Academic literature on the topic 'Acute Respiratry Distress Syndrome'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acute Respiratry Distress Syndrome.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Acute Respiratry Distress Syndrome"

1

Marraro, Giuseppe A. "Respiratory distress syndrome and acute respiratory distress syndrome." Pediatric Critical Care Medicine 13, no. 2 (March 2012): 219–22. http://dx.doi.org/10.1097/pcc.0b013e31822314b9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dostálová, Vlasta, and Pavel Dostál. "Acute respiratory distress syndrome." Vnitřní lékařství 65, no. 3 (March 1, 2019): 193–203. http://dx.doi.org/10.36290/vnl.2019.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pan, Chun, Ling Liu, Jian-Feng Xie, and Hai-Bo Qiu. "Acute Respiratory Distress Syndrome." Chinese Medical Journal 131, no. 10 (May 2018): 1220–24. http://dx.doi.org/10.4103/0366-6999.228765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rao, MH, A. Muralidhar, and AKrishna Simha Reddy. "Acute respiratory distress syndrome." Journal of Clinical and Scientific Research 3, no. 2 (2014): 114. http://dx.doi.org/10.15380/2277-5706.jcsr.13.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hite, R. Duncan, and Peter E. Morris. "Acute Respiratory Distress Syndrome." Drugs 61, no. 7 (2001): 897–907. http://dx.doi.org/10.2165/00003495-200161070-00001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meyer, Nuala J., Luciano Gattinoni, and Carolyn S. Calfee. "Acute respiratory distress syndrome." Lancet 398, no. 10300 (August 2021): 622–37. http://dx.doi.org/10.1016/s0140-6736(21)00439-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Powers, Kristen. "Acute respiratory distress syndrome." JAAPA 35, no. 4 (April 2022): 29–33. http://dx.doi.org/10.1097/01.jaa.0000823164.50706.27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Matthay, Michael A., and Kathleen D. Liu. "Acute Respiratory Distress Syndrome." Critical Care Clinics 37, no. 4 (October 2021): i. http://dx.doi.org/10.1016/s0749-0704(21)00057-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Elie, Marie C., and Donna Carden. "Acute Respiratory Distress Syndrome." Colloquium Series on Integrated Systems Physiology: From Molecule to Function 5, no. 4 (October 27, 2013): 1–99. http://dx.doi.org/10.4199/c00094ed1v01y201309isp047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Thompson, B. Taylor, Rachel C. Chambers, and Kathleen D. Liu. "Acute Respiratory Distress Syndrome." New England Journal of Medicine 377, no. 6 (August 10, 2017): 562–72. http://dx.doi.org/10.1056/nejmra1608077.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Acute Respiratry Distress Syndrome"

1

Dushianthan, Ahilanandan. "Phospholipid kinetics in acute respiratory distress syndrome." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/374568/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Henderson, William Roy. "Expiratory time constant heterogeneity in experimental acute respiratory distress syndrome." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/58370.

Full text
Abstract:
Purpose This thesis evaluated regional heterogeneity of pulmonary mechanical values within models of lung injury. To this end four separate studies were completed. I evaluated regional expiratory time constant (τE) heterogeneity and tissue strain (ε) in a lung model using functional respiratory imaging (FRI) (Study 1, Chapter 2), and developed an in vivo porcine model of lung injury (Study 2, Chapter 3). This model was used to assess changes in τE due to manipulations of respiratory gas density (Study 3, Chapter 4) and mechanical ventilation parameters (Study 4, Chapter 5). Methods Study 1: Using computerized tomography (CT) images we generated 3-dimensional lung models. These were used calculated global and regional values for resistance, elastance, ε and τE under three different airway pressure conditions. Study 2: Experimental lung injury was induced in 11female Yorkshire X pigs. Necropsy, light and electron microscopy of lung was performed. Study 3: I utilized a multi-compartment model to describe the effects of changes in tidal volume (VT) and positive end-expiratory pressure (PEEP) on lung emptying during passive deflation before and after experimental lung injury in 6 adult female Yorkshire X pigs. Expiratory time constants (τE) were determined by partitioning the expiratory flow-volume (V˙ V) curve into multiple discrete segments. Study 4: Tracheal pressure and flow were measured in 7 pigs before and after experimental lung injury. Gas density was altered by using helium-oxygen (He), sulfur hexafluoride-oxygen (SF6) and nitrogen-oxygen (N2) gas. Conclusions Functional respiratory imaging demonstrates regional variation in both ε and τE. These findings raise questions about the use of whole lung measures of ε and τE to guide clinical management of lung injury (Study 1). I developed a stable model of lung injury using SPA that replicates the light and electron microscopic findings seen in human ARDS (Study 2). A pragmatic strategy using changes in the pattern of expiration described by a multi-compartment model of τE reveals that alterations in and gas density (Study 3) as well as PEEP and VT (Study 4) change expiratory pulmonary mechanics. These observations lay the groundwork for future clinical studies in lung injured patients.
Education, Faculty of
Kinesiology, School of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
3

Camprubí, Rimblas Marta. "Nebulized anti-coagulants as a therapy for acute lung injury and acute respiratory distress syndrome." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/663961.

Full text
Abstract:
La síndrome de distrés respiratori agut (ARDS) és una insuficiència respiratòria aguda amb una incidència global a Europa de 17,9 per cada 100.000 persones-any. Tot i els avenços en el tractament de suport dels pacients amb ARDS, la mortalitat continua sent alta (40%) i els pacients que sobreviuen presenten seqüeles persistents. Actualment no existeix un tractament efectiu. La fisiopatologia de l’ARDS es caracteritza per l’activació de la coagulació i la inflamació a nivell pulmonar, juntament amb el trencament de la barrera alveolar-capil·lar. Això comporta la formació d’edema proteic, la infiltració dels neutròfils cap al compartiment alveolar i l'activació dels macròfags cap a un fenotip pro-inflamatori. Estudis previs en models pre-clínics de lesió pulmonar aguda (ALI) i en pacients amb ARDS han demostrat els efectes beneficiosos del anti-coagulants, tot i que aquests efectes positius es veuen contrarestats pel risc d’hemorràgia sistèmica. Els anti-coagulants podrien ser efectius gràcies a la seva activitat anti-inflamatòria a més de les seves propietats anti-coagulants. Atesa l’estreta interacció entre aquestes vies i la seva influència en la permeabilitat, els anti-coagulants també podrien restaurar la barrera alveolar-capil·lar. La nebulització dels anti-coagulants directament al compartiment alveolar podria augmentar l'eficàcia local i disminuir el risc d'hemorràgia sistèmica. La hipòtesi d'aquesta tesi és que l'heparina nebulitzada i/o antitrombina (ATIII) limitaran la resposta pro-inflamatòria i pro-coagulant pulmonar després de la LPA, promovent, també, la restauració de la barrera alveolar-capil·lar. La co-administració dels anti-coagulants directament als pulmons mitjançant nebulització produirà un efecte sinèrgic que potenciarà les propietats de l'heparina i l’ATIII, reduint la lesió pulmonar i evitant el risc d'hemorràgia sistèmica. Com a part d’aquesta tesi es mostren els resultats de l'acció de l'heparina o l’ATIII específicament en poblacions pulmonars primàries de cèl·lules humanes lesionades i l'administració directa d'heparina i/o ATIII als pulmons per nebulització en un model de rata d’ALI. La nebulització d'heparina i/o d’ATIII atenuen la inflamació i coagulació pulmonar sense produir hemorràgia sistèmica en el model d’ALI. El tractament amb heparina nebulitzada modula els macròfags alveolars mitjançant la reducció dels efectors de TGF-β i NF-κB i la via de coagulació i disminueix el reclutament de neutròfils a l'espai alveolar. L'administració local d'ATIII augmenta els efectes beneficiosos en la coagulació, mentre que la combinació d'ATIII i heparina tenen un major impacte en la reducció de la permeabilitat i la disminució de la infiltració de macròfags en el compartiment alveolar. En estudiar l'acció translacional en humans d'ambdós anti-coagulants en poblacions cel·lulars humanes lesionades aïllades de biòpsies pulmonars, l'heparina disminueix l'expressió de marcadors proinflamatoris en els macròfags alveolars i desactiva la via NF-κB en cèl·lules alveolars tipus II; disminuint l'expressió dels seus mediadors i efectors. D’altra banda, l'ATIII redueix els nivells de mediadors proinflamatoris i augmenta les unions estretes en les cèl·lules alveolars tipus II lesionades. Els estudis actuals demostren que l'heparina nebulitzada i l'ATIII poden ser un tractament potencial per a la ARDS, ja que actuen en diferents vies i processos de la fisiopatologia d’aquesta síndrome. L'administració local d'anti-coagulants atenua la lesió pulmonar disminuint la inflamació, la coagulació i proveeix millores en la permeabilitat sense causar hemorràgia sistèmica.
Acute respiratory distress syndrome (ARDS) is an acute respiratory failure with a global incidence in Europe of 17.9 per 100,000 person-year. Although significant advances have been performed in supportive care of patients with ARDS, mortality remains high (40%) and survivors present persistent sequelae. An effective pharmacological therapy for this syndrome is not available yet. ARDS pathophysiology involves pulmonary activated coagulation and inflammation together with the breakdown of the alveolar-capillary barrier. This leads to proteinaceous edema, neutrophils infiltration into the alveolar compartment and the activation of macrophages towards a pro-inflammatory phenotype. Beneficial effects of anti-coagulants have been proved in pre-clinical models of acute lung injury (ALI) and in ARDS patients, although systemic bleeding offset its positive effects. Anti-coagulants could be effective for their anti-inflammatory activity in addition to their anti-coagulant properties. Moreover, given the cross talk of these pathways and their influence on permeability, anti-coagulants could also restore the alveolar-capillary barrier. Nebulization of anti-coagulants directly into the alveolar compartment might increase local efficacy and decrease the risk of systemic bleeding. The hypothesis of this thesis is that nebulized heparin and/or antithrombin (ATIII) limit the pro-inflammatory and pro-coagulant response in the lungs after ALI, also promoting the restoration of the alveolar-capillary barrier. The co-administration of both anti-coagulants directly into the lungs via nebulization produces a synergistic effect enhancing the properties of heparin and ATIII, reducing lung injury and avoiding the risk of systemic bleeding. As part of this thesis we are showing the results of the action of heparin or ATIII in specific primary human injured cell lung populations and the direct administration of heparin and/or ATIII into the lungs by nebulization in a rat model of ALI. Nebulized heparin and/or ATIII attenuated pulmonary inflammation and coagulation and did not produce systemic bleeding in the model of ALI. Treatment with nebulized heparin modulated alveolar macrophages through reducing TGF-β and NF-κB effectors and the coagulation pathway and decreased the recruitment of neutrophils into the alveolar space. Local administration of ATIII alone increased beneficial effects in coagulation, while combined ATIII and heparin had a higher impact reducing permeability and decreasing the infiltration of macrophages into the alveolar compartment. The translational action into humans of both anti-coagulants was also studied. In injured human cell lung populations isolated from lung biopsies, heparin diminished the expression of pro-inflammatory markers in alveolar macrophages and deactivated the NF-κB pathway in alveolar type II cells; decreasing the expression of its mediators and effectors. Also, ATIII decreased levels of pro-inflammatory mediators and increased levels of tight junctions in injured alveolar type II cells. The current studies prove that nebulized heparin and ATIII might be a potential treatment for ARDS, as they act in different pathways and processes of the pathophysiology of this syndrome. Local administration of anti-coagulants attenuates lung injury decreasing inflammation, coagulation and proving ameliorations on permeability without causing systemic bleeding.
APA, Harvard, Vancouver, ISO, and other styles
4

Peters, Mark John. "The role of platelets in acute inflammation." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Greene, Michelle Kathleen. "Therapeutic evaluation of an immunomodulatory nanoparticle in acute respiratory distress syndrome." Thesis, Queen's University Belfast, 2015. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.680123.

Full text
Abstract:
Acute Respiratory Distress Syndrome (ARDS) is characterised by dysregulated inflammation within the lungs, which can severely compromise pulmonary architecture and function. Despite intensive efforts to develop therapies for ARDS, there are no curative pharmacological interventions at present. Instead, management of ARDS is primarily supportive and the syndrome is associated with substantial mortality, morbidity and healthcare expenditure. In pursuit of an effective ARDS therapy, this thesis explored the potential application of a novel sialic acid-functionalised nanoparticle (SNP). This nanoplatform was designed to actively target sialic acid-binding immunoglobulin-like lectin (Siglec) receptors expressed on monocytes and macrophages, which exert a fundamental role in the negative regulation of inflammatory responses. Initially, SNP were evaluated in a murine model of lipopolysaccharide (LPS)-induced lung injury, where promising outcomes were observed. SNP attenuated several lung injury parameters in this model, including neutrophilia and pro-inflammatory cytokine levels in the pronchoalveolar lavage fluid (BALF), amongst others. Crucially, the translational efficacy of SNP was confirmed in human models of LPS-induced inflammation. SNP inhibited pro-inflammatory cytokine production in cultures of primary human cells implicated in ARDS, whilst concurrently enhancing levels of antiinflammatory interleukin (IL)-10. The protective effects of SNP were also evident in whole human lungs injured with LPS ex vivo, where reductions in pulmonary oedema and BALF cellularity were observed. Collectively, these findings highlight the potential of SNP to combat the inflammatory component of ARDS and fulfill the clinical need for an effective therapy.
APA, Harvard, Vancouver, ISO, and other styles
6

Singh, Nanak. "Incidence and pathogenesis of acute lung injury and the acute respiratory distress syndrome in humans." Thesis, University of East Anglia, 2013. https://ueaeprints.uea.ac.uk/48050/.

Full text
Abstract:
Acute lung injury (ALI) and it’s more severe form, acute respiratory distress syndrome (ARDS), are conditions characterised by neutrophilic pulmonary inflammation, refractory hypoxaemia and diffuse alveolar damage. This work reports on the first UK based prospective study of the incidence and longer term mortality of ALI/ARDS in a general intensive care unit. Results reveal significant under recognition of this condition, which occurred in 12.5% of the ICU population (n=344). Hospital and 2 year mortality rates were 50-55% and 58-61% respectively. Neutrophils are central in the pathogenesis of ALI/ARDS. Neutrophil priming, a reversible process whereby the response of neutrophils to an activating stimulus is up-regulated by prior exposure to a priming agent, is a pre-requisite for neutrophil-mediated tissue damage. Comparisons of the trans-pulmonary gradient of several markers of neutrophil priming were made in different patient groups. Patients with sepsis but healthy lungs (n=6) were found to have a positive trans-pulmonary gradient with respect to neutrophil expression of CD62L, suggesting that CD62L ‘low’ (primed) neutrophils are being de-primed in the pulmonary circulation. In patients with ARDS this gradient was reversed, suggesting that neutrophils are being primed within the lung. This leads to the novel hypothesis that, in conditions such as sepsis, neutrophils primed systemically may be held in the pulmonary capillary bed and there allowed to de-prime, before being released in a quiescent state. Failure of this process may allow net accumulation of primed neutrophils in the lung with consequent lung injury. Currently there are no effective pharmacological therapies for ALI/ARDS, which is compounded by the relative lack of human models. An 18 month, prospective study of the incidence of ALI/ARDS post oesophagectomy revealed an incidence of 31% and suggested intra-operative one lung ventilation as a causative factor. Hence, patients undergoing oesophagectomy present an attractive model for future ALI/ARDS research.
APA, Harvard, Vancouver, ISO, and other styles
7

Quinlan, Gregory John. "Oxidative damage to extracellular proteins and lipids during acute lung injury." Thesis, Imperial College London, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.281713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Aggarwal, Anjna. "Mediators and mechanisms of persistent pulmonary neutrophilia in acute lung injury." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.289880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jordan, Simon James. "The pathogenesis of lung injury following cardiothoracic surgery." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Crag, Thelma R. "Investigation into the mechanisms and treatment of acute living injury and the acute respiratory distress syndrome." Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.534709.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Acute Respiratry Distress Syndrome"

1

Tasaka, Sadatomo, ed. Acute Respiratory Distress Syndrome. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-8371-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Matalon, Sadis, and Jacob Lasha Sznajder, eds. Acute Respiratory Distress Syndrome. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4419-8634-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chiumello, Davide, ed. Acute Respiratory Distress Syndrome. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-41852-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

K, Choi Augustine M., ed. Acute respiratory distress syndrome. 2nd ed. New York: Informa Healthcare USA, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

P, Wiedemann Herbert, and Matthay Michael A, eds. Acute respiratory distress syndrome. Philadelphia: Saunders, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

A, Matthay Michael, ed. Acute respiratory distress syndrome. New York: M. Dekker, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Acute respiratory distress syndrome. 2nd ed. New York: Informa Healthcare USA, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

1942-, Zapol Warren M., and Falke Konrad J, eds. Acute respiratory failure. New York: Dekker, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shein, Steven L., and Alexandre T. Rotta, eds. Pediatric Acute Respiratory Distress Syndrome. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-21840-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

W, Evans Timothy, and Haslett C, eds. ARDS: Acute respiratory distress in adults. London: Chapman & Hall Medical, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Acute Respiratry Distress Syndrome"

1

Locke, Dona. "Acute Respiratory Distress Syndrome." In Encyclopedia of Clinical Neuropsychology, 53–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-57111-9_220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ahmad, Fawaz, and Lauren Koffman. "Acute Respiratory Distress Syndrome." In Textbook of Neuroanesthesia and Neurocritical Care, 367–75. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3390-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Poor, Hooman. "Acute Respiratory Distress Syndrome." In Basics of Mechanical Ventilation, 49–60. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89981-7_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bellister, Seth A., and Michelle K. McNutt. "Acute Respiratory Distress Syndrome." In Common Problems in Acute Care Surgery, 113–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42792-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Marik, Paul Ellis. "Acute Respiratory Distress Syndrome." In Handbook of Evidence-Based Critical Care, 75–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-86943-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Locke, Dona. "Acute Respiratory Distress Syndrome." In Encyclopedia of Clinical Neuropsychology, 1–3. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56782-2_220-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Levy, Zachary D., Todd L. Slesinger, and Brian J. Wright. "Acute Respiratory Distress Syndrome." In Emergency Department Critical Care, 103–12. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-28794-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maffei, Frank A., and Neal J. Thomas. "Acute Respiratory Distress Syndrome." In Pediatric Critical Care Study Guide, 499–513. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-923-9_24.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Yu-Mei, and Guang-Qiang Chen. "Acute Respiratory Distress Syndrome." In Respiratory Monitoring in Mechanical Ventilation, 221–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9770-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Locke, Donaec. "Acute Respiratory Distress Syndrome." In Encyclopedia of Clinical Neuropsychology, 35–36. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-0-387-79948-3_220.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Acute Respiratry Distress Syndrome"

1

Stephenson, B. W., M. J. Swierzbinski, K. Ahmad, O. A. Shlobin, A. W. Brown, S. Aryal, M. Koslow, S. D. Nathan, and C. S. King. "Filgrastim-Induced Acute Respiratory Distress Syndrome." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brenner, J. S. "Nanomedicine for Acute Respiratory Distress Syndrome." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a4505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Shah, P., N. Ahmed, and G. Atkins. "Vaping Associated Acute Respiratory Distress Syndrome." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mehta, Pankaj, Aravind Pothineni, and Michael C. Iannuzzi. "Blastomycosis With Acute Respiratory Distress Syndrome." In American Thoracic Society 2012 International Conference, May 18-23, 2012 • San Francisco, California. American Thoracic Society, 2012. http://dx.doi.org/10.1164/ajrccm-conference.2012.185.1_meetingabstracts.a6908.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Qarajeh, R., M. Alqawasma, M. Younis, and J. Kitchen. "Tetrahydrocannabinol Vaping-Induced Acute Respiratory Distress Syndrome." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a1877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hotchandani, N., and W. Khan. "Acute Respiratory Distress Syndrome as an Acute Complication of Amiodarone." In American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a4846.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Nasim, R., and H. Naseem. "Case of Acute Respiratory Distress Syndrome from Vaping." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a7034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Omonuwa, Kennedy, Mangala Narasimhan, and Paul Mayo. "Acute Respiratory Distress Syndrome (ARDS) In Falciparum Malaria." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a4589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Doran, J., S. I. King, F. Niblock, L. M. Forbes, and S. J. McKinley. "Crisis in Berlin: Acute Respiratory Distress Syndrome or Acute Mitral Regurgitation." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a3398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soto, Graciela J., Angela Frank, David C. Christiani, and MIchelle N. Gong. "Predictors Of Acute Kidney Injury In The Acute Respiratory Distress Syndrome." In American Thoracic Society 2011 International Conference, May 13-18, 2011 • Denver Colorado. American Thoracic Society, 2011. http://dx.doi.org/10.1164/ajrccm-conference.2011.183.1_meetingabstracts.a2650.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Acute Respiratry Distress Syndrome"

1

Vecchi, Vittoria, Thomas Langer, Massimo Bellomi, Cristiano Rampinelli, Kevin K. Chung, Leopoldo C. Cancio, Luciano Gattinoni, and Andriy I. Batchinsky. Low-dose CT for quantitative analysis in acute respiratory distress syndrome. Fort Belvoir, VA: Defense Technical Information Center, August 2013. http://dx.doi.org/10.21236/ada614689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kimmel, E. C., and K. R. Still. The Acute Respiratory Distress Syndrome (ARDS) and Military Relevant Inhalation Injury: A Brief Review. Fort Belvoir, VA: Defense Technical Information Center, December 1997. http://dx.doi.org/10.21236/ada419968.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Song, Yachen Shi, Yifeng Wang, Yan Dong, Min Liu, Xiaowan Li, and Hongyang Xu. Transplumonary pressure guided mechanical ventilation for acute respiratory distress syndrome adult in critical ill:A systematic review and meta analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, April 2022. http://dx.doi.org/10.37766/inplasy2022.4.0084.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

yu, weijie, Qiuying Hou, Wen Zhu, and Qinlai Ying. The efficacy of prone position ventilation in treating pediatric acute respiratory distress syndrome: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2022. http://dx.doi.org/10.37766/inplasy2022.12.0070.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Mengnan, Yanjun Deng, Jun Zha, Lingyan Jiang, Hua Li, Shigang Qiao, and Chen Wang. EIT-derived PEEP Vs other PEEP titration strategies for patients with Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, June 2021. http://dx.doi.org/10.37766/inplasy2021.6.0094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Meng, kairui, yulin You, lijuan Chen, and yicheng Liu. A meta analysis on the efficacy of Chengqi Decoction in the treatment of ARDS/ALI. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2022. http://dx.doi.org/10.37766/inplasy2022.8.0040.

Full text
Abstract:
Review question / Objective: What is the clinical efficacy of combing Chengqi Decoction in the treatment of ARDS/ALI, compared with the conventional treatment of ARDA/ALI with western medicine? Condition being studied: Acute respiratory distress syndrome(ARDS), Acute lung injury(ALI). Eligibility criteria: (1) lacking literature data (e.g., nonpaired studies) (2) duplicate publications; (3) do not have access to the full text (4) conference reports, system reviews, protocols, or abstracts; (5) RCTs with small sample sizes; . (5)The treatment course is less than 6 days (6) Exclude articles with high risk of deviation
APA, Harvard, Vancouver, ISO, and other styles
7

Shao, Shuai, Hanyujie Kang, Quanying Wang, Zhenbei Qian, and Zhaohui Tong. Effect of different levels of PEEP on mortality in ICU patients without acute respiratory distress syndrome: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, February 2021. http://dx.doi.org/10.37766/inplasy2021.2.0052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Statins are of no benefit in acute respiratory distress syndrome. National Institute for Health Research, March 2018. http://dx.doi.org/10.3310/signal-00571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

PCORI Biweekly COVID-19 Scan: Treatments for Patients With Acute Respiratory Distress Syndrome (March 18-31, 2021). Patient-Centered Outcomes Research Institute (PCORI), April 2021. http://dx.doi.org/10.25302/bcs23.2021.4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography