Academic literature on the topic 'Additive Manufactuing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Additive Manufactuing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Additive Manufactuing"

1

SOZON, Tsopanos. "Laser Additive Manufacturing (LAM)." JOURNAL OF THE JAPAN WELDING SOCIETY 83, no. 4 (2014): 266–69. http://dx.doi.org/10.2207/jjws.83.266.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reddy, K. Vinay Kumar, B. Bhaskar, and Gautam Raj G. Vinay Kumar. "Additive Manufacturing of Leaf Spring." International Journal of Trend in Scientific Research and Development Volume-3, Issue-3 (April 30, 2019): 1666–67. http://dx.doi.org/10.31142/ijtsrd23528.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhukov, V. V., G. M. Grigorenko, and V. A. Shapovalov. "Additive manufacturing of metal products (Review)." Paton Welding Journal 2016, no. 6 (June 28, 2016): 137–42. http://dx.doi.org/10.15407/tpwj2016.06.24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li Hu, 李虎, 赵伟江 Zhao Weijiang, 李瑞迪 Li Ruidi, and 刘咏 Liu Yong. "增材制造马氏体时效钢的研究进展." Chinese Journal of Lasers 49, no. 14 (2022): 1402102. http://dx.doi.org/10.3788/cjl202249.1402102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

León B., Juan, Jorge Guillermo Díaz-Rodríguez, and Octavio Andrés González-Estrada. "Daño en partes de manufactura aditiva reforzadas por fibras continuas." Revista UIS Ingenierías 19, no. 2 (May 3, 2020): 161–75. http://dx.doi.org/10.18273/revuin.v19n2-2020018.

Full text
Abstract:
La fabricación aditiva (AM),y más específicamente la impresión 3D,ha comenzado una revolución de la industria de la manufactura al proporcionar capacidades de producción para piezas que eran imposibles de fabricarhace algunos años. Una tecnología bastante reciente,desarrollada porMarkforged,ha elevado estas capacidades a un nuevo nivel al permitir la impresión de compuestos de matriz polimérica con refuerzo continuo de fibra. Sin embargo, por ser este un método nuevode fabricación, no existe un modelo consolidado para predecir las características mecánicas ni los modos de falla que presentan al estar sometidas a cargas. El presente trabajo recoge los estudios sobreel daño y falla progresiva en materiales compuestos de fibras largas producidos por manufactura aditiva
APA, Harvard, Vancouver, ISO, and other styles
6

Gläßner, C., L. Yi, and J. Aurich. "Bewertung additiver Fertigungsverfahren*/Assessment of additive manufacturing technologies – Decision support for selecting additive manufacturing technologies." wt Werkstattstechnik online 109, no. 06 (2019): 413–16. http://dx.doi.org/10.37544/1436-4980-2019-06-15.

Full text
Abstract:
Additive Fertigungsverfahren bieten durch den schichtweisen Aufbau von Bauteilen Vorteile gegenüber konventionellen Fertigungsverfahren. Die Vielzahl verschiedener additiver Fertigungsverfahren ist eine Herausforderung für die Identifikation eines optimalen Verfahrens für Funktionsbauteile. Der Beitrag stellt einen Ansatz zur Bewertung additiver Fertigungsverfahren vor, der zur Entscheidungsunterstützung bei der Auswahl des optimalen Verfahrens dient.   Being manufactured layer by layer, additive manufacturing technologies offer unique advantages compared to established manufacturing technologies. The large number of different additive manufacturing technologies makes it difficult to identify suitable technologies. This paper presents an approach for assessing additive manufacturing technologies, assisting in the selection of suitable additive manufacturing technologies.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdelaal, Osama, Jiang Zhu, Tomohisa Tanaka, Saied Darwish, and Yoshio Saito. "411 Additive manufacturing of custom-made hip implants." Proceedings of Manufacturing Systems Division Conference 2013 (2013): 91–92. http://dx.doi.org/10.1299/jsmemsd.2013.91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Vogt, Maximilian, Julian Ulrich Weber, and Vishnuu Jothi Prakash. "Digitalisierung von additiven Fertigungseinheiten/Digitalization of additive manufacturing units." wt Werkstattstechnik online 111, no. 09 (2021): 633–37. http://dx.doi.org/10.37544/1436-4980-2021-09-59.

Full text
Abstract:
Additive Fertigungstechnologien erlauben die bedarfsgerechte Produktion von individuellen Ersatzteilen. Durch Einsatz mobiler Fertigungseinheiten lässt sich mithilfe dieser Verfahren die Resilienz von isolierten Produktionsstätten erhöhen. Um auch außerfachliches Personal zur Bedienung an entlegenen Einsatzorten zu befähigen, stellen digitale Assistenzsysteme eine mögliche Lösung dar. In diesem Beitrag wird ein solches Assistenzsystem zur Begleitung der manuellen Tätigkeiten beim roboterbasierten DED-Prozess in einer mobilen Fertigungseinheit diskutiert.   Additive manufacturing technologies enable the demand-driven production of individual spare parts. By using mobile manufacturing units, these processes can be used to increase the resilience of isolated production sites. In order to enable non-specialized personnel to operate at remote locations, digital assistance systems are a feasible solution. This paper discusses such an assistance system to accompany manual operations of the robot-based DED process in a mobile manufacturing unit.
APA, Harvard, Vancouver, ISO, and other styles
9

Hu Ping, 胡平, 艾琳 Ai Lin, 邱梓妍 Qiu Ziyan, 左俊杰 Zuo Junjie, 刘胜 Liu Sheng, 刘洋 Liu Yang, 彭志鑫 Peng Zhixin, and 宋长辉 Song Changhui. "金属增材制造构件的激光超声无损检测研究进展." Chinese Journal of Lasers 49, no. 14 (2022): 1402803. http://dx.doi.org/10.3788/cjl202249.1402803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rajak, Narendra Kumar, and Prof Amit Kaimkuriya. "Design and Development of Honeycomb Structure for Additive Manufacturing." International Journal of Trend in Scientific Research and Development Volume-2, Issue-6 (October 31, 2018): 1198–203. http://dx.doi.org/10.31142/ijtsrd18856.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Additive Manufactuing"

1

Dash, Satabdee. "Design for Additive Manufacturing : An Optimization driven design approach." Thesis, KTH, Maskinkonstruktion (Inst.), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281246.

Full text
Abstract:
Increasing application of Additive Manufacturing (AM) in industrial production demands product reimagination (assemblies, subsystems) from an AM standpoint. Simulation driven design tools play an important part in achieving this with design optimization subject to the capabilities of AM technologies. Therefore, the bus frames department (RBRF) in Scania CV AB, Södertälje wanted to examine the synergies between topology optimization and Design for AM (DfAM) in the context of this thesis. In this thesis, a methodology is developed to establish a DfAM framework involving topology optimization and is accompanied by a manufacturability analysis stage. A case study implementation of this developed methodology is performed for validation and further development. The case study replaces an existing load bearing cross member with a new structure optimized with respect to weight and manufacturing process. It resulted in a nearly self supporting AM friendly design with improved stiffness along with a 9.5% weight reduction, thereby proving the benefit of incorporating topology optimization and AM design fundamentals during the early design phase.
Ökad användning av Additive Manufacturing (AM) i industriell produktion kräver ett nytänkade av produkter (enheter, delsystem) ur AM-synvinkel. Simuleringsdrivna designverktyg spelar en viktig roll för att nå detta med designoptimering med hänsyn taget till AM-teknikens möjligheter. Därför ville bussramavdelningen (RBRF) på Scania CV AB, Södertälje undersöka synergierna mellan topologioptimering och Design för AM (DfAM) i detta examensarbete. I examensarbetet utvecklas en metodik för att skapa en DfAM-ramverk som involverar topologioptimering och åtföljs av ett tillverkningsanalyssteg. En fallstudieimplementering av denna utvecklade metodik utförs för validering och fortsatt utveckling. Fallstudien ersätter en befintlig lastbärande tvärbalk med en ny struktur optimerad med avseende på vikt och tillverkningsprocess. Det resulterade i en nästan självbärande AM-vänlig design med förbättrad styvhet tillsammans med en viktminskning på 9,5 %, vilket visar fördelen med att integrera topologioptimering och grundläggande AM-design tidigt i designfasen.
APA, Harvard, Vancouver, ISO, and other styles
2

Ek, Kristofer. "Additive Manufactured Material." Thesis, KTH, Maskinkonstruktion (Inst.), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-156887.

Full text
Abstract:
This project treats Additive Manufacturing (AM) for metallic material and the question if it is suitable to be used in the aeronautics industry. AM is a relatively new production method where objects are built up layer by layer from a computer model. The art of AM allows in many cases more design freedoms that enables production of more weight optimized and functional articles. Other advantages are material savings and shorter lead times which have a large economic value. An extensive literature study has been made to evaluate all techniques on the market and characterize what separates the different processes. Also machine performance and material quality is evaluated, and advantages and disadvantages are listed for each technique. The techniques are widely separated in powder bed processes and material deposition processes. The powder bed techniques allow more design freedom while the material deposition techniques allow production of large articles. The most common energy source is laser that gives a harder and more brittle material than the alternative energy sources electron beam and electric arc. Two specific techniques have been selected to investigate further in this project. Electron Beam Melting (EBM) from Arcam and Wire fed plasma arc direct metal deposition from Norsk Titanium (NTiC). EBM is a powder bed process that can manufacture finished articles in limited size when no requirements are set on tolerances and surface roughness. NTiC uses a material deposition process with electric arc to melt wire material to a near-net shape. The latter method is very fast and can produce large articles, but have to be machined to finished shape. A material investigation have been made where Ti6Al4V-material from both techniques have been investigated in microscope and tested for hardness. For the EBM-material have also surface roughness and weldability been investigated since the limited building volume often requires welding. The materials have mechanical properties better than cast material with respect to strength and ductility, but not as good as wrought material. Test results show that the difference in mechanical properties in different directions is small, even though the material has an inhomogeneous macrostructure with columnar grains in the building direction. The EBM-material has a finer microstructure and a stronger material and, in combination with improved design freedom, this technique is most suitable for aerospace articles when the weldability is good and it is possible to surface work where requirements of the surface roughness are set. Keywords: Additive Manufacturing, Aeronautics, Titanium
Det här projektet behandlar området Additiv Tillverkning (AM) för metalliska material och undersöker om det är lämpligt att använda vid produktion inom flygindustrin. AM är en relativt ny tillverkningsmetod där föremål byggs upp lager för lager direkt ifrån en datormodell. Teknikområdet tillåter i många fall större konstruktionsfriheter som möjliggör tillverkning av mer viktoptimerade och funktionella artiklar. Andra fördelar är materialbesparing och kortare ledtider vilket har ett stort ekonomiskt värde. En omfattande litteraturstudie har gjorts för att utvärdera alla tekniker som finns på marknaden och karakterisera vad som skiljer de olika processerna. Även maskiners prestanda och kvalité på tillverkat material utvärderas, och för varje teknik listas möjligheter och begränsningar. Teknikerna delas grovt upp i pulverbäddsprocesser och material deposition-processer. Pulverbäddsteknikerna tillåter större friheter i konstruktion, medan material deposition-processerna tillåter tillverkning av större artiklar. Den vanligaste energikällan är laser som ger ett starkare men mer sprött material än de alternativa energikällorna elektronstråle och ljusbåge. Två specifika tekniker har valts ut för att undersöka närmare i detta projekt. Electron Beam Melting (EBM) från Arcam och Wire fed plasma arc direct metal deposition från Norsk Titanium (NTiC). EBM är en pulverbäddsprocess som kan tillverka färdiga artiklar i begränsad storlek då låga krav ställs på toleranser och ytfinhet. NTiC använder en material deposition-process med en ljusbåge för att smälta ner trådmaterial till en nära färdig artikel. Den senare metoden är mycket snabb och kan tillverka stora artiklar, men måste maskinbearbetas till slutgiltig form. En materialundersökning har genomförts där Ti6Al4V-material från båda teknikerna har undersökts i mikroskop och testats för hårdhet. För EBM-material har även ytfinhet och svetsbarhet undersökts då begränsad byggvolym i många fall kräver fogning. Materialen har egenskaper bättre än gjutet material med avseende på styrka och duktilitet, men inte lika bra som valsat material. Provning visar att skillnaden på mekaniska egenskaper i olika riktningar är liten även fast materialet har en inhomogen makrostruktur med kolumnära korn i byggriktningen. EBM ger en finare mikrostruktur och ett starkare material och, tillsammans med de ökade konstruktionsfriheterna, så är det den tekniken som är bäst lämpad för flygplansartiklar då svetsbarheten är god och det finns möjlighet att bearbeta ytan till slutgiltigt krav. Nyckelord: Additiv Tillverkning, Flygteknik, Titan
APA, Harvard, Vancouver, ISO, and other styles
3

HANDAL, RAED S. I. "Additive Manufacturing as a Manufacturing Method: an Implementation Framework for Additive Manufacturing in Supply Chains." Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203311.

Full text
Abstract:
The supply chain is changing speedily and on a continuous basis to keep up with the rapid changes in the market, which are summarized as increased competition, changes in traditional customer bases, and changes in customers’ expectations. Thus, companies have to change their way of manufacturing final products in order to customize and expedite the delivery of products to customers. Additive manufacturing, the new production system, effectively and efficiently increases the capability of personalization during the manufacturing process. This consequently increases customer’s satisfaction and company’s profitability. In other words, additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. Theoretical development in the field of additive manufacturing in regards to its impact on supply chain management is rare. There is no fully applied approach in the literature that is focused on managing the supply chain when additive manufacturing is applied. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field that evaluates the impact of additive manufacturing and determines the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing “3D printing” impacts supply chain management efficiently. To build the framework, interviews with some companies that already use additive manufacturing in their production system have been carried out. Next, an online survey and two case studies evaluated the framework and validated the results of the final version of the framework. The conceptual framework shows the relationship among supply chain strategies, manufacturing strategy and manufacturing systems. The developed framework shows not only the ability of additive manufacturing to change and re-shape supply chains, but its impact as an alternative manufacturing technique on supply chain strategies. This framework helps managers select more effective production methods based on certain production variables, including product’s type, components’ value, and customization level.
The supply chain is changing speedily and on a continuous basis to keep up with the rapid changes in the market, which are summarized as increased competition, changes in traditional customer bases, and changes in customers’ expectations. Thus, companies have to change their way of manufacturing final products in order to customize and expedite the delivery of products to customers. Additive manufacturing, the new production system, effectively and efficiently increases the capability of personalization during the manufacturing process. This consequently increases customer’s satisfaction and company’s profitability. In other words, additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. Theoretical development in the field of additive manufacturing in regards to its impact on supply chain management is rare. There is no fully applied approach in the literature that is focused on managing the supply chain when additive manufacturing is applied. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field that evaluates the impact of additive manufacturing and determines the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing “3D printing” impacts supply chain management efficiently. To build the framework, interviews with some companies that already use additive manufacturing in their production system have been carried out. Next, an online survey and two case studies evaluated the framework and validated the results of the final version of the framework. The conceptual framework shows the relationship among supply chain strategies, manufacturing strategy and manufacturing systems. The developed framework shows not only the ability of additive manufacturing to change and re-shape supply chains, but its impact as an alternative manufacturing technique on supply chain strategies. This framework helps managers select more effective production methods based on certain production variables, including product’s type, components’ value, and customization level.
APA, Harvard, Vancouver, ISO, and other styles
4

Keil, Heinz Simon. "Quo vadis "Additive Manufacturing"." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214719.

Full text
Abstract:
Aus der Einführung: "Stehen wir am Rande einer bio-nanotechnologischen getriebenen Revolution, die unsere Art zu leben, zu arbeiten und miteinander umzugehen grundlegend verändern wird? Welchem gesellschaftspolitischen, wirtschaftlichen und technologischen Wandel haben wir uns zu stellen? Langfristige Entwicklungszyklen (Kondratieff, Schumpeter) führen zur nachhaltigen Weiterentwicklung der Zivilisation. Mittelfristige Entwicklungen wie die Trends Globalisierung, Urbanisierung, Digitalisierung (Miniaturisierung) und Humanisierung (Individualisierung), die immer stärker unser Umfeld und Handeln beeinflussen führen zu ganzheitlichen, weltumspannenden Grundtendenzen der gesellschaftlichen Weiterentwicklung. Die technologischen "Enabler" Computing, Biotechnology, Artifical Intelligence, Robotik, Nanotechnology, Additive Manufacturing und Design Thinking wirken beschleunigend auf die gesellschaftlichen Entwicklungen ein. Die technologischen Möglichkeiten beschleunigen sowohl gesellschaftspolitische Zyklen und zivilisatorische Anpassungen. Durch rasanten technologischen, wissenschaftlichen Fortschritt, zunehmende Globalisierungswirkungen, beschleunigte Urbanisierung und aber auch politischer Interferenzen sind die Veränderungsparameter eines dynamischen Geschäftsumfelds immer schnellere Transformationen ausgesetzt. Alle diese Richtungen zeigen das unsere gesellschaftliche Entwicklung inzwischen stark durch die Technik getrieben ist. Ob dies auch heißt, dass wir den Punkt der Singularität (Kurzweil) absehbar erreichen ist dennoch noch offen. ..."
APA, Harvard, Vancouver, ISO, and other styles
5

Wahlström, Niklas, and Oscar Gabrielsson. "Additive Manufacturing Applications for Wind Turbines." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209654.

Full text
Abstract:
Additive manufacturing (AM), also known as 3D-printing is an automated manufacturing process in which the component is built layer upon layer from a predefined 3D computer model. In contrast to conventional manufacturing processes where a vast volume of material is wasted due to machining, AM only uses the material that the component consists of. In addition to material savings, the method has a number of potential benefits. Two of these are (1) a large design freedom which enables the production of complex geometries and (2) a reduced compexity in supply chain as parts can be printed on-demand rather than be kept in stock. This master thesis has been performed at Vattenfall Wind Power and aims to investigate the feasibility to reproduce and/or to refurbish one or two spare parts on a wind turbine by AM and if it can introduce any practical benefits. Components with a high failure rate and/or with an suitible design for AM have been investigated. A rotating union or fluid rotary joint (FRJ) was selected for further analysis. A comprehensive background study has been conducted. A current status of metal AM is described as well as a comparison between conventional and additive processes. Furthermore, current and future applications for AM witihin the wind turbine industry are presented. The mehodology "reverse engineering", main components in a wind power plant including the fluid rotary joint as well as fluid dynamics are also treated in the background study. As a part of the process, a fluid rotary joint with worse historical failure data was disassembled and examined. In order to find other design solutions that contributes to a better and more reliable operation, another better performing fluid roraty joint was investigated. Since detail drawings and material information are missing for the examined units, reverse engineering has been carried out to gather details of the designs. A concept for the first unit has been developed, in which improved design solutions has been introduced and a number of changes have been implemented in order to minimize material consumption and to adapt the design for AM. The concept has been evaluated by the use of numerical methods. Costs and build time have also been estimated for the developed concept. This project has illustated that it is feasable to manufacture spare parts by the use of AM. The developed concept demonstrates several improvements that are not possible to achieve with conventional manufacturing processes. Nevertheless, a number of limitations such as insufficient build volume, costs as well as time cosuming engineering effort and post-proccessing methods are present for AM. These restrictions, in combination with lack of 3D-models, limits the possibility to make use of the technology. However, the future looks bright, if the technology continues to develop and if subcontractors are willing to adapt to AM it will probably have a major breakthrough within the windpower industry.
Additiv tillverkning, "additive manufacturing" (AM) eller 3D-printing är en automatiserad tillverkningsmetod där komponenten byggs lager för lager från en fördefinierad 3D datormodell. Till skillnad från konventionella tillverkningsmetoder där en stor mängd material ofta bearbetas bort, använder AM nästintill endast det material som komponenten består utav. Förutom materialbesparingar, har metoden ett flertal andra potentiella fördelar. Två av dessa är (1) en stor designfrihet vilket möjliggör produktion av komplexa geometrier och (2) en möjlighet till en förenklad logistikkedja eftersom komponenter kan tillverkas vid behov istället för att lagerföras. Detta examensarbete har utförts på Vattenfall Vindkraft och har till syfte att undersöka om det är möjligt att tillverka och/eller reparera en eller två reservdelar genom AM och om det i så fall kan införa några praktiska fördelar. En kartläggning av komponenter med hög felfrekvens och/eller som kan vara lämpade för AM har genomförts. Av dessa har en roterande oljekoppling även kallad roterskarv valts ut för vidare analys. En omfattande bakgrundsstudie har utförts. En nulägesorientering inom området AM för metaller redogörs, här redovisas även en generell jämförelse mellan konventionella och additiva tillverkningsmetoder. Vidare behandlas aktuella och framtida användningsområden för AM inom vindkraftsindustrin. I bakgrundsstudien behandlas också arbetssättet "reverse engineering", huvudkomponenter i ett vindkraftsverk inklusive roterskarven samt flödesdynamik. Under arbetets gång har en roterskarv med sämre driftshistorik undersökts. I syfte att finna andra konstruktionslösningar som bidrar till en säkrare drift har en bättre presenterande enhet från en annan tillverkare granskats. Då viss detaljteknisk data och konstruktionsunderlag saknas för de undersökta enheterna har "reverse engineering" tillämpats. Ett koncept har sedan utvecklats för den första enheten där förbättrade konstruktionslösningar har introducerats samtidigt som en rad konstruktionsförändringar har gjorts i syfte att minimera materialåtgången och samtidigt anpassa enheten för AM. Konceptet har sedan evaluerats med hjälp av numeriska beräkningsmetoder. För det givna konceptet har även kostnad och byggtid uppskattats. Arbetet visar på att det är möjligt att ta fram reservdelar till vindkraftverk med hjälp av AM. Det framtagna konceptet visar på ett flertal förbättringar som inte kan uppnås med konventionella tillverkningsmetoder. Emellertid finns det en rad begränsningar såsom otillräcklig byggvolym, kostnader och tidskrävande ingenjörsmässigt arbete och efterbehandlingsmetoder. Dessa förbehåll i kombination med avsaknad av 3D-modeller begränsar möjligheterna att nyttja tekniken i dagsläget. Framtiden ser dock ljus ut, om tekniken fortsätter att utvecklas samtidigt som underleverantörer är villiga att nyttja denna teknik kan AM få ett stort genombrott i vindkraftsindustrin.
APA, Harvard, Vancouver, ISO, and other styles
6

Leirvåg, Roar Nelissen. "Additive Manufacturing for Large Products." Thesis, Norges Teknisk-Naturvitenskaplige Universitet, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-20870.

Full text
Abstract:
This thesis researches the possibility and feasibility of applying additive manufacturing technology in the manufacturing of propellers. The thesis concerns the production at the foundry Oshaug Metall AS. Their products consist of propellers and other large products cast in Nickel-Aluminium Bronze. This report looks at three approaches and applications for additive manufacturing at the foundry. These are additively manufactured pattern, sand mold and end metal parts. The available \emph{State of the Art} systems for the three approaches are listed and the systems suitability is discussed. The systems that meet the stated criteria are selected and further discussion on the advantages and disadvantages of the additive manufacturing approach to the application are carried out for the three respective applications. An experiment was carried out on a scaled propeller blade to measure the geometrical accuracy and surface quality of a 3D-printed pattern. The report is concluded with the conclusion to the stated task and recommendations for further work.
APA, Harvard, Vancouver, ISO, and other styles
7

Jun, Sung Yun. "Additive manufacturing for antenna applications." Thesis, University of Kent, 2018. https://kar.kent.ac.uk/68833/.

Full text
Abstract:
This thesis presents methods to make use of additive manufacturing (AM) or 3D printing (3DP) technology for the fabrication of antenna and electromagnetic (EM) structures. A variety of 3DP techniques based on filament, resin, powder and nano-particle inks are applied for the development and fabrication of antennas. Fully and partially metallised 3D printed EM structures are investigated for operation at mainly microwave frequency bands. First, 3D Sierpinski fractal antennas are fabricated using binder jetting printing technique, which is an AM metal powder bed process. It follows with the introduction of a new concept of sensing liquids using and non-planer electromagnetic band gap (EBG) structure is investigated. Such structure can be fabricated with inexpensive fuse filament fabrication (FFF) in combination with conductive paint. As a third method, inkjet printing technology is used for the fabrication of antennas for origami paper applications. The work investigates the feasibility of fabricating foldable antennas for disposable paper drones using low-cost inkjet printing equipment. It then explores the applicability of inkjet printing on a 3D printing substrate through the fabrication of a circularly polarised patch antenna which combines stereolithography (SLA) and inkjet printing technology, both of which use inexpensive machines. Finally, a variety of AM techniques are applied and compared for the production of a diversity WLAN antenna system for customized wrist-worn application.
APA, Harvard, Vancouver, ISO, and other styles
8

PEDEMONTE, LAURA CHIARA. "Laser in Metal Additive Manufacturing." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/973605.

Full text
Abstract:
The evolution of additive manufacturing (AM) techniques has had such an exponential increase especially in recent years that various and remarkable techniques have been developed for the production of metallic materials. These techniques allow to obtain products with remarkable mechanical characteristics. Therefore, the different AM techniques that employed metallic materials were analysed and their strengths and weaknesses were considered. In particular, investigations were carried out on artefacts made by Direct Metal Laser Sintering (DMLS) technique in two different metal alloys: Inconel-625 and titanium grade 2. In relation to Inconel-625, tomographic analyses were carried out for the detection of ad hoc defects, ultrasound analyses to evaluate anistropy, micrographs and tensile tests to evaluate their mechanical characteristics. The titanium grade 2 products were compared with samples made by the traditional fusion technique to assess their suitability in the dental field. The results show that artefacts made by DMLS technique have overall better features than fusion samples: the defects are less widespread and smaller, the hardness - characteristic of mechanical properties - higher.
APA, Harvard, Vancouver, ISO, and other styles
9

Khan, Imran. "Electrically conductive nanocomposites for additive manufacturing." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670587.

Full text
Abstract:
La tesi se centra en l’ús de nanocomposites conductors elèctricament en la fabricació d’additius. En aquest escenari, dos tipus de nanocomposites estan preparats per utilitzar-los com a matèria primera per a la impressió de nanocomposites conductors elèctricament amb dos tipus diferents de matrius; (1) un polímer termoplàstic i (2) una resina termoestable. Els nanotubs de carboni es van utilitzar com a partícules conductores elèctriques de nanoestructura. Aquestes nanoestructures formen xarxes complexes en una matriu de polímer de manera que el material de la matriu es transforma d’un material aïllant en un material conductor elèctricament. La policaprolactona és un polímer semicristal·lí i es considera material matricial adequat entre la classe de polímers termoplàstics, ja que ofereix unes excel·lents característiques reològiques, de flux i elàstiques. Les cadenes es van imprimir mitjançant una extrusora bio i es va mesurar la conductivitat elèctrica en aquestes cadenes amb l’efecte de la deformació uniaxial. La microstructura canvia sota l’efecte de la deformació uniaxial, provocant una alteració de l’orientació de nanotubs de carboni a la matriu de policaprolactona. Com a conseqüència de la reordenació de nanotubs, les vies conductores es desorganitzen o s’organitzen que poden augmentar o disminuir la conductivitat elèctrica en els nanocomposites. Les radiacions del sincrotró s’utilitzen per sondar aquests canvis en la microestructura. Es van preparar diferents composicions mitjançant nanotubs de carboni i es van estudiar les mostres impreses en termes de conductivitat elèctrica i microestructura mitjançant radiacions de sincrotró. A partir de l’anàlisi, es proposa un model que pugui predir la conductivitat elèctrica sota l’efecte de la deformació uniaxial. En termes de polímers termoestables, s’introdueix un sistema senzill per a la impressió de nanocomposites basats en polímers termoset. En un dels capítols es proporciona un detall complet del sistema d’impressió i de la tinta nanocomposita. Es va preparar tinta de nanocomposites basada en epoxi per contenir nanotubs de carboni com a partícules de farciment amb una petita porció de polímer termoplàstic, policaprolactona. Les mostres impreses estan subjectes al biaix extern que indiquen que són conductores elèctricament. Es van preparar diferents composicions utilitzant resina glicidil bisfenol-A epoxi, trietilenetetramina, policaprolactona, nanotubs de carboni i es destaquen els problemes per obtenir una qualitat d’impressió adequada. Les mostres impreses es van estudiar en termes de conductivitat elèctrica estudiant la conductivitat elèctrica de corrent altern i directe. El sistema material s’explora quant al nivell de reticulació, l’estructura i la morfologia i el comportament tèrmic. Es presenta un model per als nanocomposites mitjançant dades d’impedància obtingudes mitjançant l’espectroscòpia dielèctrica de banda ampla. La impressora s’utilitzarà en un futur per imprimir dispositius funcionals a petita escala, inclosos dispositius d’emmagatzematge d’energia, p. bateries d’estat sòlid, supercondensadors i plaques d’elèctrodes per a aquest tipus de dispositius.
La fabricación aditiva (AM) es un proceso de fabricación de capas sucesivas de material para construir un objeto sólido tridimensional a partir de un modelo digital, a diferencia de las metodologías de fabricación sustractiva. AM ofrece la libertad de diseñar e innovar un producto para que se puedan obtener y revisar piezas complejas si es necesario, en un tiempo reducido en comparación con las tecnologías de fabricación tradicionales. En términos de su utilización total y generalizada, la tecnología tiene aplicaciones limitadas. Por motivos similares, la nanotecnología se considera la fuerza impulsora detrás de una nueva revolución industrial. Tiene la capacidad de incorporar funcionalidades específicas, que se producen debido a la escala nanométrica, a las partes deseadas para dispositivos funcionales como electrodos para dispositivos de almacenamiento de energía. La tesis se centra en el uso de nanocompuestos conductores de electricidad en la fabricación aditiva. En este escenario, dos tipos de nanocompuestos están preparados para usar como materia prima para la impresión de nanocompuestos conductores de electricidad que emplean dos tipos diferentes de material matricial; (1) un polímero termoplástico y (2) una resina termoestable. Los nanotubos de carbono se usaron como partículas de nanoestructura eléctricamente conductoras. Estas nanoestructuras forman redes complejas en una matriz polimérica de manera que el material de la matriz se transforma de un material aislante en un material eléctricamente conductor. La policaprolactona es un polímero semicristalino y se considera un material matriz adecuado entre la clase de polímeros termoplásticos, ya que ofrece excelentes características reológicas, de flujo y elásticas. Los hilos se imprimieron usando una extrusora biológica y se midió la conductividad eléctrica en estos hilos bajo el efecto de la deformación uniaxial. La microestructura cambia bajo el efecto de una deformación uniaxial que conduce a alterar la orientación de los nanotubos de carbono en la matriz de policaprolactona. Como consecuencia de la realineación de los nanotubos, las vías conductoras interrumpen u organizan, lo que puede aumentar o disminuir la conductividad eléctrica en los nanocompuestos. Las radiaciones de sincrotrón se utilizan para sondear tales cambios en la microestructura. Se prepararon diferentes composiciones usando nanotubos de carbono y las muestras impresas se estudiaron en términos de conductividad eléctrica y microestructura usando radiaciones sincrotrónicas. Basado en el análisis, se propone un modelo que puede predecir la conductividad eléctrica bajo el efecto de la deformación uniaxial. En términos de polímeros termoestables, se introduce un sistema simple para la impresión de nanocompuestos termoestables a base de polímeros. El detalle completo del sistema de impresión y la tinta de nanocompuestos se proporciona en uno de los capítulos. La tinta de nanocompuesto a base de epoxi se preparó para contener nanotubos de carbono como partículas de relleno con una pequeña porción de polímero termoplástico, policaprolactona. Las muestras impresas están sujetas al sesgo externo que indica que son eléctricamente conductoras. Se prepararon diferentes composiciones usando resina epoxi de glicidil bisfenol-A, trietilentetramina, policaprolactona, nanotubos de carbono y se resaltan los problemas para adquirir la calidad de impresión adecuada. Las muestras impresas se estudiaron en términos de conductividad eléctrica, estudiando la conductividad eléctrica de corriente alterna y continua. El sistema de materiales se explora en términos del nivel de reticulación, estructura y morfología y comportamiento térmico. Se presenta un modelo para los nanocompuestos utilizando datos de impedancia obtenidos mediante espectroscopía dieléctrica de banda ancha. La impresora se utilizará en el futuro para imprimir dispositivos funcionales a pequeña escala, incluidos dispositivos de almacenamiento de energía.
Additive manufacturing is a process of making successive layers of material to build a three-dimensional solid object from a digital model, as opposed to subtractive manufacturing methodologies. This technology offers the freedom to design and innovation of a product so that complex parts can be obtained and revise if needed, within a small time as compared to traditional manufacturing technologies. In terms of its full utilization and widespread, the technology has limited applications. On similar grounds, nanotechnology is considered as the driving force behind a new industrial revolution. It has the ability to incorporate specific functionalities, occur due to the nanometric scale, to desired parts that offer freedom to design functional devices like electrodes for energy storage devices. The thesis is focusing on the use of electrically conductive nanocomposites into additive manufacturing. In this scenario, two types of nanocomposites are prepared to use as raw material for printing of electrically conductive nanocomposites employing two different types of matrix material; (1) a thermoplastic polymer and (2) a thermoset resin. Carbon nanotubes were used as electrically conductive nanostructure particles. These nanostructures form complex networks into a polymer matrix such that the matrix material transforms from an insulative material into an electrically conductive material. Polycaprolactone is a semicrystalline polymer and it is considered suitable matrix material amongst the class of thermoplastic polymers as it offers excellent rheological, flow and the elastic characteristics. Strands were printed using a bio extruder and electrical conductivity was measured in these strands under the effect of uniaxial deformation. The microstructure changes under the effect of uniaxial deformation leading to alter the orientation of carbon nanotubes in the polycaprolactone matrix. As a consequence of realignment of nanotubes, conductive pathways either disrupt or organize which can increase or decrease an electrical conductivity in the nanocomposites. Synchrotron radiations are used to probe such changes in the microstructure. Two different compositions were prepared using carbon nanotubes and the printed samples are studied in terms of electrical conductivity and microstructure using synchrotron radiations. Based on the analysis, a model is proposed that can predict the orientation of carbon nanotubes under the effect of uniaxial deformation. In terms of thermoset polymers, a simple system is introduced for the printing of thermoset polymer (epoxy) based nanocomposites. Complete detail of the printing system is provided in one of the chapters. Epoxy-based nanocomposite ink was prepared to contain carbon nanotubes as filler particles with a small portion of thermoplastic polymer, polycaprolactone. The printed samples are subject to the external bias which indicate that these are electrically conductive. A complete methodology was provided for the preparation of nanocomposite ink. Different compositions were prepared using glycidyl bisphenol-A epoxy resin, triethylenetetramine, polycaprolactone, carbon nanotubes and issues are highlighted to acquire appropriate print quality. The printed samples were studied in terms of electrical conductivity studying alternating and direct current electrical conductivity. The material system is explored in terms of the level of crosslinking, structure and morphology and thermal behaviour. A model is presented for the nanocomposites using impedance data obtained through broadband dielectric spectroscopy. The printer will be used in future to print small scale functional devices including energy storage devices e.g. solid-state batteries, supercapacitors and electrode plates for such kind of devices.
Universitat Autònoma de Barcelona. Programa de Doctorat en Ciència de Materials
APA, Harvard, Vancouver, ISO, and other styles
10

Ranjan, Rajit. "Design for Manufacturing and Topology Optimization in Additive Manufacturing." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439307951.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Additive Manufactuing"

1

Killi, Steinar, ed. Additive Manufacturing. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Srivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. Additive Manufacturing. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhou, Kun, ed. Additive Manufacturing. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-04721-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pandey, Pulak Mohan, Nishant K. Singh, and Yashvir Singh. Additive Manufacturing. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258391.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gebhardt, Andreas. Understanding Additive Manufacturing. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446431621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kumar, Sanjay. Additive Manufacturing Solutions. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80783-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morar, Dominik. Additive Manufacturing (AM). Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37153-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kumar, Sanjay. Additive Manufacturing Classification. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14220-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gibson, Ian, David Rosen, Brent Stucker, and Mahyar Khorasani. Additive Manufacturing Technologies. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-56127-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kumar, Sanjay. Additive Manufacturing Processes. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45089-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Additive Manufactuing"

1

Gebhardt, Andreas. "Direct Manufacturing – Rapid Manufacturing." In Additive Fertigungsverfahren, 457–526. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9783446445390.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gebhardt, Andreas, and Jan-Steffen Hötter. "Direct Manufacturing: Rapid Manufacturing." In Additive Manufacturing, 395–450. München: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.3139/9781569905838.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Agarwal, Raj, Shrutika Sharma, Vishal Gupta, Jaskaran Singh, and Kanwaljit Singh Khas. "Additive manufacturing." In Additive Manufacturing, 77–97. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258391-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Srivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. "Comparison of Additive Manufacturing with Conventional Manufacturing Processes." In Additive Manufacturing, 13–24. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Herrera Ramirez, Jose Martin, Raul Perez Bustamante, Cesar Augusto Isaza Merino, and Ana Maria Arizmendi Morquecho. "Additive Manufacturing." In Unconventional Techniques for the Production of Light Alloys and Composites, 89–102. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48122-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Byskov, Jeppe, and Nikolaj Vedel-Smith. "Additive Manufacturing." In The Future of Smart Production for SMEs, 357–62. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15428-7_32.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dev, Saty, Rajeev Srivastava, Pushpendra Yadav, and Surya Prakash. "Additive Manufacturing." In Sustainability, Innovation and Procurement, 27–59. Boca Raton, FL : CRC Press/Taylor & Francis, 2020. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429430695-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rietzel, Dominik, Martin Friedrich, and Tim A. Osswald. "Additive Manufacturing." In Understanding Polymer Processing, 147–69. München: Carl Hanser Verlag GmbH & Co. KG, 2017. http://dx.doi.org/10.3139/9781569906484.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

de Witte, Dennis. "Additive Manufacturing." In Clay Printing, 53–81. Wiesbaden: Springer Fachmedien Wiesbaden, 2022. http://dx.doi.org/10.1007/978-3-658-37161-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Srivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. "Hybrid Additive Manufacturing." In Additive Manufacturing, 205–34. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382-15.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Additive Manufactuing"

1

Madrid-Wolff, Jorge, Georgia Konstantinou, Damien Loterie, Paul Delrot, and Christophe Moser. "Volumetric Additive Manufactuing of Ceramics." In 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2021. http://dx.doi.org/10.1109/cleo/europe-eqec52157.2021.9542215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Trindade, Elizabeth Cristine Adam, Camille Ruest, Jean-Sébastien Deschênes, and Jean Brousseau. "Food Contact Materials: An Analysis of Water Absorption in Nylon 12 3D Printed Parts Using SLS After VaporFuse Surface Treatment." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93944.

Full text
Abstract:
Abstract Selective laser sintering (SLS) is a typical method of 3D printing in an industrial environment. It is often used to print different materials, such as metals, ceramics, and plastics. Nylon 12 is the most common plastic and material processed by SLS technology. In the present paper, the water absorption and wettability of Nylon 12 in additive manufacturing (AM) products are explored. The research for obtaining inert, non-absorbent and non-corrosive surfaces, and globally more effective materials to reduce the proliferation of microorganisms is becoming a necessity for the development of novel food contact materials. Surface treatments aim at improving the porosity and general roughness of the material and are expected to improve its hydrophobicity. The wetting state between Nylon 12 and water was studied by measuring the contact angles as primary data. The measurement of absorbed water (ASTM 570) is thus used as an indicator of material quality to prevent bacterial growth and degradation of the material mechanical properties. Therefore, water absorption tests were performed with SLS printed plates with and without surface treatment. Plates with surface treatment showed a mass increase of 0.35 ± 0.04% while those without surface treatment showed a mass increase of 0.76 ± 0.08%.
APA, Harvard, Vancouver, ISO, and other styles
3

Moneta, Grzegorz, Michal Fedasz, Michal Szmidt, Slawomir Cieslak, and Wieslaw Krzymien. "Advantages of Additive Manufacturing Technology in Damping Improvement of Turbine Blading." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-96752.

Full text
Abstract:
Abstract Classical turbine blade design philosophy assumes so-called resonance-free dynamic solution (avoiding resonances for characteristic rotational speeds) achieved by eigenfrequency tunning. To meet current market demands, modern engines need: to operate with higher load, operate at higher firing temperatures, to startup and shutdown faster and more frequently. Therefore, the rotating blade must be more often designed as the resonance-proof component under circumstances of the variable rotational speed and varying thermal conditions. A century of turbine engine development has provided many solutions for improvement of High Cycle Fatigue lifetime of the blading. One of them is damping optimization through advanced design of parts. There are few main damping mechanisms occurring during blade vibrations: material damping, aerodynamical damping (usually below 0.3%) and frictional damping (depending on the design). Nowadays, the Additive Manufacturing (AM) and especially Laser Powder Bed Fusion (LPBF) allow to manufacture multifunctional and complex components with high structural integrity and extended lifetime. An example of uncooled turbine blade design of a jet engine has been studied. Two designs have been modelled and manufactured using LPBF technology: a baseline design (‘Solid Blade’) and a new design where the airfoil was filled with a matrix of pockets with pins and lattice bars surrounded by non-fused powder (‘Lattice Blade’). Then, the damping ratio has been assessed for both designs using electrodynamic shaker tests — the response was measured by laser vibrometer. Except material damping occurring in the baseline design, the new sophisticated design has additional damping mechanisms: the wave propagates through different media (changes of wave propagation speed, wave reflections), energy dissipates in the non-fused metal powder (friction between powder particles), solid pins in the pockets vibrate independently (act as dynamic dampers and improve energy dissipation in the powder), lattice bars in the pockets transfer the vibration wave to the powder (activate energy dissipation in the whole volume of the non-fused powder). The results of shaker tests show significant damping ratio increase for all investigated modes in this study — comparable to such damping features like friction under-platform dampers and damping bolts. Additionally, the LPBF approach has a multi-functional character — except significant improvement of damping ratio, the mass can be reduced (in this case decreased by about 6%), eigenfrequency can be tuned to avoid resonance, the stress concentration factors can be reduced (which is planned for next studies), etc. The proposed new design has not been optimized so far, giving wide margin for further improvements of the damping performance.
APA, Harvard, Vancouver, ISO, and other styles
4

Lu, Yanglong, and Yan Wang. "Temperature Field Monitoring in Fused Filament Fabrication Process Based on Physics-Constrained Dictionary Learning." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93987.

Full text
Abstract:
Abstract Compressed sensing takes advantage of the sparsity of data representation in the reciprocal space and achieves data compression. The performance of compressed sensing however depends on the measurement and basis matrices. To maximize the sparsity level of recovered coefficient vectors, dictionary learning has been developed to optimize the basis matrices for specific signals. Nevertheless, the theoretically optimal results from dictionary learning can be difficult to achieve in manufacturing process monitoring because the physical realization is restricted by the number of sensors, physical sizes of sensors, and sensor accessibility in the manufacturing environment. In this work, a physics-constrained dictionary learning (PCDL) approach is proposed to optimize the measurement and basis matrices separately with the considerations of these restrictions. The uniqueness of the PCDL is that there is only one non-zero entry in each row in the optimized measurement matrix so that the physical locations for the sensor placement are directly determined. Additional constraints of sensor accessibility are also incorporated. The proposed PCDL is demonstrated with thermal imaging for fused filament fabrication process monitoring. High-resolution thermal images are reconstructed with the optimized basis matrix and the limited pixel values at the optimized locations to allow for efficient monitoring.
APA, Harvard, Vancouver, ISO, and other styles
5

Valentine, Max, Arjun Radhakrishnan, Vincent Maes, Elise Pegg, Maria Valero, James Kratz, and Vimal Dhokia. "A Feasibility Study of Additively Manufactured Composite Tooling." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93952.

Full text
Abstract:
Abstract As the flexibility and reliability of additive manufacturing (AM) and its corresponding design tools increases, it is becoming a viable option for more industries. One application area that could benefit from AM is composite component manufacture. The layup and molding of composite materials face significant challenges presented by tight design timescales, growing demand for productivity, and the complexity of components and end products. Therefore, there is an immediate potential to save energy by reducing the mass of the curing equipment and tooling to enhance process heat transmission. The goal of this paper is to demonstrate the reduction of embodied energy within mold tools that are printed using an AM process. Using an AM approach, it is possible to design lightweight curing tools to increase the curing rate and quality of heat distribution in the mold. The viability of additively producing these cure tools was assessed by analyzing the geometrical precision of the composite mold outputs, material utilization, and heat transmission qualities of each sample. In this study, 14 cure tools were designed and manufactured with a 100 mm2 curing surface area, top plate thickness of 1–2 mm, and stiffening lattices behind the curing surface with a depth of 10 mm. Four lattice geometries, gyroid, dual-wall gyroid, planar diamond, and stochastic, were tested based on their overall geometrical accuracy and thermal responsiveness. While the stochastic lattice had the best single tool properties, the planar diamond and gyroid lattice tools had better potential for future use in the design of additively manufactured composite tooling.
APA, Harvard, Vancouver, ISO, and other styles
6

Kulkarni, Anup, Vivek C. Peddiraju, Subhradeep Chatterjee, and Dheepa Srinivasan. "Effect of Build Geometry and Porosity in Additively Manufactured CuCrZr." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93986.

Full text
Abstract:
Abstract The current work presents an understanding of microstructure and mechanical properties as a function of build geometry and build orientation in Cu-Cr-Zr via the laser powder bed fusion (LPBF) technique. Porosity, microstructure, and mechanical properties have been compared in the as-printed (AP) and heat treated (HT) LPBF Cu-Cr-Zr, between cylindrical and cube geometries, along the longitudinal (L) and transverse (T) build orientations. Varying porosity levels were observed that yielded parts with 96–97% relative density in the AP condition. The AP microstructure, characterized by a combination of optical and electron microscopic techniques, demonstrated a hierarchical microstructure, comprising of grains (2.5–100 μm) with a cellular substructure (400–850 nm) and intracellular nanoscale (20–60 nm) precipitates enriched in Cu and Zr. Unlike most materials in the AP condition, crystallographic texture was found to be absent; however, very distinct river like patterns highlighted a novel characteristic of the LPBF Cu-Cr-Zr. Upon solutionizing and aging, Cr precipitates were seen heterogeneously nucleating along cell boundaries (0.5–1.3 μm), causing up to 45% enhancement in the strength and a 4–5% lower ductility. The yield strength along the transverse orientation was 10–16% higher than that of longitudinal orientation, in both the AP and HT conditions. Fracture surface of the tensile samples exhibited micro-voids and cleavage facets and unmelted particles. In spite of the observed defects, the overall mechanical properties matched well with those obtained in nearly dense (> 99%) samples and the mechanical property debit was less than 10%.
APA, Harvard, Vancouver, ISO, and other styles
7

Sahu, Shreehard, Bikash Kumar, Siba Sundar Sahoo, Balila Nagamani Jaya, and Dheepa Srinivasan. "Thermal Stability of Additively Manufactured Mar M 509." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-91410.

Full text
Abstract:
Abstract Co based superalloy Mar M 509 having excellent high temperature oxidation and hot corrosion resistance is studied via the laser powder bed fusion (LPBF) process. The microstructure and mechanical properties of Mar M 509 in the as-printed (AsP) and heat-treated (HT) condition are compared, as a function of two build orientations (longitudinal (L) and transverse (T)), to establish a working range for application of the alloy. The AsP condition has a distinct cellular microstructure (500–600 nm) with 50–60 nm carbide particles decorating the cell boundaries. The L build orientation displays a strong <001> texture, has columnar grains with a grain size of 8–35 μm (along major axis) and a grain aspect ratio of 4, while the T orientation displays a more equiaxed, but bi-modal microstructure with a grain size of 5–28 μm. The room temperature mechanical properties show variability between L and T with T having 15% higher hardness and 34% higher 0.2% yield strength (YS), 30% lower elongation than L. After a short cycle heat treatment at 1250°C, the weld bead structure and cellular boundaries are broken down and there is substantial grain growth in both L (25–33 μm along major axis) and T orientations (5–42 μm), along with coarsening of carbides (250–350 nm). The dislocation density reduces substantially, indicating recrystallisation, and the lattice parameter of the matrix drops significantly, suggesting solute depletion that contributes to precipitate growth and enrichment of the carbides. There is a drop in the yield strength from 860 MPa to 740 MPa in L and from 1150 MPa to 840MPa in T and an increase in ductility from 14% to 23% in L.
APA, Harvard, Vancouver, ISO, and other styles
8

"IAM2022 Front Matter." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-fm1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Melo, Gustavo, Rohit Ravi, Lucas Jauer, and Johannes Henrich Schleifenbaum. "Exploring Augmented Reality for Teaching Design for Additive Manufacturing." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-94406.

Full text
Abstract:
Abstract Additive Manufacturing (AM) has a great potential of disrupting product design and supply chains in many industries by means of its unique capabilities when compared to traditional manufacturing. A wide range of designers would like to take advantage of AM to improve their designs, but they need assistance in learning and breaking out of their conventional manufacturing mindset in the early phases of the design process. Therefore, this study explores the use of Augmented Reality (AR) to enhance the learning experience of the existing Design Heuristics for Additive Manufacturing using Design for Additive Manufacturing (DfAM) cards. In this study, we propose a modification of DfAM cards to include AR markers into the existing card design and hence provide a comprehensive visualization along with the information about heuristics and examples on the DfAM cards. This helps the user to understand the real-world structure of the final printed product before it is printed. The cross-platform game engine Unity is used for developing the AR models for this research. We also investigate the advantages that AR can provide as a visual interface. An expert review is conducted to obtain development feedback and a trial training session with students is carried out. The student evaluated positively the use of the AR app in their DfAM lecture and exercise.
APA, Harvard, Vancouver, ISO, and other styles
10

Martín-Pérez, Celia, Daniel Rodriguez-Del Rosario, Elena Rodríguez-Senín, and Noelia González-Castro. "Fused Granulated Fabrication (FGF) Processing Study for Novel sCF/LMPAEK Recycled Material to Manufacture Aeronautic Structural Parts." In 2022 International Additive Manufacturing Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/iam2022-93890.

Full text
Abstract:
Abstract ECO-CLIP has developed a novel recycled 40wt% short CF/LMPAEK material from factory scrap that has been used to manufacture aircraft structural parts using injection molding (IM), the conventional manufacturing process, and fussed granulated fabrication (FGF) as an alternative one. In this sense, a technical study of the material processability has been made for FGF. The most important results are presented in this work, such as fiber breakage, carbon fiber percentage after and before processing, thermal behavior and thermal induce history, and mechanical properties such as compression, tensile and flexural behavior Three different nozzle diameters (0.8, 1.2, and 1.5mm) were used to ensure processability, mechanical requirements, and physical performance. Carrying out a direct comparison with the results achieved by IM. Other PAEKs have been processed by FGF or traditional fused filament fabrication (FFF) for comparative purposes.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Additive Manufactuing"

1

Schraad, Mark William, and Marianne M. Francois. ASC Additive Manufacturing. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1186037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crain, Zoe, and Roberta Ann Beal. Additive Manufacturing Overview. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1441284.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murph, S. NANO-ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Korinko, P., A. Duncan, A. D'Entremont, P. Lam, E. Kriikku, J. Bobbitt, W. Housley, M. Folsom, and (USC), A. WIRE ARC ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peterson, Dominic S. Additive Manufacturing for Ceramics. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1119593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pepi, Marc S., Todd Palmer, Jennifer Sietins, Jonathan Miller, Dan Berrigan, and Ricardo Rodriquez. Advances in Additive Manufacturing. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1012134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Torres Chicon, Nesty. Additive Manufacturing Technologies Survey. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1658439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dehoff, Ryan R., and Michael M. Kirka. Additive Manufacturing of Porous Metal. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1362246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sbriglia, Lexey Raylene. Embedding Sensors During Additive Manufacturing. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1209455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Grote, Christopher John. The Frontiers of Additive Manufacturing. Office of Scientific and Technical Information (OSTI), March 2016. http://dx.doi.org/10.2172/1240803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography