Journal articles on the topic 'Additive Manufactuing'

To see the other types of publications on this topic, follow the link: Additive Manufactuing.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Additive Manufactuing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

SOZON, Tsopanos. "Laser Additive Manufacturing (LAM)." JOURNAL OF THE JAPAN WELDING SOCIETY 83, no. 4 (2014): 266–69. http://dx.doi.org/10.2207/jjws.83.266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reddy, K. Vinay Kumar, B. Bhaskar, and Gautam Raj G. Vinay Kumar. "Additive Manufacturing of Leaf Spring." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1666–67. http://dx.doi.org/10.31142/ijtsrd23528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhukov, V. V., G. M. Grigorenko, and V. A. Shapovalov. "Additive manufacturing of metal products (Review)." Paton Welding Journal 2016, no. 6 (June 28, 2016): 137–42. http://dx.doi.org/10.15407/tpwj2016.06.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li Hu, 李虎, 赵伟江 Zhao Weijiang, 李瑞迪 Li Ruidi, and 刘咏 Liu Yong. "增材制造马氏体时效钢的研究进展." Chinese Journal of Lasers 49, no. 14 (2022): 1402102. http://dx.doi.org/10.3788/cjl202249.1402102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

León B., Juan, Jorge Guillermo Díaz-Rodríguez, and Octavio Andrés González-Estrada. "Daño en partes de manufactura aditiva reforzadas por fibras continuas." Revista UIS Ingenierías 19, no. 2 (May 3, 2020): 161–75. http://dx.doi.org/10.18273/revuin.v19n2-2020018.

Full text
Abstract:
La fabricación aditiva (AM),y más específicamente la impresión 3D,ha comenzado una revolución de la industria de la manufactura al proporcionar capacidades de producción para piezas que eran imposibles de fabricarhace algunos años. Una tecnología bastante reciente,desarrollada porMarkforged,ha elevado estas capacidades a un nuevo nivel al permitir la impresión de compuestos de matriz polimérica con refuerzo continuo de fibra. Sin embargo, por ser este un método nuevode fabricación, no existe un modelo consolidado para predecir las características mecánicas ni los modos de falla que presentan al estar sometidas a cargas. El presente trabajo recoge los estudios sobreel daño y falla progresiva en materiales compuestos de fibras largas producidos por manufactura aditiva
APA, Harvard, Vancouver, ISO, and other styles
6

Gläßner, C., L. Yi, and J. Aurich. "Bewertung additiver Fertigungsverfahren*/Assessment of additive manufacturing technologies – Decision support for selecting additive manufacturing technologies." wt Werkstattstechnik online 109, no. 06 (2019): 413–16. http://dx.doi.org/10.37544/1436-4980-2019-06-15.

Full text
Abstract:
Additive Fertigungsverfahren bieten durch den schichtweisen Aufbau von Bauteilen Vorteile gegenüber konventionellen Fertigungsverfahren. Die Vielzahl verschiedener additiver Fertigungsverfahren ist eine Herausforderung für die Identifikation eines optimalen Verfahrens für Funktionsbauteile. Der Beitrag stellt einen Ansatz zur Bewertung additiver Fertigungsverfahren vor, der zur Entscheidungsunterstützung bei der Auswahl des optimalen Verfahrens dient.   Being manufactured layer by layer, additive manufacturing technologies offer unique advantages compared to established manufacturing technologies. The large number of different additive manufacturing technologies makes it difficult to identify suitable technologies. This paper presents an approach for assessing additive manufacturing technologies, assisting in the selection of suitable additive manufacturing technologies.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdelaal, Osama, Jiang Zhu, Tomohisa Tanaka, Saied Darwish, and Yoshio Saito. "411 Additive manufacturing of custom-made hip implants." Proceedings of Manufacturing Systems Division Conference 2013 (2013): 91–92. http://dx.doi.org/10.1299/jsmemsd.2013.91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vogt, Maximilian, Julian Ulrich Weber, and Vishnuu Jothi Prakash. "Digitalisierung von additiven Fertigungseinheiten/Digitalization of additive manufacturing units." wt Werkstattstechnik online 111, no. 09 (2021): 633–37. http://dx.doi.org/10.37544/1436-4980-2021-09-59.

Full text
Abstract:
Additive Fertigungstechnologien erlauben die bedarfsgerechte Produktion von individuellen Ersatzteilen. Durch Einsatz mobiler Fertigungseinheiten lässt sich mithilfe dieser Verfahren die Resilienz von isolierten Produktionsstätten erhöhen. Um auch außerfachliches Personal zur Bedienung an entlegenen Einsatzorten zu befähigen, stellen digitale Assistenzsysteme eine mögliche Lösung dar. In diesem Beitrag wird ein solches Assistenzsystem zur Begleitung der manuellen Tätigkeiten beim roboterbasierten DED-Prozess in einer mobilen Fertigungseinheit diskutiert.   Additive manufacturing technologies enable the demand-driven production of individual spare parts. By using mobile manufacturing units, these processes can be used to increase the resilience of isolated production sites. In order to enable non-specialized personnel to operate at remote locations, digital assistance systems are a feasible solution. This paper discusses such an assistance system to accompany manual operations of the robot-based DED process in a mobile manufacturing unit.
APA, Harvard, Vancouver, ISO, and other styles
9

Hu Ping, 胡平, 艾琳 Ai Lin, 邱梓妍 Qiu Ziyan, 左俊杰 Zuo Junjie, 刘胜 Liu Sheng, 刘洋 Liu Yang, 彭志鑫 Peng Zhixin, and 宋长辉 Song Changhui. "金属增材制造构件的激光超声无损检测研究进展." Chinese Journal of Lasers 49, no. 14 (2022): 1402803. http://dx.doi.org/10.3788/cjl202249.1402803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajak, Narendra Kumar, and Prof Amit Kaimkuriya. "Design and Development of Honeycomb Structure for Additive Manufacturing." International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (October 31, 2018): 1198–203. http://dx.doi.org/10.31142/ijtsrd18856.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Daniel, Besnea, Victor Constantin, Octavian Dontu, Spanu Alina, and Doina Cioboată. "Additive Manufacturing Concepts and Design for Advanced Composites Materials." International Journal of Materials, Mechanics and Manufacturing 6, no. 3 (June 2018): 187–90. http://dx.doi.org/10.18178/ijmmm.2018.6.3.373.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Huang, Jigang, Qin Qin, Jie Wang, and Hui Fang. "Two Dimensional Laser Galvanometer Scanning Technology for Additive Manufacturing." International Journal of Materials, Mechanics and Manufacturing 6, no. 5 (October 2018): 332–36. http://dx.doi.org/10.18178/ijmmm.2018.6.5.402.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Koch, R., U. Jahnke, A. Kruse, R. Brandis, and J. Büsching. "Industrielle Einführung der additiven Fertigung/Industrial implementation of additive manufacturing." wt Werkstattstechnik online 108, no. 06 (2018): 413–18. http://dx.doi.org/10.37544/1436-4980-2018-06-39.

Full text
Abstract:
Die Einführung der additiven Fertigung als industrielles Fertigungsverfahren stellt Unternehmen aufgrund der weitreichenden Unterschiede zu konventionellen Verfahren vor außergewöhnliche Herausforderungen. Um bei der Bewältigung dieser zu unterstützen und Lösungsmethoden bereitzustellen, forschen seit Beginn 2017 fünf Industrieunternehmen unter Leitung der Krause DiMaTec GmbH und koordiniert durch die Universität Paderborn gemeinsam im BMBF Forschungsprojekt „OptiAMix“.   The implementation of additive manufacturing as an industrial manufacturing process poses extraordinary challenges to companies due to their far-reaching differences from conventional processes. In order to support these companies and to provide solution and methods, five industrial companies are researching since the beginning of 2017 under the direction of Krause DiMaTec GmbH and the coordination of the Paderborn University within the BMBF research project „OptiAMix“.
APA, Harvard, Vancouver, ISO, and other styles
14

Avula, Yogesh, Adi Seshan Mula, and Vishal Onnala Kartheek Merugu. "Additive Manufacturing and Testing of a Prosthetic Foot Ankle Joint." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 958–61. http://dx.doi.org/10.31142/ijtsrd23216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Meister, Frederic, Jochen Mück, Andrea Hohmann, and Christian Seidel. "Automatisiertes Nesting in additiven Prozessketten/Production planning and control for additive series production – Automated Nesting in additive process chains." wt Werkstattstechnik online 112, no. 04 (2022): 248–52. http://dx.doi.org/10.37544/1436-4980-2022-04-48.

Full text
Abstract:
Im Vergleich zur konventionellen Fertigung ist der schichtweise Bauteilaufbau der additiven Fertigung durch eine höhere Flexibilität gekennzeichnet. Die auch als 3D-Druck bezeichneten additiven Fertigungsverfahren erlauben die Herstellung mehrerer unterschiedlicher Komponenten in einem Bau- beziehungsweise Druckvorgang. Im Rahmen der Produktionsplanung und -steuerung gilt es daher, eine ressourcenoptimierte Zusammenstellung für die Bauvorgänge zu ermitteln.   Compared to conventional manufacturing, the layer-upon-layer principle of additive manufacturing is characterized by greater flexibility. The additive manufacturing processes, also known as 3-D printing, enable the production of several different components in a single printing process. In the context of production planning and control, it is therefore necessary to determine a resource-optimized composition for the build processes.
APA, Harvard, Vancouver, ISO, and other styles
16

Igarashi, Toshio. "Additive Manufacturing." Seikei-Kakou 28, no. 7 (June 20, 2016): 288–94. http://dx.doi.org/10.4325/seikeikakou.28.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Igarashi, Toshio. "Additive Manufacturing." Seikei-Kakou 29, no. 7 (June 20, 2017): 254–59. http://dx.doi.org/10.4325/seikeikakou.29.254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Costa, José, Elsa Sequeiros, Maria Teresa Vieira, and Manuel Vieira. "Additive Manufacturing." U.Porto Journal of Engineering 7, no. 3 (April 30, 2021): 53–69. http://dx.doi.org/10.24840/2183-6493_007.003_0005.

Full text
Abstract:
Additive manufacturing (AM) is one of the most trending technologies nowadays, and it has the potential to become one of the most disruptive technologies for manufacturing. Academia and industry pay attention to AM because it enables a wide range of new possibilities for design freedom, complex parts production, components, mass personalization, and process improvement. The material extrusion (ME) AM technology for metallic materials is becoming relevant and equivalent to other AM techniques, like laser powder bed fusion. Although ME cannot overpass some limitations, compared with other AM technologies, it enables smaller overall costs and initial investment, more straightforward equipment parametrization, and production flexibility.This study aims to evaluate components produced by ME, or Fused Filament Fabrication (FFF), with different materials: Inconel 625, H13 SAE, and 17-4PH. The microstructure and mechanical characteristics of manufactured parts were evaluated, confirming the process effectiveness and revealing that this is an alternative for metal-based AM.
APA, Harvard, Vancouver, ISO, and other styles
19

Jain, Rupanshu, and Manish Meghwal. "Additive Manufacturing." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 1138–40. http://dx.doi.org/10.22214/ijraset.2022.44072.

Full text
Abstract:
Abstract: Additive manufacturing is a recent trend in manufacturing processes due to its many advantages. It can be defined as the process of manufacturing parts by depositing materials layer by layer. It has been a subject of intense study and examination by many scholars. The development of additive manufacturing as a leading technology and its different stages will be discussed. The importance of partial orientation, construction time estimates and cost calculations were also discussed. A notable aspect of this work was the identification of problems associated with different additive manufacturing methods. Due to the imperfections of additive manufacturing, its hybridization with other methods, such as subtraction manufacturing, has been highlighted.
APA, Harvard, Vancouver, ISO, and other styles
20

Taki, Kentaro. "Additive Manufacturing." Seikei-Kakou 34, no. 9 (August 20, 2022): 341. http://dx.doi.org/10.4325/seikeikakou.34.341_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bhadeshia, H. K. D. H. "Additive manufacturing." Materials Science and Technology 32, no. 7 (May 2, 2016): 615–16. http://dx.doi.org/10.1080/02670836.2016.1197523.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Babu, S. S., and R. Goodridge. "Additive manufacturing." Materials Science and Technology 31, no. 8 (May 14, 2015): 881–83. http://dx.doi.org/10.1179/0267083615z.000000000929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Mumith, A., M. Thomas, Z. Shah, M. Coathup, and G. Blunn. "Additive manufacturing." Bone & Joint Journal 100-B, no. 4 (April 2018): 455–60. http://dx.doi.org/10.1302/0301-620x.100b4.bjj-2017-0662.r2.

Full text
Abstract:
Increasing innovation in rapid prototyping (RP) and additive manufacturing (AM), also known as 3D printing, is bringing about major changes in translational surgical research. This review describes the current position in the use of additive manufacturing in orthopaedic surgery. Cite this article: Bone Joint J 2018;100-B:455-60.
APA, Harvard, Vancouver, ISO, and other styles
24

Patel, Jay. "Additive manufacturing." XRDS: Crossroads, The ACM Magazine for Students 22, no. 3 (April 6, 2016): 15. http://dx.doi.org/10.1145/2893515.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

NIINO, Toshiki. "Current Status and Possibility of Additive Manufacturing." Journal of the Society of Mechanical Engineers 118, no. 1154 (2015): 12–17. http://dx.doi.org/10.1299/jsmemag.118.1154_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Scherwitz, Philipp, Steffen Ziegler, and Johannes Schilp. "Process Mining in der additiven Auftragsabwicklung/Process Mining for additive manufacturing." wt Werkstattstechnik online 110, no. 06 (2020): 429–34. http://dx.doi.org/10.37544/1436-4980-2020-06-69.

Full text
Abstract:
Die Fähigkeit der additiven Fertigung in Losgröße 1 zu fertigen, erzeugt eine hohe Komplexität in der Auftragsabwicklung. Dies stellt die datenbasierte Optimierung der Prozessabläufe vor große Herausforderungen. Durch die geringen Stückzahlen, bei einer hohen Variantenanzahl, ist die Prozessaufnahme in der additiven Fertigung mit signifikanten Aufwänden verbunden. Abhilfe kann hier eine automatisierte Prozessaufnahme schaffen. Deshalb soll in diesem Beitrag die Technologie des Process Mining untersucht und darauf aufbauend eine Vorgehensweise für die datenbasierte Optimierung in der additiven Fertigung vorgestellt werden.   The capability of additive manufacturing to produce in batch size 1 creates a high degree of complexity in order processing. This creates great challenges for the data-based optimization of process flows. Due to the low number of pieces, with a high number of variants, the process recording in additive manufacturing is connected with significant expenditures. This can be overcome by automated process recording. Therefore, this article will examine the technology of process mining and, based on this, present a procedure for data-based optimization in additive manufacturing.
APA, Harvard, Vancouver, ISO, and other styles
27

KOBAYASHI, Shigeru. "Possibilities and Issues of Additive Manufacturing." Journal of the Society of Mechanical Engineers 118, no. 1154 (2015): 42–43. http://dx.doi.org/10.1299/jsmemag.118.1154_42.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wang Nansu, 王南苏, 洪成雨 Hong Chengyu, 苏栋 Su Dong, 张一帆 Zhang Yifan, and 王俊 Wang Jun. "基于光纤布拉格光栅和增材制造技术的测斜传感器." Laser & Optoelectronics Progress 58, no. 9 (2021): 0906005. http://dx.doi.org/10.3788/lop202158.0906005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

NAKAGAWA, Yasutada. "1802 FEM Analysis of Additive Manufacturing by Powder Bed Fusion Method." Proceedings of International Conference on Leading Edge Manufacturing in 21st century : LEM21 2015.8 (2015): _1802–1_—_1802–4_. http://dx.doi.org/10.1299/jsmelem.2015.8._1802-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

SOYAMA, Hitoshi, Mitsuru SATO, Takahiro MIKI, and Omar Hatamleh. "177 Preliminary Test of Additive Manufacturing of Iron Oxide Using Laser." Proceedings of Conference of Tohoku Branch 2016.51 (2016): 151–52. http://dx.doi.org/10.1299/jsmeth.2016.51.151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Deng Hongwen, 邓鸿文, 张仪 Zhang yi, 权澳冬 Quan Aodong, 王玉岱 Wang Yudai, 汤海波 Tang Haibo, and 程序 Cheng Xu. "同步辐射及中子衍射技术在增材制造领域的应用." Chinese Journal of Lasers 49, no. 19 (2022): 1902002. http://dx.doi.org/10.3788/cjl202249.1902002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Francis, Vishal, and Prashant K. Jain. "Effect of stage-dependent addition of nanoparticles in additive manufacturing." Journal of Thermoplastic Composite Materials 33, no. 3 (November 27, 2018): 357–76. http://dx.doi.org/10.1177/0892705718805528.

Full text
Abstract:
Recent advancements in the additive manufacturing (AM) technology have increased its utilization in various engineering sectors for the development of end-use products. However, the limited choice of available materials tends to limit its application domain. Addition of nanoparticles can significantly improve the material properties of the AM parts. Moreover, nanoparticles can be added in different stages of the process which will play an important role in determining the increase in material properties. This aspect of the stage-dependent addition of nanoparticles in AM process has not been fully explored. The present work discusses the effect of adding nanoclay in three stages of AM process namely preprocessing, on-site and post-processing stage. It has been found that the nanoparticles interact in a different way with the polymer and result in different structure, morphology and mesostructure of the nanocomposites. The approach can be utilized for achieving improved material properties of AM-fabricated parts.
APA, Harvard, Vancouver, ISO, and other styles
33

Wang Dawei, 王大为, 董阳平 Dong Yangping, 田艳红 Tian Yanhong, 毕云杰 Bi Yunjie, and 严明 Yan Ming. "活性气氛对金属材料激光增材制造的作用机制." Chinese Journal of Lasers 49, no. 14 (2022): 1402201. http://dx.doi.org/10.3788/cjl202249.1402201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhang Xingshou, 张兴寿, 王勤英 Wang Qinying, 郑淮北 Zheng Huaibei, 刘庭耀 Liu Tingyao, 董立谨 Dong Lijin, 西宇辰 Xi Yuchen, 张进 Zhang Jin, and 白树林 Bai Shulin. "激光增材制造合金材料残余应力及应力腐蚀研究现状." Laser & Optoelectronics Progress 59, no. 13 (2022): 1300002. http://dx.doi.org/10.3788/lop202259.1300002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sun Dong, 孙冬, 陈双 Chen Shuang, 史玉升 Shi Yusheng, 闫春泽 Yan Chunze, 吴甲民 Wu Jiamin, and 文世峰 Wen Shifeng. "陶瓷型芯型壳激光增材制造研究进展." Chinese Journal of Lasers 49, no. 12 (2022): 1202002. http://dx.doi.org/10.3788/cjl202249.1202002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

POYRAZ, Özgür, and Melih Cemal KUŞHAN. "DESIGN FOR ADDITIVE MANUFACTURING WITH CASE STUDIES ON AIRCRAFTS AND PROPULSION SYSTEMS." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 21, no. 1 (October 8, 2019): 166–75. http://dx.doi.org/10.19062/2247-3173.2019.21.23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Li Kuan, 李宽, 石拓 Shi Tuo, 石世宏 Shi Shihong, 傅戈雁 Fu Geyan, 王明雨 Wang Mingyu, 张荣伟 Zhang Rongwei, and 刘广 Liu Guang. "异形基面三元叶片激光送粉增材制造研究." Chinese Journal of Lasers 49, no. 2 (2022): 0202019. http://dx.doi.org/10.3788/cjl202249.0202019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Xiao Lairong, 肖来荣, 谭威 Tan Wei, 刘黎明 Liu Liming, 涂晓萱 Tu Xiaoxuan, 彭振武 Peng Zhenwu, 王欢 Wang Huan, and 赵小军 Zhao Xiaojun. "激光增材制造GH3536合金的低周疲劳行为." Chinese Journal of Lasers 48, no. 22 (2021): 2202009. http://dx.doi.org/10.3788/cjl202148.2202009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kovalchuk, D. V., V. I. Melnik, I. V. Melnik, and B. A. Tugaj. "New possibilities of additive manufacturing using Xbeam 3D metal printing technology (Review)." Paton Welding Journal 2017, no. 12 (December 28, 2017): 16–22. http://dx.doi.org/10.15407/tpwj2017.12.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gadelha, V. F. S., S. A. Mota, M. V. S. Costa, E. T. S. Silva, A. K. Junior, and M. P. Bastos. "MODELAGEM E CONSTRUÇÃO DE UM ROBÔ MÓVEL DE BAIXO CUSTO UTILIZANDO MANUFATURA ADITIVA." Revista SODEBRAS 17, no. 203 (November 2022): 14–19. http://dx.doi.org/10.29367/issn.1809-3957.17.2022.203.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

FUJIKAWA, Takao. "Additive Manufacturing Technology." Journal of the Japan Society of Powder and Powder Metallurgy 61, no. 5 (2014): 216. http://dx.doi.org/10.2497/jjspm.61.216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Layher, Michel, Jens Bliedtner, and René Theska. "Hybrid additive manufacturing." PhotonicsViews 19, no. 5 (October 2022): 47–51. http://dx.doi.org/10.1002/phvs.202200041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Jadhav, Nisha Ramesh. "Metallic Additive Manufacturing." International Journal for Research in Applied Science and Engineering Technology 10, no. 2 (February 28, 2022): 66–67. http://dx.doi.org/10.22214/ijraset.2022.40188.

Full text
Abstract:
Abstract: As metallic additive manufacturing grew in many areas, many users have requested greater control over the systems, namely the ability to change the process parameters. The goal of this paper is to review the effects of major process parameters on the quality such as porosity, residual stress, and composition changes and materials properties like microstructure and microsegregation. In this article, we give an overview over the different kinds of metals specially steels in additive manufacturing processes and present their microstructures, their mechanical and corrosion properties, and their heat treatments and their application. Our aim is to detect the microstructures as well as the mechanical and electrochemical properties of metals specially the steels. Steels are subjected during additive manufacturing processing to time-temperature profiles which are very different from the conventional process. We do not describe in detail the additive manufacturing process parameters required to achieve dense parts. We discuss the impact of process parameters on the microstructure, where necessary.
APA, Harvard, Vancouver, ISO, and other styles
44

Bhattacharyya, Som Sekhar, and Sanket Atre. "Additive Manufacturing Technology." International Journal of Asian Business and Information Management 11, no. 1 (January 2020): 1–20. http://dx.doi.org/10.4018/ijabim.2020010101.

Full text
Abstract:
The authors studied strategic aspects pertaining to adoption drivers, challenges and strategic value of Additive Manufacturing Technology (AMT) in the Indian manufacturing landscape. An exploratory qualitative study with semi-structured in-depth personal interviews of experts was completed and the data was content analysed. Indian firms have identified the need for AMT in R&D and prototype generation. AMT implementation helps Indian firms in mass customization and eases the manufacturing of complex geometric shapes. This study insights would help AMT managers in emerging economies to enable adoption drivers, overcome challenges and add strategic value with AMT. This is one of the very first studies on AMT with theoretical perspectives on the Miltenberg framework, adoption drivers, challenges and strategic value in the Indian manufacturing landscape.
APA, Harvard, Vancouver, ISO, and other styles
45

Shanmugam, Sivaprakash, Jiangtao Xu, and Cyrille Boyer. "Living Additive Manufacturing." ACS Central Science 3, no. 2 (January 30, 2017): 95–96. http://dx.doi.org/10.1021/acscentsci.7b00025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Beese, Allison M. "Additive manufacturing - Editorial." Materials Science and Engineering: A 773 (January 2020): 138875. http://dx.doi.org/10.1016/j.msea.2019.138875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gasser, Andres, Gerhard Backes, Ingomar Kelbassa, Andreas Weisheit, and Konrad Wissenbach. "Laser Additive Manufacturing." Laser Technik Journal 7, no. 2 (February 2010): 58–63. http://dx.doi.org/10.1002/latj.201090029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Frăţilă, Domniţa, and Horaţiu Rotaru. "Additive manufacturing – a sustainable manufacturing route." MATEC Web of Conferences 94 (2017): 03004. http://dx.doi.org/10.1051/matecconf/20179403004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Adekanye, S. A., R. M. Mahamood, E. T. Akinlabi, and M. G. Owolabi. "Additive manufacturing: the future of manufacturing." Materiali in tehnologije 51, no. 5 (October 16, 2017): 709–15. http://dx.doi.org/10.17222/mit.2016.261.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chu Yushi, 楚玉石, 张建中 Zhang Jianzhong, and 彭纲定 Peng Gang-Ding. "增材制造在特种石英光纤制备中应用的研究进展." Laser & Optoelectronics Progress 59, no. 15 (2022): 1516003. http://dx.doi.org/10.3788/lop202259.1516003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography