Dissertations / Theses on the topic 'Additive manufacturing process'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Additive manufacturing process.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Philip, Ragnartz, and Axel Staffanson. "Improving the product development process with additive manufacturing." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-40344.
Full textHan, Tianyang. "Ultrasonic Additive Manufacturing of Steel: Process, Modeling, andCharacterization." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607039366940573.
Full textStrano, Giovanni. "Multi-objective optimisation in additive manufacturing." Thesis, University of Exeter, 2012. http://hdl.handle.net/10871/8405.
Full textJoshi, Anay. "Geometric Complexity based Process Selection and Redesign for Hybrid Additive Manufacturing." University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin151091601846356.
Full textDing, J. "Thermo-mechanical analysis of wire and arc additive manufacturing process." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7897.
Full textLuo, Xiaoming. "Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389124.
Full textSequeira, Almeida P. M. "Process control and development in wire and arc additive manufacturing." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7845.
Full textHayagrivan, Vishal. "Additive manufacturing : Optimization of process parameters for fused filament fabrication." Thesis, KTH, Lättkonstruktioner, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-238184.
Full textEtt hinder för att additiv tillverkning (AT), eller ”3D-printing”, ska få ett bredare genomslag är svårigheten att uppskatta effekterna av processparametrar på den tillverkade produktens mekaniska prestanda. Det komplexa förhållandet mellan geometri och processparametrar gör det opraktiskt och komplicerat att härleda analytiska uttryck för att förutsäga de mekaniska egenskaperna. Alternativet är att istället använda numeriska modeller. Huvudsyftet med denna avhandling har därför varit att utveckla en numerisk modell som kan användas för att förutsäga de mekaniska egenskaperna för detaljer tillverkade genom AT. AT-tekniken som avses är inriktad på Fused Filament Fabrication (FFF). En numerisk modell har utvecklats genom att återskapa FFF-byggprocessen i en simuleringsmiljö. Instruktioner (skriven i GCode) som används för att bygga en detalj genom FFF har här översatts till en numerisk FE-modell. Modellen används sen för att bestämma effekterna av processparametrar på styvheten och styrkan hos den tillverkade detaljen. I detta arbete har strukturstyvheten hos olika detaljer beräknats genom att utvärdera modellens svar för jämnt fördelade belastningsfall. Styrkan, vilket är starkt beroende på den tillverkade detaljens termiska historia, har inte utvärderats. Den utvecklade numeriska modellen kan dock fungera som underlag för implementering av modeller som beskriver relationen mellan termisk historia och styrka. Den utvecklade modellen är anpassad för optimering av FFF-parametrar då den omfattar effekterna av alla FFF-parametrar. En genetisk algoritm har använts i detta arbete för att optimera parametrarna med avseende på vikt för en given strukturstyvhet.
Nickchen, Tobias [Verfasser]. "Deep learning for automating additive manufacturing process chains / Tobias Nickchen." Paderborn : Universitätsbibliothek, 2021. http://d-nb.info/1234058804/34.
Full textKarande, Niraj Nitin. "Adoption of Additive Manufacturing in process industries : A case study." Thesis, Uppsala universitet, Industriell teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-426129.
Full textAlkadi, Faez. "DEVELOPMENT OF A CONFORMAL ADDITIVE MANUFACTURING PROCESS AND ITS APPLICATION." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1556282142803521.
Full textJohansson, Matilda, and Robin Sandberg. "How Additive Manufacturing can Support the Assembly System Design Process." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Industriell organisation och produktion, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-30887.
Full textWang, Lening. "Process and Quality Modeling in Cyber Additive Manufacturing Networks with Data Analytics." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104655.
Full textDoctor of Philosophy
Additive manufacturing (AM) is a promising advanced manufacturing process that can realize the personalized products in complex shapes with unprecedented materials. However, there are many quality issues that can restrict the wide deployment of AM in practice, such as voids, porosity, cracking, etc. To effectively model and further mitigate these quality issues, the cyber manufacturing system (CMS) is adopted. The CMS can provide the data acquisition functionality to collect the real-time process data which directly or indirectly related to the product quality in AM. Moreover, the CMS can provide the computation capability to analyze the AM data and support the decision-making to optimize the AM process. However, due to the characteristics of AM process, there are several challenges effectively and efficiently model the AM data. First, there are many one-of-a-kind products in AM, and leads to limited observations for each product that can support to estimate an accurate model. Therefore, in Chapter 3, I would like to discuss how to jointly model personalized products by sharing the information among these similar-but-non-identical AM processes with limited observations. Second, for personalized product realization in AM, it is essential to validate the product and process designs before fabrication quickly. Usually, finite element analysis (FEA) is employed to simulate the manufacturing process based on the first-principal model. However, due to the complexity, the high-fidelity simulation is very time-consuming and will delay the product realization in AM. Therefore, in Chapter 4, I would like to study how to predict the high-fidelity simulation result based on the low-fidelity simulation with fast computation speed and limited capability. Thirdly, the defects of AM are usually inside the product, and can be identified by the X-ray computed tomography (CT) images after the build of the AM products. However, limited by the sensor technology, CT image is difficult to obtain for online (i.e., layer-wise) defect detection to mitigate the defects. Therefore, as an alternative, I would like to investigate how to predict the CT image based on the optical layer-wise image, which can be obtained during the AM process in Chapter 5. The proposed methodologies will be validated based on two types of AM processes: fused deposition modeling (FDM) processes and selective laser melting processes (SLM).
Banerjee, Soumya. "Development of a novel toner for electrophotography based additive manufacturing process." Thesis, De Montfort University, 2011. http://hdl.handle.net/2086/5037.
Full textJonsson, Vannucci Tomas. "Investigating the Part Programming Process for Wire and Arc Additive Manufacturing." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74291.
Full textWu, Hongjian. "Process Modeling and Planning for Robotic Cold Spray Based Additive Manufacturing." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA026.
Full textCold spray (CS) is a solid-state coating deposition technology that has recently been applied as an additive manufacturing (AM) process to fabricate individual components. This potential AM process is attracting more and more attention because of its advantages: high-forming efficiency, low temperature, and no phase changing of materials. These advantages make CS able to form large-volume objects to become an efficient and effective AM process. Nowadays, new advances in cold spray additive manufacturing (CSAM) call for new process implementation to improve the manufacturing accuracy and flexibility. Therefore, the purpose of this study is to enhance CS-based AM through the modeling and planning of the robotic CS process. The work of this thesis consists of three parts.Firstly, efforts have been dedicated to design and implement a new framework for CSAM. In this part, a concept of modular system is presented. Here, the current CSAM system is decomposed into different modules in order to understand the physical and functional relationships between the key elements of the entire system. This physical and functional modularity is an indispensable necessity to promote hybrid AM processes. New modules, such as in-situ measurement module, inter-process module can be integrated into the framework to bring more possibilities to the conventional CS process. It is revealed that system modularity is suitable to revolutionize the CSAM method and conduction. It can be seen that to fully exert the potential of CSAM, efforts are still required to integrate and coordinate more technologies with the help of the proposed modular framework.Secondly, a novel approach is presented to simulate the CS deposition. Here, a three-dimensional geometric model of the coating profile based on Gaussian distribution is developed. The model is combined with robot trajectory and processing parameters to simulate the evolving CS deposits. In addition, it can offer accurate profile prediction in the robot off-line programming platform, especially in case of shadow effects, which enables the integration of robot programming with simulation to better control the coating process. The results of both numerical and experimental verifications show that this proposed method has a good prediction accuracy for practice.At last, compared with the current bulk-based volume-forming strategy (e.g. a tessellation-based method), this study proposes a new spray strategy that considers the characteristics and kinematic parameters of cold spray to enhance stable layer building for 3D shape forming. Both simulation and experiments are conducted for method verification. Layer built benchmarking test objects have better shape accuracy than that of existing methods. This implies that the proposed method makes CS a real and layer-by-layer ready AM process for 3D shape forming
Hehr, Adam J. "Process Control and Development for Ultrasonic Additive Manufacturing with Embedded Fibers." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461153463.
Full textJuhasz, Michael J. "In and Ex-Situ Process Development in Laser-Based Additive Manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu15870552278358.
Full textButt, Javaid. "A novel additive manufacturing process for the production of metal parts." Thesis, Anglia Ruskin University, 2016. http://arro.anglia.ac.uk/701001/.
Full textGhazizadeh, Ali, and Suraj Lakshminarasimhaiah. "Additive manufacturing and its impacts on manufacturing industries in the future concerning the sustainability of AM." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-56058.
Full textRoberson, David Mathew III. "Sensor-based Online Process Monitoring in Advanced Manufacturing." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72911.
Full textMaster of Science
Francis, Zachary Ryan. "The Effects of Laser and Electron Beam Spot Size in Additive Manufacturing Processes." Research Showcase @ CMU, 2017. http://repository.cmu.edu/dissertations/909.
Full textPaul, Ratnadeep. "Modeling and Optimization of Powder Based Additive Manufacturing (AM) Processes." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378113813.
Full textDasari, Vinod Kumar. "Machine Learning to Detect Anomalies in the Welding Process to Support Additive Manufacturing." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-176357.
Full textBuga, Vlad, and Roysten Jason Dsouza. "In-process monitoring for Electron Beam Additive Manufacturing using an infrared camera system." Thesis, KTH, Industriell produktion, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-245064.
Full text“Additive manufacturing” (AM) eller “friformsframställning” har snabbt ökat i omfattning, främst tack vare dess fördelar jämfört med konventionell bearbetning. Fördelarna inkluderar möjligheten att tillverka delar med komplexa geometrier medan slöseri minimeras. Den exponentiella tillväxten av tekniken har medfört utmaningar inom kvalitetssäkring, vilket har visat sig vara ett hinder för storskalig anpassning. Utveckling av processövervakningstekniker för AM är en pågående utmaning, och ligger efter i utveckling jämfört med de mer etablerade teknikerna som utvecklats för konventionell bearbetning. Tidigare forskning har visat fall där tekniken har implementerats med fokus på titanlegeringar. Denna studie syftar till att bidra till den forskning som genomförs inom processövervakning och fokuserar på EBM-processen (Electronic Beam Melting). Materialet som övervakas är Inconel 625, för att expandera forskningsområdet till högre temperaturområden. Den mest lämpliga övervakningstekniken och leverantör av utrustning väljs ut genom en gransking av tidigare litteratur och en marknadsundersökning. Experimentella försök för att analysera övervakningsteknikens prestanda med Inconel 625 utförs. De extraherade data analyseras sedan med bildbehandling, vilket ger intressanta resultat med avseende på temperaturfluktuationer över successiva lager av byggobjektet. Händelserna inom byggprocessen för ett lager visar intressanta avvikelser i temperatur, vilka kartläggs och presenteras som grafer. Tillståndet efter räfsning visar en särskilt stor avvikelse, som sedan tillskrivs differentialvärme av metallpulvret under räfsningsfasen. Denna observation stöds genom att notera "cold-spots" i extraherade bilder av byggobjektet. Resultaten diskuteras och vidare omfång för studien framförs. Avsikten med denna studie är att ta fram en grund för vidare forskning i processövervakning för högre temperaturområden och bidra till utvecklingen av realtidsprocessövervakning för AM.
Ahsan, AMM Nazmul. "Study on the Relationship between Process Plan and Resource Requirement in Additive Manufacturing." Thesis, North Dakota State University, 2018. https://hdl.handle.net/10365/28404.
Full textSiraskar, Nandkumar S. "Adaptive Slicing in Additive Manufacturing Process using a Modified Boundary Octree Data Structure." University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1353155811.
Full textThompson, John Ryan. "RELATING MICROSTRUCTURE TO PROCESS VARIABLES IN BEAM-BASED ADDITIVE MANUFACTURING OF INCONEL 718." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401699643.
Full textWu, Michael. "Transfer Learning Approach to Powder Bed Fusion Additive Manufacturing Defect Detection." DigitalCommons@CalPoly, 2021. https://digitalcommons.calpoly.edu/theses/2324.
Full textPalmer, Andrew. "The Design and Development of an Additive Fabrication Process and Material Selection Tool." Master's thesis, University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3635.
Full textM.S.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering MS
Parrot, Jérôme. "W.A.M, Wire Additive Manufacturing : champs des possibles et utilisation raisonnée." Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0047/document.
Full textIn Additive Manufacturing (AM), three dimensionalobjects are built layer by layer by joining each layer to the previous one. For metal parts, there are three main methods: powder bed, powder depositionand wire deposition. This latter makes optimal use of the material in contrast to other processes, which makes it very interesting industrially. Indeed, with powder,the ratio between powder used and powder meltedis not equal to one, in opposition of the use of wire. In order to ensure the proper melting of the metal, several methods already exist, including the use of lasers or electric arc. This manuscript presents a novel approach of wire deposition using inductive energy for additive manufacturing applications (WIAM). This approach does not make use of a storage of the molten material. Instead, the tip of a metal wire is melted by an induction heating system. Inductive energy is also used to obtain an optimal thermal gradient between the tip of the wire and the substrate or previous layer. Thesis work concerns the development of this approach by a numerical model, and its experimental validation. It shows that the induction heating system is able to melt the tip of the wire and heat the substrate to create suitable deposition. The microstructure of additive manufacturing stainless steel has been studied. These results have been compared with WAM method. It is shown that the induction heating system gives a microstructure with very low porosities and a microstructure without a sudden change of composition. These preliminary results indicate that Wire Induction Additive Manufacturing (WIAM) is likely to a suitable process for AM but it still needs to be developed
Sheridan, Luke Charles. "An Adapted Approach to ProcessMapping Across Alloy Systems and Additive Manufacturing Processes." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1471861921.
Full textBrandemyr, Gabriella. "Powder bed additive manufacturing using waste products from LKAB's pelletization process : A pre-study." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-75421.
Full textZhang, Fangjin. "Optimising additive manufacturing for fine art sculpture and digital restoration of archaeological artefacts." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/14886.
Full textSnelling, Dean Andrew Jr. "A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/51606.
Full textPh. D.
Snelling, Jr Dean Andrew. "A Process for Manufacturing Metal-Ceramic Cellular Materials with Designed Mesostructure." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/51606.
Full textPh. D.
Scime, Luke Robson. "Methods for the Expansion of Additive Manufacturing Process Space and the Development of In-Situ Process Monitoring Methodologies." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1183.
Full textGnanasekaran, Balachander. "A Smoothed Particle Hydrodynamics (SPH) Procedure for Simulating Cold Spray Process - an Additive Manufacturing Process without Heat Supply." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1544099572854187.
Full textFallon, Jake Jeffrey. "Structure-Process-Property Relationships of Cellulose Nanocrystal Thermoplastic Urethane Composites." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/103053.
Full textDoctor of Philosophy
Obidigbo, Chigozie Nwachukwu. "A Numerical and Experimental Investigation of Steady-State and Transient Melt Pool Dimensions in Additive Manufacturing of Invar 36." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1503493366168339.
Full textHabib, MD Ahasan. "Designing Bio-Ink for Extrusion Based Bio-Printing Process." Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/32045.
Full textPrabhu, Avinash W. "Improving Fatigue Life of LENS Deposited Ti-6Al-4V through Microstructure and Process Control." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1388768129.
Full textFisher, Brian A. "Part Temperature Effects in Powder Bed Fusion Additive Manufacturing of Ti-6Al-4V." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1154.
Full textRodriguez, Ricardo Xavier. "Characterization of direct print additive manufacturing process for 3D build of a carbon nanostructure composite." Thesis, The University of Texas at El Paso, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=1564696.
Full textThis project is a focus on characterizing the process for actualizing three dimensional structures out of a carbon nanostructure composite via a direct print additive manufacturing process. Manufacturing parts additively enables for realization of geometrically complex shapes that often times cannot be manufactured any other way. The specificity of a material's properties have to be such, that the processing method can precisely place and bond material to itself in a highly repeatable manner. Commercial materials for additive manufacturing are have been optimized with these goals in mind and, therefore, often times lack the rigor and robustness for many applications.
The addition of nanomaterials is promising approach to enhance certain properties of AM materials without drastically altering their critical processing characteristics. This study looks into the reinforcing a commercial Stereolithography resin (DSM Somos™ Watershed 11122) with two types of carbon nanostructures (multi-walled carbon nanotubes and carbon nanofibers) in an attempt to improve mechanical characteristics of the bulk material. Related work has shown to not exceed concentrations over .5% (w/v) such that the material is still compliable with the AM technology. This study attempts to exceed these loading ratios, by attempting concentrations of: 1) 1% (w/v) 2) 2.5% (w/v) 3) 5% (w/v) 4) 10% (w/v).
A direct write system from nScrypt Inc. (Orlando, FL) is implemented as the extrusion method for the nanocomposite materials. An ultra-violet emitting radiation source is paired up with the nScrypt tool form a direct print additive manufacturing process that dispenses material then cures it right after. All the different processing characteristics and control variables are explained in great detail, as well as the design considerations for fabricating a part with this technique. The impact of the control parameters to dispensed features are observed and measured. Statistical data is generated from this for the design of parts to be built with the system.
Test specimens for mechanical evaluation are designed based off of the parameter measurements and observation of the material within the system. The test specimens are built from the different nanocomposite concentration and a control sample are evaluated until failure under tensile loads. The fractured specimens are imaged under a scanning electron microscope to analyze layer interfaces and fracture characteristics. A thermal evaluation with photo-DSC is done on the materials to document their behavior under elevated temperatures (0°C - 300°C).
Background on the technologies, materials, and processes is provided first. A through discussions general AM workflow, technology, and history is given. Then a focus into pertinent technologies (Stereolithography) is discussed in detail. A breadth of direct write technologies and applications are introduced with an emphasis in the one (nScrypt, DPAM) utilized in this study. Finally, carbon nanostructures are introduced.
Chen, Shuai. "Investigation of FEM numerical simulation for the process of metal additive manufacturing in macro scale." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI048/document.
Full textAdditive manufacturing (AM) has become a new option for the fabrication of metallic parts in industry. However, there are still some limitations for this application, especially the unfavourable final shape and undesired macroscopic properties of metallic parts built in AM systems. The distortion or crack due to the residual stress of these parts leads usually to severe problems for some kinds of metal AM technology. In an AM system, the final quality of a metallic part depends on many process parameters, which are normally optimized by a series of experiments on AM machines. In order to reduce the considerable time consumption and financial expense of AM experiments, the numerical simulation dedicated to AM process is a prospective alternative for metallic part fabricated by additive manufacturing. Because of the multi-scale character in AM process and the complex geometrical structures of parts, most of the academic researches in AM simulation concentrated on the microscopic melting pool. Consequently, the macroscopic simulation for the AM process of a metallic part becomes a current focus in this domain. In this thesis, we first study the pre-processing of AM simulation on Finite Element Method (FEM). The process of additive manufacturing is a multi-physics problem of coupled fields (thermal, mechanical, and metallurgical fields). The macroscopic simulation is conducted in two different levels with some special pre-processing work. For the layer level, the reconstruction of 3D model is conducted from the scan path file of AM machine, based on the inverse manipulation of offsetting-clipping algorithm. For the part level, the 3D model from CAD is reconstructed into a voxel-based mesh, which is convenient for a part with complex geometry. The residual stress of a part is analysed under different preheat temperatures and different process parameters. These simulations imply the potential technique of reducing residual stress by the optimisation of process parameters, instead of the traditional way by increasing preheat temperature. Based on the FEM simulation platform above, two simulations at line level are also studied in this thesis, aiming at the relation between the AM process and part's final quality. These examples demonstrate the feasibility of using macroscopic simulations to improve the quality control during the AM process. In the first task, dataset of heating parameters and residual stress are generated by AM simulation. The correlation between them is studied by using some regression algorithm, such as artificial neural network. In the second task, a PID controller for power-temperature feedback loop is integrated into AM process simulation and the PID auto-tuning is numerically investigated instead of using AM machine. Both of the two tasks show the important role of AM macroscopic process simulation, which may replace or combine with the numerous trial and error of experiments in metal additive manufacturing
Segerstark, Andreas. "Additive Manufacturing using Alloy 718 Powder : Influence of Laser Metal Deposition Process Parameters on Microstructural Characteristics." Licentiate thesis, Högskolan Väst, Avd för tillverkningsprocesser, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-8796.
Full textBerglund, Lina, Filip Ivarsson, and Marcus Rostmark. "Crucial Parameters for Additive Manufacturing of Metals : A Study in Quality Improvement." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254785.
Full textProduktion genom Additiv Tillverkning möjliggör tillverkande av skräddarsydda produkter i små batcher och med mindre material än vid traditionell tillverkning. Det är ett mer hållbart tillverkningssätt och mer passande för nischprodukter, men innebär nya produktionskrav för att säkerhetsställa bra kvalitet. Målet med denna studie är att definiera de viktigaste parametrarna vid Additiv Tillverkning av produkter i metall och föreslå verktyg för att förbättra dem. Detta genom analys av tidigare studier och utvärdering av klassiska produktionsrutiner för Selective Laser Melting. Resultaten från denna studie visar att porositet och formfel är de vanligaste faktorerna som leder till bristande kvalitet. För att undvika detta är de viktigaste parametrarna att ta i beaktande; parametrar kopplade till "laser freeform fabrication"-system, distans mellan laserstrålar, kraft på lasern, lagertjocklek, skanningsmönster, fart på skanningen och flytbarhet på pulvret. Slutsatsen pekar även på att avgörande parametrar inom Additiv Tillverkning beror på definitionen av kvalitet för en speciell produkt och kan därför variera. Genom kontinuerlig insamling och analys av data kommer förbättringen av kvalitet förenklas markant.
Chatham, Camden Alan. "Property-Process-Property Relationships in Powder Bed Fusion Additive Manufacturing of Poly(phenylene sulfide): A Case Study Toward Predicting Printability from Polymer Properties." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/100053.
Full textDoctor of Philosophy
Powder bed fusion (PBF) is one of seven distinct additive manufacturing (AM, also known as ``3D printing'') technologies. The manufacturing process creates solid, three-dimensional shapes through selectively heating, melting, and fusing together polymer powder particles in a layer-by-layer manner. Currently, organizations are interested in complementing existing manufacturing technology with PBF for one of three general reasons: (1) "complexity is free" PBF has the ability to make shapes that are difficult or expensive to fabricate using other manufacturing technologies. (2) "tool-less manufacturing" PBF only requires a digital design file to fabricate objects. This enables small changes to be easily made via computer-aided design (CAD) programs without the need to invest time and money into tooling (e.g., molds, jigs, fixtures, or other product-specific tools). This enables "mass customized" products (e.g., custom-fit medical devices and implants) to be economically feasible. (3) "material efficiency" AM is attractive as it often generates less waste than subtractive manufacturing techniques like milling. This is particularly a concern for organizations that manufacture parts from expensive, high-performance polymers, such as in the aerospace and medical industries. Despite these benefits, the state of the art for polymer PBF has room for improvement. Specifically, there are many details regarding material behavior during PBF manufacturing that are unknown; any unknown behaviors present challenges to building confidence in production quality. Additionally, approximately 90% of current PBF use is nylon-12 or else another material in the polyamide family of semi-crystalline thermoplastics. This limited selection of commercially available materials compared against other forms of manufacturing contributes to PBF's circular quandary: the manufacturing process physics are not robustly understood because most experimentation and research has been carried out on one family of polymers; however, a wider variety of polymers has not been developed because there is a limited understanding of the process physics. This dissertation presents research toward answering both PBF challenge areas. The first three chapters present investigations into relationships between the properties of a novel, experimental grade poly(phenylene sulfide) (PPS) semi-crystalline thermoplastic polymer powder, the stimuli imposed on this polymer during PBF processing, and the resultant properties of printed parts (i.e., "property-process-property relationships"). The target polymer, poly(phenylene sulfide), is a high-temperature, high-performance polymer that is traditionally melt processed, but has not yet been commercialized for PBF. Prior literature has established mathematical representation for the interaction between manufacturing energy input and the thermal response of the polymer resulting in melting. This framework has been created through studying the polyamide family. Work presented in this dissertation evaluates existing guidelines for PBF process parameter selection using measured thermal behavior of PPS (i.e., a polysulfide, not a polyamide) to predict the range of manufacturing energies affecting geometrically accurate printed parts of high density and strength. In addition, the impact of thermal exposure from repeated PPS powder reuse over the course of multiple PBF prints was evaluated on powder, thermal, and rheological properties identified as critical for PBF printing. Changes to the molecular structure and properties of reused PPS powder were observed to follow different trends than those reported for other materials traditionally used. The effect of thermal exposure on printed parts was also investigated to determine if the observed changes in molecular structure occurring during thermal exposure of the powder would result in changes to mechanical performance properties of printed parts. The importance of rheological flow properties in dictating printed part performance was observed to be a common theme throughout working with PPS. The final chapter presents a novel method for quantitatively predicting particle fusion during PBF and connecting the extent of particle fusion to mechanical properties of printed parts. The presented method is "polymer agnostic" and advances the state of the art in understanding the physics guiding polymer response to stimuli imposed during PBF AM.
Johansson, Kenny. "Process and microstructure development of a LPBF produced maraging steel." Thesis, Karlstads universitet, Avdelningen för maskin- och materialteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-79004.
Full textAdditiv tillverkning har möjligheten att producera komplext konstruerade komponenter som inte kan produceras med konventionella tillverkningsmetoder. Detta ger konstruktörer möjligheten att fritt tänka utanför designspektra som annars begränsas av konventionella tillverkningsmetoder. Additiv tillverkning av metall har snabbt utvecklats under de senaste tre decennierna och har nu nått industriella acceptansnivåer. Metallråvara för användning i additiv tillverkning växer snabbt. Additiv tillverkning av metaller är särskilt intressant för verktygsindustrin, designfriheten som additiv tillverkning kan erbjuda verktygstillverkaren för att kunna utforma komplexa kylkanaler inuti formar. Det kan således reducera cykeltiden och förbättra kvaliteten på komponenter som produceras med formarna. Maråldringsststål har visat sig att både kunna processas i additiv tillverkning och har jämförbara egenskaper med traditionellt kolbaserade verktygsstål. Pulverbäddsystemet är ett av de mest lovande systemen idag, genom att använda pulver som råmaterial kan systemet producera komponenter med hög noggranhet utan att behöva bearbeta dem efter att processen är klar. Det finns emellertid ett behov av att bättre förstå själva processen inom pulverbädds teknologin. Den här masteruppsatsen syftar till att additivt tillverka ett nyutvecklat maråldringsstål från Uddeholm. Samt att genomföra processparameterexperiment och studera deras korrelation för att kunna producera prover med så få defekter som möjligt. Det är avgörande att hitta en metod för hur man hittar korrelationerna och se hur de påverkar det tillverkade materialet. Pulverbäddsystemet har ett multikomplext variabelsystem. För att minska komplexiteten kan fokus läggas på de mest inflytelserika processparametrarna, vilket har bevisats av många forskare. Även med ett reducerat fokus är det fortfarande ett flervariabelsproblem. I denna studie användes en metod för att hitta relationer mellan processparametrar och en Design Of Experiment-programvara, nämligen MODDE. Genom screening av processparametrar, inom programvaran, kan en statistisk utvärdering av operativt processfönster hittas med färre genomförda experiment. Utvecklingen av processparametrar kan traditionellt vara tidskrävande och resultera i ett onödigt stort antal experiment för att hitta det operativa fönstret av processparametrar. Experimentet visade att lasereffekt och punktavstånd påverkande den relativa densiteten mest, följt av exponeringstiden och spåravståndet. Experimentet genomfördes först med en lagertjocklek av 50 mikrometer, lagertjockleken resulterade i en relativ densitet på över 99,8 procent. Emellertid observerades stora fusionsdefekter inuti proverna. Även om en hög relativ densitet mättes, måste en poranalys genomföras för att fullt ut förstå storleken och formen på defekter eftersom de kan ha en avgörande inverkan på mekaniska egenskaperna. Det misstänktes att lagertjockleken var för hög och att defekterna kunde minskas genom att tillverka en ytterligare uppsättning av samma processparametrar men med en lägre lagertjocklek på 40 mikrometer istället. Minskningen av lagertjockleken resulterade i en signifikant minskning av de observerade defekterna. Framgent efter den här avhandlingen måste dock arbetet fortsätta att ytterligare optimera och öka soliditeten i det additivt tillverkade materialet. Det för att uppnå bättre prover och komma ännu närmre det konventionellt tillverkade materialets egenskaper.
D'Amico, Tone Pappas. "Predicting Process and Material Design Impact on and Irreversible Thermal Strain in Material Extrusion Additive Manufacturing." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/572.
Full text