Academic literature on the topic 'Additive and Subtractive Manufacturing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Additive and Subtractive Manufacturing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Additive and Subtractive Manufacturing"
Liang, Steven Y., Yixuan Feng, and Jinqiang Ning. "Predictive Manufacturing: Subtractive and Additive." IOP Conference Series: Materials Science and Engineering 842 (June 16, 2020): 012024. http://dx.doi.org/10.1088/1757-899x/842/1/012024.
Full textKunwar, Puskal, Zheng Xiong, Shannon Theresa Mcloughlin, and Pranav Soman. "Oxygen-Permeable Films for Continuous Additive, Subtractive, and Hybrid Additive/Subtractive Manufacturing." 3D Printing and Additive Manufacturing 7, no. 5 (October 1, 2020): 216–21. http://dx.doi.org/10.1089/3dp.2019.0166.
Full textHarris, Ian D. "Additive Manufacturing: A Transformational Advanced Manufacturing Technology." AM&P Technical Articles 170, no. 5 (May 1, 2012): 25–29. http://dx.doi.org/10.31399/asm.amp.2012-05.p025.
Full textSathish, K., S. Senthil Kumar, R. Thamil Magal, V. Selvaraj, V. Narasimharaj, R. Karthikeyan, G. Sabarinathan, Mohit Tiwari, and Adamu Esubalew Kassa. "A Comparative Study on Subtractive Manufacturing and Additive Manufacturing." Advances in Materials Science and Engineering 2022 (April 15, 2022): 1–8. http://dx.doi.org/10.1155/2022/6892641.
Full textLiu, Jikai, and Albert C. To. "Topology optimization for hybrid additive-subtractive manufacturing." Structural and Multidisciplinary Optimization 55, no. 4 (August 29, 2016): 1281–99. http://dx.doi.org/10.1007/s00158-016-1565-4.
Full textStavropoulos, Panagiotis, Harry Bikas, Oliver Avram, Anna Valente, and George Chryssolouris. "Hybrid subtractive–additive manufacturing processes for high value-added metal components." International Journal of Advanced Manufacturing Technology 111, no. 3-4 (October 2, 2020): 645–55. http://dx.doi.org/10.1007/s00170-020-06099-8.
Full textWu, Xuefeng, Chentao Su, and Kaiyue Zhang. "316L Stainless Steel Thin-Walled Parts Hybrid-Layered Manufacturing Process Study." Materials 16, no. 19 (September 30, 2023): 6518. http://dx.doi.org/10.3390/ma16196518.
Full textShukalov, A. V., V. A. Dubakin, and I. O. Zharinov. "Hybrid additive-subtractive methods in robot assisted manufacturing." Journal of Physics: Conference Series 1582 (July 2020): 012092. http://dx.doi.org/10.1088/1742-6596/1582/1/012092.
Full textTamellini, Lorenzo, Michele Chiumenti, Christian Altenhofen, Marco Attene, Oliver Barrowclough, Marco Livesu, Federico Marini, Massimiliano Martinelli, and Vibeke Skytt. "Parametric Shape Optimization for Combined Additive–Subtractive Manufacturing." JOM 72, no. 1 (October 31, 2019): 448–57. http://dx.doi.org/10.1007/s11837-019-03886-x.
Full textNewman, Stephen T., Zicheng Zhu, Vimal Dhokia, and Alborz Shokrani. "Process planning for additive and subtractive manufacturing technologies." CIRP Annals 64, no. 1 (2015): 467–70. http://dx.doi.org/10.1016/j.cirp.2015.04.109.
Full textDissertations / Theses on the topic "Additive and Subtractive Manufacturing"
Madeleine, Wedlund, and Bergman Jonathan. "Decision support model for selecting additive or subtractive manufacturing." Thesis, Högskolan i Gävle, Maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-26996.
Full textAdditiv tillverkning (AM), eller 3D-printing, är en tillverkningsmetod där komponenter produceras genom att succesivt addera material till produkten lagervis, till skillnad från skärande bearbetning där material subtraheras från ett arbetsstycke. Det finns fördelar och nackdelar med respektive metod och det kan vara ett komplext problem att avgöra när den ena metoden är att föredra framför den andra. Syftet med denna studie är att utveckla en beslutstödjande modell (DSM) som hjälper användaren välja lämplig metod med avseende på produktionskostnader. Information inhämtas genom en litteraturstudie samt intervjuer med personer som arbetar med AM och skärande bearbetning. Modellen tar hänsyn till material, storlek, tider, geometrisk komplexitet, efterbearbetning och miljöeffekter. Den beslutstödjande modellen skapades i Microsoft Excel. Skillnaden i pris mellan respektive tillverkningsmetod beroende på antal och komplexitet jämfördes mot litteraturstudien. Modellen för AM verifieras med hjälp av kostnadskalkyler från Sandvik Additive Manufacturing. Felmarginalen är förhållandevis låg på cirka två till sex procent när spillmaterial inte tas hänsyn till. Tyvärr har modellen för skärande bearbetning inte verifieras på grund av en brist på data, vilket därför rekommenderas som fortsatt arbete. Slutsatsen är att AM inte kommer ersätta någon nuvarande tillverkningsmetod. Det är dock ett bra komplement till metallindustrin eftersom små, komplexa komponenter med få toleranskrav gynnas av AM. En undersökning över nuvarande tjänster relaterat till studien genomfördes med ambitionen att utreda om den beslutstödjande modellen kompletterar dessa. Resultatet av undersökningen visar att medan det finns många konsulttjänster som hjälper ett företag implementera AM så är det få som erbjuder någon form av mjukvara. Gällande frågan om AM är lönsam för vissa produkter så var det bara en mjukvara som kunde besvara den, dock utan att visa några kostnader. Den beslutstödjande modellen framtagen i denna studie fyller därmed en funktion bland nuvarande tjänster och mjukvaror.
Luo, Xiaoming. "Process planning for an Additive/Subtractive Rapid Pattern Manufacturing system." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389124.
Full textJönsson, David, and Mir Kevci. "Geometrical accuracy of metallic objects produced with Additive or Subtractive Manufacturing: a comparative in-vitro study." Thesis, Malmö högskola, Odontologiska fakulteten (OD), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-19934.
Full textPurpose: To evaluate the production tolerance of objects produced by additive manufacturing systems (AM) for usage in dentistry and to compare with subtractive manufacturing system (SM) through reverse engineering. Materials and methods: Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, meanwhile object B reflects a four-unit bridge model. All the objects were divided into different measuring-axis; X, Y and Z. Measurements were performed with validated and calibrated equipment. Linear distances were measured with a digital calliper while corner radius and angle were measured with a digital microscope. Results: None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD-file regarding all parameters included in present study. Considering linear measurements, the standard deviation for subtractive manufacturing group were consistent in all axis, except for X- and Y-axis in object A and Y-axis for object B. Meanwhile additive manufacturing groups had a consistent standard deviation in X- and Y- axis but not in Z-axis. Regarding corner radius measurements, SM group overall had the best accuracy for both object A and B comparing to AM groups. Conclusion: Within the limitations of this in vitro study, results support the hypothesis, considering AM had preferable capability to re-create complex and small geometry compare to SM. Meanwhile, SM were superior producing simple geometry and linear distances. Further studies are required to confirm these results.
Cunningham, Victor, Christopher A. Schrader, and James (Trae) Young. "Navy additive manufacturing: adding parts, subtracting steps." Thesis, Monterey, California: Naval Postgraduate School, 2015. http://hdl.handle.net/10945/45834.
Full textThis study examines additive manufacturing (AM) and describes its potential impact on the Navy’s Supply Chain Management processes. Included in the analysis is the implementation of 3D printing technology and how it could impact the Navy’s future procurement processes, specifically based on a conducted analysis of the automotive aerospace industry. Industry research and development has identified multiple dimensions of AM technology, including material variety, cost saving advantages, and lead-time minimizations for manufacturing products. This project is designed to provide the Navy with a recommendation based on an in-depth industry case-study analysis.
Lesage, Philippe. "Etude et caractérisation sous sollicitations dynamiques de structures mécaniques en fabrication additive et soustractive." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCA003.
Full textAdditive manufacturing is rapidly expanding and attracting increasing interest from industry, scientific research and the general public. Additive processes have opened up opportunities for producing structures with complex geometries compared to traditional manufacturing. However, the mechanical behavior of additive fabrications under loading conditions is not extensively explored. In particular, the mechanical characterization of these fabrications remains a challenge and often limits itself to pseudo-static investigation fields through conventional mechanical testing methods such as tensile tests. This doctoral thesis aims to contribute to the dynamic mechanical characterization of additive manufacturing on a comparative scale with subtractive manufacturing. This contribution is based on the use of modal methods in response to 'Low Velocity' stimuli applied by an impact hammer, and on a 'High Velocity' dynamic method studying the impact behavior of plates produced by additive (SLM) and subtractive processes
Davids, Margaret. "Erasure: An Additive and Subtractive Act." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5866.
Full textStumpo, Gordon. "Design Iterations Through Fusion of Additive and Subtractive Design." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1461602511.
Full textHANDAL, RAED S. I. "Additive Manufacturing as a Manufacturing Method: an Implementation Framework for Additive Manufacturing in Supply Chains." Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1203311.
Full textThe supply chain is changing speedily and on a continuous basis to keep up with the rapid changes in the market, which are summarized as increased competition, changes in traditional customer bases, and changes in customers’ expectations. Thus, companies have to change their way of manufacturing final products in order to customize and expedite the delivery of products to customers. Additive manufacturing, the new production system, effectively and efficiently increases the capability of personalization during the manufacturing process. This consequently increases customer’s satisfaction and company’s profitability. In other words, additive manufacturing has become one of the most important technologies in the manufacturing field. Full implementation of additive manufacturing will change many well-known management practices in the production sector. Theoretical development in the field of additive manufacturing in regards to its impact on supply chain management is rare. There is no fully applied approach in the literature that is focused on managing the supply chain when additive manufacturing is applied. While additive manufacturing is believed to revolutionize and enhance traditional manufacturing, there is no comprehensive toolset developed in the manufacturing field that evaluates the impact of additive manufacturing and determines the best production method that suits the applied supply chain strategy. A significant portion of the existing supply chain methods and frameworks were adopted in this study to examine the implementation of additive manufacturing in supply chain management. The aim of this study is to develop a framework to explain when additive manufacturing “3D printing” impacts supply chain management efficiently. To build the framework, interviews with some companies that already use additive manufacturing in their production system have been carried out. Next, an online survey and two case studies evaluated the framework and validated the results of the final version of the framework. The conceptual framework shows the relationship among supply chain strategies, manufacturing strategy and manufacturing systems. The developed framework shows not only the ability of additive manufacturing to change and re-shape supply chains, but its impact as an alternative manufacturing technique on supply chain strategies. This framework helps managers select more effective production methods based on certain production variables, including product’s type, components’ value, and customization level.
Keil, Heinz Simon. "Quo vadis "Additive Manufacturing"." Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-214719.
Full textCAIVANO, RICCARDO. "Design for Additive Manufacturing: Innovative topology optimisation algorithms to thrive additive manufacturing application." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2957748.
Full textBooks on the topic "Additive and Subtractive Manufacturing"
Sharma, Varun, and Pulak Mohan Pandey. Additive and Subtractive Manufacturing Processes. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394.
Full textMavinkere Rangappa, Sanjay, Munish Kumar Gupta, Suchart Siengchin, and Qinghua Song, eds. Additive and Subtractive Manufacturing of Composites. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3184-9.
Full textCasola, Linda, ed. Convergent Manufacturing: A Future of Additive, Subtractive, and Transformative Manufacturing. Washington, D.C.: National Academies Press, 2022. http://dx.doi.org/10.17226/26524.
Full textPrakash, Chander, Sunpreet Singh, and Seeram Ramakrishna, eds. Additive, Subtractive, and Hybrid Technologies. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99569-0.
Full textKilli, Steinar, ed. Additive Manufacturing. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315196589.
Full textSrivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. Additive Manufacturing. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382.
Full textZhou, Kun, ed. Additive Manufacturing. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-04721-3.
Full textPandey, Pulak Mohan, Nishant K. Singh, and Yashvir Singh. Additive Manufacturing. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003258391.
Full textGebhardt, Andreas, and Jan-Steffen Hötter. Additive Manufacturing. München, Germany: Carl Hanser Verlag GmbH & Co. KG, 2016. http://dx.doi.org/10.1007/978-1-56990-583-8.
Full textGebhardt, Andreas. Understanding Additive Manufacturing. München: Carl Hanser Verlag GmbH & Co. KG, 2011. http://dx.doi.org/10.3139/9783446431621.
Full textBook chapters on the topic "Additive and Subtractive Manufacturing"
Singh, Narinder, and Buta Singh. "Polymer-Based Additive Manufacturing." In Additive and Subtractive Manufacturing Processes, 121–43. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-7.
Full textDixit, Uday Shanker. "Evolution of Manufacturing." In Additive and Subtractive Manufacturing Processes, 1–30. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-1.
Full textBeravala, Hardik, and Nishant K. Singh. "Thermal-Energy-Based Advanced Manufacturing Processes." In Additive and Subtractive Manufacturing Processes, 109–20. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-6.
Full textSihag, Nitesh, Vikrant Bhakar, and Kuldip Singh Sangwan. "An Environmental Sustainability Assessment of a Milling Process using Life Cycle Assessment." In Additive and Subtractive Manufacturing Processes, 75–84. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-4.
Full textGokhale, Nitish P., and Prateek Kala. "Directed Energy Deposition for Metals." In Additive and Subtractive Manufacturing Processes, 259–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-13.
Full textNayak, S. K., A. N. Jinoop, S. Shiva, and C. P. Paul. "Laser Additive Manufacturing of Nickel Superalloys for Aerospace Applications." In Additive and Subtractive Manufacturing Processes, 185–210. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-10.
Full textKishore, Kamal, Manoj Kumar Sinha, and Dinesh Setti. "Grinding and Recent Trends." In Additive and Subtractive Manufacturing Processes, 31–50. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-2.
Full textElgazzar, Haytham, and Khalid Abdelghany. "Recent Research Progress and Future Prospects in the Additive Manufacturing of Biomedical Magnesium and Titanium Implants." In Additive and Subtractive Manufacturing Processes, 145–61. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-8.
Full textDhimole, Vivek, Prashant K. Jain, and Narendra Kumar. "Thermal Analysis and the Melt Flow Behavior of Ethylene Vinyl Acetate for Additive Manufacturing." In Additive and Subtractive Manufacturing Processes, 241–57. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-12.
Full textKumar, Raman, Paramjit Singh Bilga, and Sehijpal Singh. "An Investigation of Active Cutting Energy for Rough and Finish Turning of Alloy Steel." In Additive and Subtractive Manufacturing Processes, 273–97. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-14.
Full textConference papers on the topic "Additive and Subtractive Manufacturing"
Woods, Matthew R., Nicholas A. Meisel, Timothy W. Simpson, and Corey J. Dickman. "Redesigning a Reaction Control Thruster for Metal-Based Additive Manufacturing: A Case Study in Design for Additive Manufacturing." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59722.
Full textBorish, Michael, and Jamie Westfall. "Additive and Subtractive Manufacturing Augmented Reality Interface (ASMARI)." In SoutheastCon 2020. IEEE, 2020. http://dx.doi.org/10.1109/southeastcon44009.2020.9249710.
Full textFrank, M., O. Harrysson, R. Wysk, N. Chen, H. Srinivasan, G. Hou, and C. Keough. "A Method for Integrating Additive and Subtractive Operations for Metal Parts – Direct Additive Subtractive Hybrid Manufacturing (DASH)." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_366_368.
Full textFrank, M., O. Harrysson, R. Wysk, N. Chen, H. Srinivasan, G. Hou, and C. Keough. "A Method for Integrating Additive and Subtractive Operations for Metal Parts – Direct Additive Subtractive Hybrid Manufacturing (DASH)." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_366_368.
Full textWang, Yunan, Chuxiong Hu, Ze Wang, Shize Lin, Ziyan Zhao, and Yu Zhu. "Slice Extension for High-Quality Hybrid Additive-Subtractive Manufacturing." In IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2023. http://dx.doi.org/10.1109/iecon51785.2023.10311641.
Full textMassoni, Brandon R., and Matthew I. Campbell. "Substrate Optimization for Hybrid Manufacturing." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98068.
Full textBlasco, Eva, David Graefe, Markus M. Zieger, Christopher Barner-Kowollik, and Martin Wegener. "Merging 3D additive and subtractive manufacturing on the microscale (Conference Presentation)." In Laser 3D Manufacturing VI, edited by Henry Helvajian, Bo Gu, and Hongqiang Chen. SPIE, 2019. http://dx.doi.org/10.1117/12.2508211.
Full textTrofimov, Vyacheslav A., Boyuan Zheng, Di Wang, Yongqiang Yang, Meng Wang, Zhiheng Tai, Zhongwei Yan, and Yan Wang. "Study on additive and subtractive manufacturing using picosecond laser micromachining." In Lasers and Photonics for Advanced Manufacturing, edited by Sylvain Lecler, Wilhelm Pfleging, and François Courvoisier. SPIE, 2024. http://dx.doi.org/10.1117/12.3014590.
Full textLynn, Roby, Kathryn Jablokow, Nithin Reddy, Christopher Saldana, Tommy Tucker, Timothy W. Simpson, Thomas Kurfess, and Christopher Williams. "Using Rapid Manufacturability Analysis Tools to Enhance Design-for-Manufacturing Training in Engineering Education." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59295.
Full textPatterson, Albert E., and James T. Allison. "Manufacturability Constraint Formulation for Design Under Hybrid Additive-Subtractive Manufacturing." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85637.
Full textReports on the topic "Additive and Subtractive Manufacturing"
Beaman, Joseph J., Clint Atwood, Theodore L. Bergman, David Bourell, Scott Hollister, and David Rosen. Additive/Subtractive Manufacturing Research and Development in Europe. Fort Belvoir, VA: Defense Technical Information Center, December 2004. http://dx.doi.org/10.21236/ada466756.
Full textCunningham, Victor, Christopher A. Schrader, and James Young. Navy Additive Manufacturing: Adding Parts, Subtracting Steps. Fort Belvoir, VA: Defense Technical Information Center, June 2015. http://dx.doi.org/10.21236/ada632470.
Full textSchraad, Mark William, and Marianne M. Francois. ASC Additive Manufacturing. Office of Scientific and Technical Information (OSTI), June 2015. http://dx.doi.org/10.2172/1186037.
Full textCrain, Zoe, and Roberta Ann Beal. Additive Manufacturing Overview. Office of Scientific and Technical Information (OSTI), June 2018. http://dx.doi.org/10.2172/1441284.
Full textMurph, S. NANO-ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), October 2019. http://dx.doi.org/10.2172/1572880.
Full textKorinko, P., A. Duncan, A. D'Entremont, P. Lam, E. Kriikku, J. Bobbitt, W. Housley, M. Folsom, and (USC), A. WIRE ARC ADDITIVE MANUFACTURING. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1475286.
Full textPeterson, Dominic S. Additive Manufacturing for Ceramics. Office of Scientific and Technical Information (OSTI), January 2014. http://dx.doi.org/10.2172/1119593.
Full textPepi, Marc S., Todd Palmer, Jennifer Sietins, Jonathan Miller, Dan Berrigan, and Ricardo Rodriquez. Advances in Additive Manufacturing. Fort Belvoir, VA: Defense Technical Information Center, July 2016. http://dx.doi.org/10.21236/ad1012134.
Full textTorres Chicon, Nesty. Additive Manufacturing Technologies Survey. Office of Scientific and Technical Information (OSTI), August 2020. http://dx.doi.org/10.2172/1658439.
Full textDehoff, Ryan R., and Michael M. Kirka. Additive Manufacturing of Porous Metal. Office of Scientific and Technical Information (OSTI), June 2017. http://dx.doi.org/10.2172/1362246.
Full text