Academic literature on the topic 'Acute Myeloid Leukemia, immunotherapy, chimeric antigen receptor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acute Myeloid Leukemia, immunotherapy, chimeric antigen receptor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acute Myeloid Leukemia, immunotherapy, chimeric antigen receptor"
Tabata, Rikako, SungGi Chi, Junichiro Yuda, and Yosuke Minami. "Emerging Immunotherapy for Acute Myeloid Leukemia." International Journal of Molecular Sciences 22, no. 4 (February 16, 2021): 1944. http://dx.doi.org/10.3390/ijms22041944.
Full textCartellieri, Marc, Irene Michalk, Malte von Bonin, Thomas Krüger, Slava Stamova, Stefanie Koristka, Claudia Arndt, et al. "Chimeric Antigen Receptor-Engineered T Cells for Immunotherapy of Acute Myeloid Leukemia." Blood 118, no. 21 (November 18, 2011): 2618. http://dx.doi.org/10.1182/blood.v118.21.2618.2618.
Full textEpperly, Rebecca, Stephen Gottschalk, and Mireya Paulina Velasquez. "Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond." Children 7, no. 2 (February 17, 2020): 14. http://dx.doi.org/10.3390/children7020014.
Full textHao, Fang, Christine Sholy, Chen Wang, Min Cao, and Xunlei Kang. "The Role of T Cell Immunotherapy in Acute Myeloid Leukemia." Cells 10, no. 12 (December 1, 2021): 3376. http://dx.doi.org/10.3390/cells10123376.
Full textBoyiadzis, Michael M., Ivan Aksentijevich, Daniel A. Arber, John Barrett, Renier J. Brentjens, Jill Brufsky, Jorge Cortes, et al. "The Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immunotherapy for the treatment of acute leukemia." Journal for ImmunoTherapy of Cancer 8, no. 2 (October 2020): e000810. http://dx.doi.org/10.1136/jitc-2020-000810.
Full textTasian, Sarah K. "Acute myeloid leukemia chimeric antigen receptor T-cell immunotherapy: how far up the road have we traveled?" Therapeutic Advances in Hematology 9, no. 6 (May 17, 2018): 135–48. http://dx.doi.org/10.1177/2040620718774268.
Full textPizzitola, Irene, Fernando Anjos-Afonso, Kevin Rouault-Pierre, Francois Lassailly, Sarah Tettamanti, Andrea Biondi, Ettore Biagi, and Dominique Bonnet. "Chimeric Antigen Receptor for Specific Targeting of Acute Myeloid Leukemia." Blood 120, no. 21 (November 16, 2012): 4225. http://dx.doi.org/10.1182/blood.v120.21.4225.4225.
Full textMaucher, Marius, Micha Srour, Sophia Danhof, Hermann Einsele, Michael Hudecek, and Ibrahim Yakoub-Agha. "Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia." Cancers 13, no. 24 (December 7, 2021): 6157. http://dx.doi.org/10.3390/cancers13246157.
Full textCampillo-Davo, Diana, Sébastien Anguille, and Eva Lion. "Trial Watch: Adoptive TCR-Engineered T-Cell Immunotherapy for Acute Myeloid Leukemia." Cancers 13, no. 18 (September 8, 2021): 4519. http://dx.doi.org/10.3390/cancers13184519.
Full textAllison, Michaela, Joel Mathews, Taylor Gilliland, and Stephen O. Mathew. "Natural Killer Cell-Mediated Immunotherapy for Leukemia." Cancers 14, no. 3 (February 8, 2022): 843. http://dx.doi.org/10.3390/cancers14030843.
Full textDissertations / Theses on the topic "Acute Myeloid Leukemia, immunotherapy, chimeric antigen receptor"
PIZZITOLA, IRENE. "Chimeric antigen receptor: a cell therapy based approach for the treatment of acute myeloid leukemia." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2013. http://hdl.handle.net/10281/40113.
Full textROTIROTI, MARIA CATERINA. "Characterization of Chimeric Antigen Receptors (CARs) as a potential tool for the treatment of Acute Myeloid Leukemia (AML)." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2019. http://hdl.handle.net/10281/241327.
Full textAcute Myeloid Leukemia (AML) is still associated with high relapse rates when treated with conventional chemotherapeutic and hematopoietic transplantation regimens. Thus, new treatment options are urgently needed. Immunotherapy adopting T cells engineered to express tumor-directed Chimeric Antigen Receptors (CARs) has shown striking results particularly in the context of B-cell malignancies, sparking a keen interest in extending this approach also to other hematological malignancies such as AML. Among the surface molecules identified, the CD33 and CD123 (IL-3 receptor α subunit) molecules have emerged as the main validated targets in AML and, being broadly expressed on both AML blasts and leukemic stem cells (LSCs), represent suitable antigens to be targeted with CAR-T cells. My PhD project has been focused on the characterization of non-viral Sleeping-Beauty engineered Cytokine-Induced Killer (CIK) cells with both anti-CD123 and CD33 CARs as a potential tool for the treatment of AML. In the context of CD123 targeting, we focused our attention on dissecting the effect of several variables involved in the CAR design, known to modulate CAR T-cell functional profiles, such as CAR binding affinity and expression in relation to the target antigen density. Indeed, while the “on target-off tumor” effect associated to the CD33 targeting is mostly limited to the hematological compartment, the CD123 targeting demands a higher level of caution, due to the potential recognition of low CD123-positive endothelial tissue. By using our model we were able to define both “lytic” and “activation” antigen thresholds showing that, while the early cytotoxic activity is not affected either by CAR expression or by CAR affinity tuning, the CAR expression represents the main variable impacting on later effector functions. Overall, the full dissection of all these variables offers additional knowledge for the proper design of a suitable anti-CD123 CAR for the treatment of AML which can grant a proper balance between efficacy and safety profiles. In parallel, a proper preclinical assessment of novel therapies also demands for accurate efficacy evaluation, particularly considering the AML disease complexity, such as the heterogeneity and the immunosuppressive myeloid microenvironment. Thus, regarding the CD33 targeting, we investigated the efficacy profiles of CD33.CAR CIK cells alone and in combination with conventional chemotherapeutic agents by exploiting a xenograft chemotherapy model to examine the CD33.CAR-CIK cell contribute in the elimination of the chemotherapy resistant/residual AML cells. We found that CD33.CAR CIK cells alone exhibited a potent anti-leukemic activity in vitro and in vivo, significantly reducing AML development when administered as an early treatment approach and delaying the progression of established disease in mice. Moreover, preliminary data showed that CD33.CAR-CIK cells were still capable to target chemotherapy resistant/residual AML cells in mice experiencing disease recurrence after chemotherapy.
ARCANGELI, SILVIA. "Optimization of Chimeric Antigen Receptor (CAR) design strategy for a specific anti-CD123 targeted therapy in pediatric Acute Myeloid Leukemia (AML)." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2016. http://hdl.handle.net/10281/114569.
Full textJetani, Hardikkumar [Verfasser], and Michael [Gutachter] Hudecek. "Chimeric antigen receptor (CAR)-modified T cells targeting FLT3 in acute myeloid leukemia (AML) / Hardikkumar Jetani ; Gutachter: Michael Hudecek." Würzburg : Universität Würzburg, 2021. http://d-nb.info/123075847X/34.
Full textALBERTI, GAIA. "Evaluation of a Tandem CD33-CD146 Chimeric Antigen Receptor (CAR) for the simultaneous targeting of Acute Myeloid Leukemia (AML) blasts and stromal cells in the niche." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382304.
Full textAcute myeloid leukemia (AML) is the most frequently diagnosed leukemia in adults (25%) and accounts for 15-20% cases in pediatric patients. Conventional chemotherapy employing anthracycline and cytarabine represents the gold standard treatment for AML, with rates of complete remission from 60% to 80% in children and from 40% to 60% in adults (>60 years). Despite these high rates, relapse after conventional therapy is common and the estimated five-year survival of AML patients is still below 30%. Indeed, there is an urgency to find alternative therapeutic strategies for relapsed and refractory patients. The recent clinical success of chimeric antigen receptor (CAR) T cell immunotherapy in the context of B-cell malignancies has opened a new route of investigation also towards AML. However, the development of CAR T cell therapy in the context of AML is still in its infancy due to heterogeneity of the disease, the lack of a suitable target antigen and the leukemia protective role of the tumor microenvironment (TME) and no approved CAR T cells study exists for AML treatment yet. Non-viral Sleeping-Beauty (SB) transposon platform was employed to redirect cytokine-induce killer (CIK) cell. In this scenario, we firstly characterize non-viral SB engineered CIK cells with anti-CD146.CAR as a potential tool for the targeting of the bone marrow (BM) microenvironment. We optimized the CAR design structure by testing 6 different CAR molecules, achieving a specific and efficient CD146 expression in the VLVH Long variant. CD146.CAR-CIK cells were subsequently tested in vitro, showing an optimal activation of effector functions (in terms of killing activity, cytokines production and proliferation) when they were engaged against CD146+ target cells. Consequently, we developed a bispecific Tandem CAR (CD33xCD146.CAR-CIKs), which displayed anti-leukemic activity in vitro. It has been extensively proven that BM niche contribute to establish a sanctuary in which leukemic stem cells (LSCs) are able to acquire drug-resistant phenotype, therefore, to better mimicking the human BM niche we tested CD33xCD146.CAR-CIK cells against CD146+ stromal cell lines (HS-27A and HS-5) and primary derived healthy (HD-) and patient-derived (AML-) mesenchymal stromal cells (MSCs). Results showed inhibition of the redirected CAR-CIK cells effector functions, resulting in a drastic decrease of cytokines production and proliferation. The balance between pro- and anti- inflammatory cytokines showed that Th1/Tc1 cytokines production by CD146.CAR-CIK cells was inhibited by the co-culture with stromal cells, while increase Th2/Tc2 cytokines was detected when CD146.CAR-CIK cells were co-cultured with stromal target cells. These results suggest a potential immunosuppressive role of the stromal compartment against CAR-CIK cells. According to these results, we hypothesized that BM stromal cells can potentially exert an immunomodulatory effect on T cells, suggesting that the niche microenvironment may be involved in the regulation of CAR T cells therapy effectiveness. Indeed, the targeting of CD146 on stroma represents a “proof-of-principle” that stromal components of leukemic microenvironment may be attractive targets for CAR T based immunotherapy. To minimize “off-tumor” toxicity, we are looking for a specific surface target antigen selectively overexpressed on AML stromal cells, with minimal expression in healthy stroma and possibly involved in leukemia/niche interactions. The newly marker of interest will be coupled to the CD33.CAR and this bispecific CAR will be compared with CD33xCD146.CAR construct, evaluating their efficacy and safety profiles both in vitro and in vivo.
Jetani, Hardikkumar. "Chimeric antigen receptor (CAR)-modified T cells targeting FLT3 in acute myeloid leukemia (AML)." Doctoral thesis, 2021. https://doi.org/10.25972/OPUS-17909.
Full textAdoptive Immuntherapie, die Chimäre- Antigenrezeptor (CAR) –modifizierte, gegen CD19 gerichtet T-Zellen verwendet, hat eine bemerkenswerte therapeutische Wirksamkeit gegen B-Zell-Leukämien und -Lymphome und großes therapeutisches Potenzial für die Behandlung anderer hämatologischer Erkrankungen gezeigt. Die Akute Myeloische Leukämie (AML) ist hierbei eine Entität, für die es bisher an wirksamen und kurativen Therapien fehlt und für die die Entwicklung einer potentiell kurativen CAR-T-Zellimmuntherapie von großer Bedeutung ist. FMS-like tyrosine kinase 3 (FLT3) ist ein homodimeres Transmembranprotein, das von AML-Blasten uniform exprimiert wird. FLT3 spielt eine wichtige Rolle beim Überleben von AML-Blasten und ist ein Schlüsselfaktor in der Leukämie-Genese bei AML-Fällen mit interner Tandem-Duplikation (FLT3-ITD) und Tyrosinkinase-Domänen (TKD)-Mutationen. Diese Eigenschaften legen die Vermutung nahe, dass FLT3 ein ausgezeichnetes Target für die CAR-T-Zell-Immuntherapie darstellen könnte. Daher setzten wir dort an und modifizierten humane CD4+ und CD8+ T-Zellen, um FLT3-spezifische CARs zu exprimieren, und konnten nachweisen, dass diese eine starke Reaktivität gegen AML-Zelllinien und primäre AML-Blasten besitzen, die entweder den FLT3-Wildtyp oder FLT3-ITD exprimieren. Weiterhin konnten wir zeigen, dass FLT3 CAR-T-Zellen in AML-Xenograft-Modellen eine starke anti-Leukämie-Aktivität besitzen und vollständige Remissionen hervorrufen können. Zudem gelang der Nachweis, dass die FLT3-Expression auf FLT3-ITD+ AML-Zellen durch FLT3-Inhibitoren verstärkt werden kann, was zu einer erhöhten Erkennung durch die CARs und einer verbesserten Wirksamkeit von FLT3-CAR-T-Zellen führt. Wir konnten dieses Prinzip mit drei verschiedenen FLT3-Inhibitoren belegen, die sich in unterschiedlichen Stadien der klinischen Entwicklung befinden, d. h. aus einer Klinischen Phase II / III-Studie (Crenolanib, Quizartinib) und einem klinisch zugelassenen Inhibitor (Midostaurin). Darüber hinaus beobachteten wir die stärkste anti-Leukämie-Aktivität von FLT3 CAR-T-Zellen in einer Kombination mit Crenolanib in vivo. Es ist bekannt, dass FLT3 von normalen hämatopoetischen Stamm- und Vorläuferzellen exprimiert wird. Wir untersuchten die FLT3-Expression in normalen hämatopoetischen Stammzellen (HSCs) mittels Durchflusszytometrie und bestätigten im Vergleich zu AML-Zellen eine niedrigere FLT3-Expression auf HSCs und Vorläuferzellen. Wie erwartet, zeigte sich, dass FLT3 CAR-T-Zellen normale HSCs in vitro und in vivo erkennen und die normale Hämatopoese beeinträchtigen, was darauf hindeutet, dass eine adoptive Therapie mit FLT3 CAR-T-Zellen eine sukzessive CAR-T-Zell-Depletion und allogene HSC-Transplantation erfordert, um das hämatopoetische System wiederaufzubauen. Darüber hinaus erhöht die Behandlung mit einem FLT3-Inhibitor nicht die FLT3-Expression auf den HSCs. Dementsprechend konnten wir aufzeigen, dass die Depletion von FLT3 CAR-T Zellen mit einer induzierbaren Caspase 9 (iCasp9) als „Sicherheitsschalter“ möglich ist. Zusammenfassend etablieren unsere Daten FLT3 als ein neuartiges CAR-Target in der Behandlung von AML mit besonderer Relevanz für die Hochrisiko-FLT3-ITD+ AML. Unsere Daten zeigen, dass FLT3 CAR-T-Zellen synergistisch mit FLT3-Inhibitoren in FLT3-ITD+ AML wirken, d.h. eine FLT3-Inhibitoren-induzierte Hochregulation von FLT3 in FLT3-ITD+ AML-Zellen bewirkt und dies die Erkennung und Eliminierung durch FLT3-CAR-T-Zellen verstärkt. Durch ihre Eigenschaft der Erkennung von normalen HSCs ist die klinische Verwendung von FLT3 CAR-T-Zellen wahrscheinlich auf ein definiertes therapeutisches Fenster beschränkt und muss durch eine anschließende CAR-T-Zell-Depletion und eine allogene HSCT zur Rekonstitution des hämatopoetischen Systems ergänzt werden. In Anbetracht der Daten scheint es sinnvoll, FLT3-CAR-T-Zellen in Kombination mit FLT3-Inhibitoren zu verwenden, um die anti-leukämische Wirksamkeit von FLT3-CAR-T-Zellen bei Hochrisiko-FLT3-ITD+ AML-Patienten zu erhöhen und das Risiko eines Rückfalls mit FLT3-negativen AML-Varianten zu verringern, die sich sonst therapiebedingt entwickeln könnten. Die Daten stellen ein Proof-of-Concept für den synergistischen Einsatz von CAR-T-Zell-Immuntherapie und niedermolekularen Inhibitoren dar, der eine klinische Evaluation dieser Kombinationsbehandlung bei Hochrisikopatienten mit FLT3-ITD+ AML erstrebenswert macht
Tremblay-Laganière, Camille. "Thérapie génique ciblant CD33 dans les cellules souches hématopoïétiques, une approche innovatrice pour le traitement de la leucémie myéloïde aiguë." Thèse, 2018. http://hdl.handle.net/1866/22328.
Full textBook chapters on the topic "Acute Myeloid Leukemia, immunotherapy, chimeric antigen receptor"
Kenderian, Saad S., Carl H. June, and Saar Gill. "Generating and Expanding Autologous Chimeric Antigen Receptor T Cells from Patients with Acute Myeloid Leukemia." In Methods in Molecular Biology, 267–76. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7142-8_17.
Full textConference papers on the topic "Acute Myeloid Leukemia, immunotherapy, chimeric antigen receptor"
Gottschlich, A., M. Thomas, R. Grünmeier, S. Lesch, L. Rohrbacher, V. Igl, D. Briukhovetska, et al. "P09.01 Single-cell transcriptomic atlas-guided development of chimeric antigen-receptor (CAR) T cells for the treatment of acute myeloid leukemia." In iTOC9 – 9th Immunotherapy of Cancer Conference, September 22–24, 2022 – Munich, Germany. BMJ Publishing Group Ltd, 2022. http://dx.doi.org/10.1136/jitc-2022-itoc9.57.
Full textKenderian, Saad S., Marco Ruella, Olga Shestova, Michael Klichinsky, John Scholler, Decheng Song, David L. Porter, Martin Carroll, Carl H. June, and Saar Gill. "Abstract 3139: CD33 directed chimeric antigen receptor T cell therapy as a novel regimen prior to allogeneic stem cell transplantation in acute myeloid leukemia." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3139.
Full textSallman, David A., Jason B. Brayer, Xavier Poire, Tessa Kerre, Philippe Lewalle, Eunice S. Wang, Bikash Verma, et al. "Abstract CT129: The THINK clinical trial: Preliminary evidence of clinical activity of NKG2D chimeric antigen receptor T cell therapy (CYAD-01) in acute myeloid leukemia." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-ct129.
Full text