Academic literature on the topic 'Adaptive mesh method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Adaptive mesh method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Adaptive mesh method"
Zhang, Jie, Abel Cherouat, and Houman Borouchaki. "Fast Point and Element Search Method in Adaptive Remeshing Procedure and Its Applications." ISRN Applied Mathematics 2011 (August 17, 2011): 1–13. http://dx.doi.org/10.5402/2011/509721.
Full textGuo, Zaoyang, Yujie Zhao, Zhaohui Chen, Minmao Liao, Zhengliang Li, and Bo Liu. "A Mesh Adaptive Procedure for Large Increment Method." International Journal of Applied Mechanics 07, no. 04 (August 2015): 1550061. http://dx.doi.org/10.1142/s1758825115500611.
Full textAzarenok, B. N. "Variational method for adaptive mesh generation." Computational Mathematics and Mathematical Physics 48, no. 5 (May 2008): 786–804. http://dx.doi.org/10.1134/s0965542508050084.
Full textXu, Yan, Gao Feng Wei, and Hai Yan Chen. "Overview of High Precision Adaptive Numerical Manifold Method." Advanced Materials Research 962-965 (June 2014): 2988–91. http://dx.doi.org/10.4028/www.scientific.net/amr.962-965.2988.
Full textKoohi, Mahdi, and Abbas Shakery. "An Adaptive Mesh Method for Object Tracking." International Journal of Peer to Peer Networks 2, no. 2 (April 30, 2011): 1–10. http://dx.doi.org/10.5121/ijp2p.2011.2201.
Full textFang, F., M. D. Piggott, C. C. Pain, G. J. Gorman, and A. J. H. Goddard. "An adaptive mesh adjoint data assimilation method." Ocean Modelling 15, no. 1-2 (January 2006): 39–55. http://dx.doi.org/10.1016/j.ocemod.2006.02.002.
Full textKim, Jeong-Hun, Hyun-Gyu Kim, Byung-Chai Lee, and Seyoung Im. "Adaptive mesh generation by bubble packing method." Structural Engineering and Mechanics 15, no. 1 (January 25, 2003): 135–49. http://dx.doi.org/10.12989/sem.2003.15.1.135.
Full textAltas, Irfan, and John W. Stephenson. "A two-dimensional adaptive mesh generation method." Journal of Computational Physics 94, no. 1 (May 1991): 201–24. http://dx.doi.org/10.1016/0021-9991(91)90143-9.
Full textLei, Humin, Tao Liu, Deng Li, Jikun Ye, and Lei Shao. "Adaptive Mesh Iteration Method for Trajectory Optimization Based on Hermite-Pseudospectral Direct Transcription." Mathematical Problems in Engineering 2017 (2017): 1–7. http://dx.doi.org/10.1155/2017/2184658.
Full textTyranowski, Tomasz M., and Mathieu Desbrun. "R-Adaptive Multisymplectic and Variational Integrators." Mathematics 7, no. 7 (July 18, 2019): 642. http://dx.doi.org/10.3390/math7070642.
Full textDissertations / Theses on the topic "Adaptive mesh method"
Antepara, Zambrano Oscar Luis. "Adaptive mesh refinement method for CFD applications." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/664931.
Full textEl objetivo principal de esta tesis es el desarrollo de un algoritmo adaptativo de refinamiento de malla (AMR) para simulaciones de dinámica de fluidos computacional utilizando mallas hexaédricas y tetraédricas. Esta metodología numérica se aplica en el contexto de simulaciones Large-eddie (LES) de flujos turbulentos y simulaciones numéricas directas (DNS) de flujos interfaciales, para traer nuevas investigaciones numéricas y entendimiento físicas. Para las simulaciones de dinámica de fluidos, se presentan las ecuaciones governantes, la discretización espacial en mallas no estructuradas y los esquemas numéricos para resolver las ecuaciones de Navier-Stokes. Las ecuaciones siguen una discretización conservativa por volumenes finitos en mallas colocadas. Para la formulación de flujos turbulentos, la discretización espacial preserva las propiedades de simetría de los operadores diferenciales continuos y la integración de tiempo sigue una estrategia autoadaptativa, que ha sido bien probada en mallas no estructuradas. Además, para las aplicaciones que se muestran en esta tesis, se utiliza el modelo LES que consiste en una viscosidad local que se adapta a la pared dentro de una formulación multiescala variable. Para la formulación de flujo de dos fases, se aplica un método de conjunto de niveles conservador para capturar la interfaz entre dos fluidos y se implementa con un esquema de proyección de densidad variable para simular flujos de dos fases incompresibles en mallas no estructuradas. El algoritmo AMR desarrollado en esta tesis se basa en una estructura de datos de quad / octree y mantiene una relación de 1: 2 entre los niveles de refinamiento. En el caso de las mallas tetraédricas, se sigue un criterio geométrico para mantener la calidad de la malla en una base razonable. La estrategia de paralelización consiste principalmente en la creación de elementos de malla en cada subdominio y establece un número de identificación global único, para evitar elementos duplicados. El equilibrio de carga está asegurado en cada iteración de AMR para mantener el rendimiento paralelo del código CFD. Además, se ha desarrollado un algoritmo de multiplicación de malla (MM) para crear mallas grandes, con diferentes tipos de elementos de malla, pero preservando la topología de una malla original más pequeña. Esta tesis se centra en el estudio de flujos turbulentos y flujos de dos fases utilizando un marco AMR. Los casos estudiados para aplicaciones de LES de flujos turbulentos son el flujo alrededor de uno y dos cilindros separados de sección cuadrada, y el flujo alrededor de un modelo de automóvil simplificado. En este contexto, se desarrolla un criterio de refinamiento basado en la física, que consiste en la velocidad residual calculada a partir de una descomposición de escala múltiple de la velocidad instantánea. Este criterio garantiza la adaptación de la malla siguiendo las estructuras vorticales principales y proporcionando una resolución de malla suficiente en las zonas de interés, es decir, separación de flujo, estelas turbulentas y desprendimiento de vórtices. Los casos estudiados para los flujos de dos fases son el DNS de la burbuja impulsada por la gravedad en 2D y 3D, con un enfoque particular en el régimen de oscilación. Además, el uso de AMR tetraédrico se aplica para la simulación numérica de burbujas impulsadas por la gravedad en dominios complejos. En este tema, la metodología se valida en burbujas que ascienden en canales cilíndricos con topología diferente, donde el estudio de estos casos contribuyó a tener una nueva investigación numérica y una visión física en el desarrollo de una burbuja con efectos de pared.
Offermans, Nicolas. "Towards adaptive mesh refinement in Nek5000." Licentiate thesis, KTH, Mekanik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-217501.
Full textQC 20171114
Morgenstern, Philipp [Verfasser]. "Mesh Refinement Strategies for the Adaptive Isogeometric Method / Philipp Morgenstern." Bonn : Universitäts- und Landesbibliothek Bonn, 2017. http://d-nb.info/1140525948/34.
Full textPinchuk, Amy Ruth. "Automatic adaptive finite element mesh generation and error estimation." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63269.
Full textPrinja, Gaurav Kant. "Adaptive solvers for elliptic and parabolic partial differential equations." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/adaptive-solvers-for-elliptic-and-parabolic-partial-differential-equations(f0894eb2-9e06-41ff-82fd-a7bde36c816c).html.
Full textSombra, Tiago GuimarÃes. "An adaptive parametric surface mesh generation parallel method guided by curvatures." Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16628.
Full textThis work describes a technique for generating parametric surfaces meshes using parallel computing, with distributed memory processors. The input for the algorithm is a set of parametric patches that model the surface of a given object. A structure for spatial partitioning is proposed to decompose the domain in as many subdomains as processes in the parallel system. Each subdomain consists of a set of patches and the division of its load is guided following an estimate. This decomposition attempts to balance the amount of work in all the subdomains. The amount of work, known as load, of any mesh generator is usually given as a function of its output size, i.e., the size of the generated mesh. Therefore, a technique to estimate the size of this mesh, the total load of the domain, is needed beforehand. This work makes use of an analytical average curvature calculated for each patch, which in turn is input data to estimate this load and the decomposition is made from this analytical mean curvature. Once the domain is decomposed, each process generates the mesh on that subdomain or set of patches by a quad tree technique for inner regions, advancing front technique for border regions and is finally applied an improvement to mesh generated. This technique presented good speed-up results, keeping the quality of the mesh comparable to the quality of the serially generated mesh.
Este trabalho descreve uma tÃcnica para gerar malhas de superfÃcies paramÃtricas utilizando computaÃÃo paralela, com processadores de memÃria compartilhada. A entrada para o algoritmo à um conjunto de patches paramÃtricos que modela a superfÃcie de um determinado objeto. Uma estrutura de partiÃÃo espacial à proposta para decompor o domÃnio em tantos subdomÃnios quantos forem os processos no sistema paralelo. Cada subdomÃnio à formado por um conjunto de patches e a divisÃo de sua carga à guiada seguindo uma estimativa de carga. Esta decomposiÃÃo tenta equilibrar a quantidade de trabalho em todos os subdomÃnios. A quantidade de trabalho, conhecida como carga, de qualquer gerador de malha à geralmente dada em funÃÃo do tamanho da saÃda do algoritmo, ou seja, do tamanho da malha gerada. Assim, faz-se necessÃria uma tÃcnica para estimar previamente o tamanho dessa malha, que à a carga total do domÃnio. Este trabalho utiliza-se de um cÃlculo de curvatura analÃtica mÃdia para cada patch, que por sua vez, à dado de entrada para estimar esta carga e a decomposiÃÃo à feita a partir dessa curvatura analÃtica mÃdia. Uma vez decomposto o domÃnio, cada processo gera a malha em seu subdomÃnio ou conjunto de patches pela tÃcnica de quadtree para regiÃes internas, avanÃo de fronteira para regiÃes de fronteira e por fim à aplicado um melhoramento na malha gerada. Esta tÃcnica apresentou bons resultados de speed-up, mantendo a qualidade da malha comparÃvel à qualidade da malha gerada de forma sequencial.
Ferreira, Vitor Maciel Vilela. "A hybrid les / lagrangian fdf method on adaptive, block-structured mesh." Universidade Federal de Uberlândia, 2015. https://repositorio.ufu.br/handle/123456789/14982.
Full textEsta dissertação é parte de um amplo projeto de pesquisa, que visa ao desenvolvimento de uma plataforma computacional de dinâmica dos fluidos (CFD) capaz de simular a física de escoamentos que envolvem mistura de várias espécies químicas, com reação e combustão, utilizando um método hibrido Simulação de Grandes Escalas (LES) / Função Densidade Filtrada (FDF) Lagrangiana em malha adaptativa, bloco-estruturada. Uma vez que escoamentos com mistura proporcionam fenômenos que podem ser correlacionados com a combustão em escoamentos turbulentos, uma visão global da fenomenologia de mistura foi apresentada e escoamentos fechados, laminar e turbulento, que envolvem mistura de duas espécies químicas inicialmente segregadas foram simulados utilizando o código de desenvolvimento interno AMR3D e o código recentemente desenvolvido FDF Lagrangiana de composição. A primeira etapa deste trabalho consistiu na criação de um modelo computacional de partículas estocásticas em ambiente de processamento distribuído. Isto foi alcançado com a construção de um mapa Lagrangiano paralelo, que pode gerenciar diferentes tipos de elementos lagrangianos, incluindo partículas estocásticas, particulados, sensores e nós computacionais intrínsecos dos métodos Fronteira Imersa e Acompanhamento de Interface. O mapa conecta informações Lagrangianas com a plataforma Euleriana do código AMR3D, no qual equações de trans- porte são resolvidas. O método FDF Lagrangiana de composição realiza cálculos algébricos sobre partículas estocásticas e provê campos de composição estatisticamente equivalentes aos obtidos quando se utiliza o método de Diferenças Finitas para solução de equações diferenciais parciais; a técnica de Monte Carlo foi utilizada para resolver um sistema derivado de equações diferenciais estocásticas (SDE). Os resultados concordaram com os benchmarks, que são simulações baseadas em plataforma de Diferenças Finitas para solução de uma equação de transporte de composição filtrada.
This master thesis is part of a wide research project, which aims at developing a com- putational fluid dynamics (CFD) framework able to simulate the physics of multiple-species mixing flows, with chemical reaction and combustion, using a hybrid Large Eddy Simulation (LES) / Lagrangian Filtered Density Function (FDF) method on adaptive, block-structured mesh. Since mixing flows provide phenomena that may be correlated with combustion in turbulent flows, we expose an overview of mixing phenomenology and simulated enclosed, ini- tially segregated two-species mixing flows, at laminar and turbulent states, using the in-house built AMR3D and the developed Lagrangian composition FDF codes. The first step towards this objective consisted of building a computational model of notional particles transport on distributed processing environment. We achieved it constructing a parallel Lagrangian map, which can hold different types of Lagrangian elements, including notional particles, particu- lates, sensors and computational nodes intrinsic to Immersed Boundary and Front Tracking methods. The map connects Lagrangian information with the Eulerian framework of the AMR3D code, in which transport equations are solved. The Lagrangian composition FDF method performs algebraic calculations over an ensemble of notional particles and provides composition fields statistically equivalent to those obtained by Finite Differences numerical solution of partially differential equations (PDE); we applied the Monte Carlo technique to solve a derived system of stochastic differential equations (SDE). The results agreed with the benchmarks, which are simulations based on Finite Differences framework to solve a filtered composition transport equation.
Mestre em Engenharia Mecânica
Maddison, James R. "Adaptive mesh modelling of the thermally driven annulus." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:4b95031b-4517-4aaf-9bb2-4d6d4a145499.
Full textMcDill, Jennifer Moyra Jeane Carleton University Dissertation Engineering Mechanical. "An adaptive mesh-management algorithm for three-dimensional finite element analysis." Ottawa, 1988.
Find full textKunert, Gerd. "Anisotropic mesh construction and error estimation in the finite element method." Universitätsbibliothek Chemnitz, 2000. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200000033.
Full textBooks on the topic "Adaptive mesh method"
Mavriplis, Catherine. Adaptive mesh strategies for the spectral element method. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1992.
Find full textRussell, R. D. (Robert D.), 1945-, ed. Adaptive moving mesh methods. New York, NY: Springer, 2011.
Find full textHuang, Weizhang, and Robert D. Russell. Adaptive Moving Mesh Methods. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-7916-2.
Full textBaden, Scott B. Structured Adaptive Mesh Refinement (SAMR) Grid Methods. New York, NY: Springer New York, 2000.
Find full textBaden, Scott B., Nikos P. Chrisochoides, Dennis B. Gannon, and Michael L. Norman, eds. Structured Adaptive Mesh Refinement (SAMR) Grid Methods. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1252-2.
Full textZumbusch, Gerhard. Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing. Wiesbaden: Vieweg+Teubner Verlag, 2003.
Find full textTomasz, Plewa, Linde Timur Jaan, and Weirs Vincent Gregory 1969-, eds. Adaptive mesh refinement, theory and applications: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods, Sept. 3-5, 2003. Berlin: Springer, 2005.
Find full textBabuska, Ivo, William D. Henshaw, Joseph E. Oliger, Joseph E. Flaherty, John E. Hopcroft, and Tayfun Tezduyar, eds. Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4248-2.
Full textAdaptive mesh stategies for the spectral element method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Find full textCenter, Langley Research, ed. Adaptive mesh stategies for the spectral element method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Find full textBook chapters on the topic "Adaptive mesh method"
Appella, Simone, Chris Budd, and Tristan Pryer. "An Adaptive Conservative Moving Mesh Method." In Mesh Generation and Adaptation, 277–99. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92540-6_13.
Full textZheng, Guoxian, Jieqing Feng, Xiaogang Jin, and Qunsheng Peng. "Adaptive Level Set Method for Mesh Evolution." In Technologies for E-Learning and Digital Entertainment, 1094–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11736639_137.
Full textPaszyński, Maciej, Rafał Grzeszczuk, David Pardo, and Leszek Demkowicz. "Deep Learning Driven Self-adaptive Hp Finite Element Method." In Computational Science – ICCS 2021, 114–21. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77961-0_11.
Full textOñate, E., and J. Castro. "Adaptive Mesh Refinement Techniques for Structural Problems." In The finite element method in the 1990’s, 133–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-10326-5_14.
Full textStürzlinger, W. "Adaptive Mesh Refinement with Discontinuities for the Radiosity Method." In Photorealistic Rendering Techniques, 244–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-87825-1_18.
Full textSelman, A., and E. Hinton. "One Dimensional Transient Dynamic Analysis with Adaptive Mesh Refinement." In The finite element method in the 1990’s, 234–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-10326-5_24.
Full textde Siqueira, Daniel M. B., Markos O. Freitas, Joaquim B. Cavalcante-Neto, Creto A. Vidal, and Romildo J. da Silva. "An Adaptive Parametric Surface Mesh Generation Method Guided by Curvatures." In Proceedings of the 22nd International Meshing Roundtable, 425–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02335-9_24.
Full textFuruyama, Sho-ichi, and Teruo Matsuzawa. "A suitable domain decomposition for the adaptive mesh refinement method." In Lecture Notes in Computer Science, 363–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0094938.
Full textKopyssov, Sergey, and Alexander Novikov. "Parallel Adaptive Mesh Refinement with Load Balancing for Finite Element Method." In Lecture Notes in Computer Science, 266–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44743-1_26.
Full textFish, Jacob, and Vladimir Belsky. "Adaptive Multi-Grid Method for a Periodic Heterogeneous Medium in 1 − D." In Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, 243–65. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4612-4248-2_13.
Full textConference papers on the topic "Adaptive mesh method"
Haber, E., E. Holtham, J. Granek, D. Marchant, D. Oldenburg, C. Schwarzbach, and R. Shekhtman. "An adaptive mesh method for electromagnetic inverse problems." In SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 2012. http://dx.doi.org/10.1190/segam2012-0828.1.
Full textAvdeev, E. V., V. A. Fursov, and V. A. Ovchinnikov. "An adaptive mesh refinement in the finite volume method." In Information Technology and Nanotechnology-2015. Image Processing Systems Institute, Russian Academy of Sciences, Samara, Russia, Samara State Aerospace University, Samara, Russia, 2015. http://dx.doi.org/10.18287/1613-0073-2015-1490-234-241.
Full textHiggins, John C., Oliver M. Browne, and Christoph Brehm. "Adaptive Mesh Refinement for a Sharp Immersed Boundary Method." In AIAA Scitech 2021 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2021. http://dx.doi.org/10.2514/6.2021-0747.
Full textARNEY, DAVID. "An adaptive method with mesh moving and mesh refinement for solving the Euler equations." In 1st National Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1988. http://dx.doi.org/10.2514/6.1988-3567.
Full textLiang, Ruquan, and Satoru Komori. "Computation of a Propagating Interface in Multiphase Flows Using an Adaptive Coupled Level Set Method." In ASME 2002 International Mechanical Engineering Congress and Exposition. ASMEDC, 2002. http://dx.doi.org/10.1115/imece2002-39044.
Full textZhou, Mingdong, Michael Yu Wang, and Li Li. "Structural Optimization Using Adaptive Level Set Method." In ASME/ISCIE 2012 International Symposium on Flexible Automation. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/isfa2012-7110.
Full text"An Adaptive Mesh Refinement Method, Based on Gershgorin Circle Theorem." In 2015 The 5th International Workshop on Computer Science and Engineering-Information Processing and Control Engineering. WCSE, 2015. http://dx.doi.org/10.18178/wcse.2015.04.028.
Full textAdams, Michael D. "An improved content-adaptive mesh-generation method for image representation." In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5650466.
Full textLiu, Dengxue, Youliang Zhang, Shuling Huang, Xiuli Ding, Yuting Zhang, and Jun He. "An adaptive local mesh refinement strategy in numerical manifold method." In 2021 7th International Conference on Hydraulic and Civil Engineering & Smart Water Conservancy and Intelligent Disaster Reduction Forum (ICHCE & SWIDR). IEEE, 2021. http://dx.doi.org/10.1109/ichceswidr54323.2021.9656277.
Full textMa, Yu, Yahui Wang, Kuilong Song, and Qian Sun. "Adaptive Mesh Refinement for Neutron Transfer With Lattice Boltzmann Scheme." In 2017 25th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/icone25-66093.
Full textReports on the topic "Adaptive mesh method"
Guzik, S., and X. Gao. Adaptive Mesh Refinement for Parallel in Time Methods. Office of Scientific and Technical Information (OSTI), May 2021. http://dx.doi.org/10.2172/1784604.
Full textMartín, A., L. Cirrottola, A. Froehly, R. Rossi, and C. Soriano. D2.2 First release of the octree mesh-generation capabilities and of the parallel mesh adaptation kernel. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.010.
Full textHindman, Richard G. Computational Fluid Dynamics Research On Dynamically Adaptive Mesh Methods For Transonic Flows. Fort Belvoir, VA: Defense Technical Information Center, November 1992. http://dx.doi.org/10.21236/ada264833.
Full textSaltzman, J. Patched based methods for adaptive mesh refinement solutions of partial differential equations. Office of Scientific and Technical Information (OSTI), September 1997. http://dx.doi.org/10.2172/584924.
Full textAyoul-Guilmard, Q., S. Ganesh, M. Nuñez, R. Tosi, F. Nobile, R. Rossi, and C. Soriano. D5.3 Report on theoretical work to allow the use of MLMC with adaptive mesh refinement. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.002.
Full textKeith, B., A. Apostolatos, A. Kodakkal, R. Rossi, R. Tosi, B. Wohlmuth, and C. Soriano. D2.3. Adjoint-based error estimation routines. Scipedia, 2021. http://dx.doi.org/10.23967/exaqute.2021.2.022.
Full textFriedman, A., and W. Jr Miller. Modeling, mesh generation and adaptive numerical methods for partial differential equations: IMA summer program. Final report, April 1, 1993--March 31, 1994. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/71368.
Full text