes for innovation by the Worshipful Company of Dyers, and the Society of Dyers and Colorists. The published research primarily concerns digital devices that either capture or reproduce coloured images. For example, the research problem of how to calibrate the colour on computer CRT screens, which was thought at the time to be intractable, was reported by Oulton in paper 1 to be solved at the two to three significant figure level of colorimetric accuracy. This world leading level of accuracy was subsequently confirmed using a comprehensive data set in paper 7, and has been exploited internationally in commercial computer aided design and colour communication systems by Textile Computer Systems Ltd and Datacolor Inc. Further research problems resolved by Oulton in the presented papers include how to predict the colorimetric sensitivity of dye recipes; how to design, test, and fine-tune the spectral response of digital cameras; and how the individual customers in a shop can be tracked automatically to reveal their buying behavior, using coloured CCTV images.The challenge to the standard CIE colorimetric model posed by the results of Dr W.A. Thornton was analyzed and satisfactorily explained by Oulton in papers 2, 3 and 4. It is also shown that Thornton's results do not in any way compromise either the practice of colorimetry based on the CIE Standard Observer, or the validity of its quantifying data sets. It is also additionally shown under the annotation of paper 4 presented here, that the success of the CIE colorimetric model has a clearly demonstrable theoretical basis.In all but one of the presented papers the convention is maintained that the standard CIE XYZ co-ordinate model should be used as the reference basis, when modeling the properties of colour and quantifying its uses. The final paper to be published (and presented here as paper 4) challenges this convention and demonstrates that a context free and formally defined alternative reference basis may be used in colorimetric modeling with significant advantage. It is also shown in paper 4 that under the specified axioms, any cross dependency that is potentially non linear can in principle be resolved into its component scalar and additive relationships, and that the causes of scalar non linearity may be characterized independently from the causes of linearly additive cross dependency. The result is a widely applicable analytical and experimental design method for resolving complex cross dependent relationships in general and in particular, for resolving those between the spectral visual stimuli and the psychophysical response to them.
APA, Harvard, Vancouver, ISO, and other styles
11

"Microstructural and Mechanical Property Characterization of Laser Additive Manufactured (LAM) Rhenium." Doctoral diss., 2012. http://hdl.handle.net/2286/R.I.14777.

Full text
Abstract:
abstract: This report will review the mechanical and microstructural properties of the refractory element rhenium (Re) deposited using Laser Additive Manufacturing (LAM). With useable structural strength over 2200 °C, existing applications up to 2760 °C, very high strength, ductility and chemical resistance, interest in Re is understandable. This study includes data about tensile properties including tensile data up to 1925 °C, fracture modes, fatigue and microstructure including deformation systems and potential applications of that information. The bulk mechanical test data will be correlated with nanoindentation and crystallographic examination. LAM properties are compared to the existing properties found in the literature for other manufacturing processes. The literature indicates that Re has three significant slip systems but also twins as part of its deformation mechanisms. While it follows the hcp metal characteristics for deformation, it has interesting and valuable extremes such as high work hardening, potentially high strength, excellent wear resistance and superior elevated temperature strength. These characteristics are discussed in detail.
Dissertation/Thesis
Ph.D. Materials Science and Engineering 2012
APA, Harvard, Vancouver, ISO, and other styles
12

Zeng, Guan-Cheng, and 曾冠逞. "On Hardy-Hilbert Type Inequalities and Stability of Cauchy Additive Mappings." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/80965927858906631726.

Full text
Abstract:
碩士
國立中央大學
數學研究所
96
This thesis is concerned with two subjects of research; Hardy-Hilbert type inequalities and the stability of Cauchy additive mappings. The following are done : 1) to extend B. Yang''s result on the norm of a bounded self- adjoint integral operator T : L2 (0,∞) → L2 (0,∞) and its applications to Hardy-Hilbert type integral inequalities from the space L2 (0,∞) to the space Lp (0,∞) with p > 1 ; 2) to generalize Rassias''s theorem on the stability of Cauchy additive mappings ; 3) to give a correct proof of Park et al''s theorem in [6]; 4) to approximate the odd part of a certain vector mapping by a unique group homomorphism and ring homomorphism, respectively.
APA, Harvard, Vancouver, ISO, and other styles
13

Suen, Der-Fen, and 孫德芬. "Gene mapping in nicotiana sylvestris using alien monosomic addition lines." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/49759282641930928860.

Full text
Abstract:
碩士
國立臺灣大學
植物學研究所
83
An allotriploid hybrid (genomes PPS) obtained from proto-plast fusion between haploid Nicotiana plumbaginifolia (P, n=10) and haploid N. sylvestris (S, n=12) was backcrossed to monosomic chromosome addition lines. A total of 93 2n=21 plants, each containing a 2n chromosome complement of N. plumbaginifolia and a single chromosome of N. sylvestris, appeared in the BC and BC ge- nerations. The 2n=21 plants could be classified into 13 groups based on morphological characteristics. The N. sylvestris chromosomes in the 2n=21 plants were determinated by RFLP markers and karyotype analysis. Of the 61 RFLP markers ana- lysed, 13 could not detect N. sylvestris DNA bands in the 2n= 21 plants, whereas the remaining 48 markers (including rRNA and NR genes)identified 9 normal and 4 aberrant lines. The N. sylvestris chromosomes in the normal lines were chromosomes 9(sat-1), 10 (sat-2), 11 (sat-3), 12, one of the A group, one of B group, and three of the C group, respectively. The N. sylvestris chromosomes in the aberrant lines could not be identified with certainty, but presumably they were translo- cated or deleted chromosomes. One morphologically distinct 2n=21 plant showed no chromosomal and DNA changes judged by karyotype and RFLP analysis. The rRNA genes in sat-3 chromo- some do not usually express in diploid N. sylvestris, but are active when added to the genetic background of diploid N. plumbaginifolia.
APA, Harvard, Vancouver, ISO, and other styles
14

Dutta, Saikat. "Mapping The Reaction Coordinate For The Oxidative Addition Of Molecular Hydrogen To A Metal Center." Thesis, 2008. http://hdl.handle.net/2005/754.

Full text
Abstract:
The binding of molecular hydrogen to a metal center leads to the elongation of the H−H bond and subsequently to its cleavage along the reaction coordinate for the oxidative addition of H2. There has been considerable interest in the study of the activation of dihydrogen and map out the reaction coordinate for the homolysis of H2 on a metal center. A large number of H2 complexes reported to date possess H−H distances ranging from 0.8 to 1.0 Å. A relatively fewer examples of elongated dihydrogen complexes wherein the H−H distances fall in the range of 1.0 to 1.5 Å, are known. Study of the elongated dihydrogen complexes is of great significance because of its relevance in important catalytic processes such as hydrogenation, hydrogenolysis, and hydroformylation. Objectives The objectives of this work are as follows: (a) Synthesis and characterization of elongated dihydrogen complexes with chelating phosphine coligands by varying the electron donor ability. (b) Trap the various intermediate states in the process of oxidative addition of H2 to a metal center. (c) Map the reaction coordinate for the oxidative addition for the oxidative addition of H2 to a metal center. Results We have synthesized and characterized two new elongated dihydrogen complexes cis-[Ir(H)(η2-S2CH)(η2-H2)(PR3)2][BF4] (PR3 = PCy3, PPh3) wherein hydrogen atom undergoes site exchange between the H2 and the hydride sites. The dynamics of the exchange was studied using NMR spectroscopy. In addition, a series of ruthenium dihydrogen complexes of the type trans-[Ru(Cl)(η2-H2)(PP)][BF4] (PP = 1,2- Synopsis bis(diarylphosphino)ethane) has been synthesized and characterized wherein the aryl group is a benzyl moiety with a substituent (p-fluoro, H, m-methyl, p-methyl, p-isopropyl); in this series of complexes, a small increment in the electron donor ability (decrease in Hammett substituent constants) of the chelating phosphine ligand resulted in an elongation of the H−H bond by a small, yet significant amount. We also synthesized a series of 16-electron dicationic dihydrogen complexes bearing elongated dihydrogen ligand. In addition, we prepared a series of dihydrogen complexes of the type [RuCp/Cp*(PP)(η2-H2)][OTf] (PP = 1,2-bis(diarylphosphino)ethane, 1,2-bis(diarylphosphino)methane, 1,2-bis(dialkylphosphino)methane) bearing elongated H2 ligand (dHH = 1.0 to 1.17 Å); in this series of complexes as well, we found that the H−H bond distances increased as the donor ability of the chelating phosphines increased in small increments, along the reaction coordinate for the oxidative addition of H2 to a metal center. This investigation therefore, has established a very nice correlation between the H−H bond lengths and the Hammett substitutent constants (donor properties) resulting in the construction of dihydrogen complexes along the reaction coordinate for the oxidative addition of H2 to a metal center.
APA, Harvard, Vancouver, ISO, and other styles
15

Lin, Tian-Yu, and 林天鈺. "Using Synchrotron Radiation Mapping to Investigate the Iron-addition Effects on the Nickel-Aluminide Alloys." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/97291372587209207895.

Full text
Abstract:
碩士
國立中央大學
化學工程與材料工程學系
101
Like most other intermetallics, unalloyed Nickel Aluminide systems have many important applications but also lack the ductility at room temperature. In this study, three kinds of Nickel Aluminide alloys were prepared with different Fe content (0, 0.25, and 1 atomic percentage respectively). We applied indentation to investigate the mechanical performance of the alloys. The deformed areas around the indentation are investigated using the synchrotron x-ray diffraction to map the microstructure distribution of the alloys. After mapping a five by five points, each point aparts 100μm, the distribution of the lattice-strain, diffraction intensity, and peak width of different phases are revealed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography