Academic literature on the topic 'Actomyosine – Contraction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Actomyosine – Contraction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Actomyosine – Contraction"
Murrell, Michael, and Margaret L. Gardel. "Actomyosin sliding is attenuated in contractile biomimetic cortices." Molecular Biology of the Cell 25, no. 12 (June 15, 2014): 1845–53. http://dx.doi.org/10.1091/mbc.e13-08-0450.
Full textSlabodnick, Mark M., Sophia C. Tintori, Mangal Prakash, Pu Zhang, Christopher D. Higgins, Alicia H. Chen, Timothy D. Cupp, et al. "Zyxin contributes to coupling between cell junctions and contractile actomyosin networks during apical constriction." PLOS Genetics 19, no. 3 (March 28, 2023): e1010319. http://dx.doi.org/10.1371/journal.pgen.1010319.
Full textWirshing, Alison C. E., and Erin J. Cram. "Myosin activity drives actomyosin bundle formation and organization in contractile cells of the Caenorhabditis elegans spermatheca." Molecular Biology of the Cell 28, no. 14 (July 7, 2017): 1937–49. http://dx.doi.org/10.1091/mbc.e17-01-0029.
Full textKrueger, Daniel, Theresa Quinkler, Simon Arnold Mortensen, Carsten Sachse, and Stefano De Renzis. "Cross-linker–mediated regulation of actin network organization controls tissue morphogenesis." Journal of Cell Biology 218, no. 8 (June 28, 2019): 2743–61. http://dx.doi.org/10.1083/jcb.201811127.
Full textMartin, Adam C., Michael Gelbart, Rodrigo Fernandez-Gonzalez, Matthias Kaschube, and Eric F. Wieschaus. "Integration of contractile forces during tissue invagination." Journal of Cell Biology 188, no. 5 (March 1, 2010): 735–49. http://dx.doi.org/10.1083/jcb.200910099.
Full textYi, Jason, Xufeng S. Wu, Travis Crites, and John A. Hammer. "Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells." Molecular Biology of the Cell 23, no. 5 (March 2012): 834–52. http://dx.doi.org/10.1091/mbc.e11-08-0731.
Full textLippincott, J., K. B. Shannon, W. Shou, R. J. Deshaies, and R. Li. "The Tem1 small GTPase controls actomyosin and septin dynamics during cytokinesis." Journal of Cell Science 114, no. 7 (April 1, 2001): 1379–86. http://dx.doi.org/10.1242/jcs.114.7.1379.
Full textSzymanski, P. T., J. D. Strauss, G. Doerman, J. DiSalvo, and R. J. Paul. "Polylysine activates smooth muscle actin-myosin interaction without LC20 phosphorylation." American Journal of Physiology-Cell Physiology 262, no. 6 (June 1, 1992): C1446—C1455. http://dx.doi.org/10.1152/ajpcell.1992.262.6.c1446.
Full textChew, Ting Gang, Junqi Huang, Saravanan Palani, Ruth Sommese, Anton Kamnev, Tomoyuki Hatano, Ying Gu, Snezhana Oliferenko, Sivaraj Sivaramakrishnan, and Mohan K. Balasubramanian. "Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction." Journal of Cell Biology 216, no. 9 (June 27, 2017): 2657–67. http://dx.doi.org/10.1083/jcb.201701104.
Full textVerPlank, Lynn, and Rong Li. "Cell Cycle-regulated Trafficking of Chs2 Controls Actomyosin Ring Stability during Cytokinesis." Molecular Biology of the Cell 16, no. 5 (May 2005): 2529–43. http://dx.doi.org/10.1091/mbc.e04-12-1090.
Full textDissertations / Theses on the topic "Actomyosine – Contraction"
Özgüç, Özge. "Mechanical and Molecular Regulation of Periodic Cortical Waves of Contraction." Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS482.
Full textDuring pre-implantation development, the mammalian embryo forms the blastocyst, which is the structure embedding the embryo into the uterus. The shaping of the blastocyst relies in large part on contractile forces generated by the actomyosin cortex. In the mouse, on timescales of seconds, we observe pulses of actomyosin contractions traveling periodically around the cell perimeter. We call this phenomenon periodic cortical waves of contraction (PeCoWaCo), a fascinating and poorly understood manifestation of contractility. In this study, we take advantage of the slow development of the mouse embryo to study thousands of contraction pulses and of the robustness of the mouse embryo to size manipulation to explore the biophysical properties of PeCoWaCo during the cleavage stages preceding early mammalian morphogenesis. We find that, during cleavage stages, periodic movements appear occasionally at the zygote and the 2-cell stage and become systematic after the 2nd round of cleavage divisions. Interestingly, the period of oscillations progressively decreases from 200 s at the zygote stage to 80 s at the 8-cell stage. Since cells becomes successively smaller with successive cleavage divisions, cell size could be an important determinant in the initiation and regulation of PeCoWaCo. We manipulate cell size on a broad range of cell radii (10-40 µm) using fragmentation and fusion of cells and find that the initiation, persistence or properties of PeCoWaCo do not depend on cell size. Following the period of PeCoWaCo, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. Therefore, during cleavage stages, cortical softening awakens zygotic contractility before preimplantation morphogenesis. In addition, by manipulating actomyosin contractility using mutants and drugs, we showed that the period of PeCoWaCo can be tuned by F-actin polymerization rate and myosin motor activity. Altogether our results on biophysical and molecular aspects of PeCoWaCo help us understand how actomyosin contractility awakens before preimplantation morphogenesis and how it is regulated both mechanically and molecularly
İmplantasyon öncesi gelişim sırasında, memeli embriyosu, embriyoyu rahim içineyerleştiren yapı olan blastosisti oluşturur. Blastosistin şekillendirilmesi büyük ölçüdeaktomiyozin korteks tarafından oluşturulan kasılma kuvvetlerine dayanır. Farede, saniyelikzaman ölçeklerinde, hücre çevresinde periyodik olarak dolaşan aktomiyozin kasılmalarınındarbeleri gözlemlenebilir. Bu fenomene, kasılmanın büyüleyici ve yeterince anlaşılmamış birtezahürü olan periyodik kortikal kasılma dalgaları (periodic cortical waves of contraction:PeCoWaCo) diyoruz. Bu çalışmada, erken memeli morfogenezinden önceki bölünmeaşamaları sırasında PeCoWaCo'nun biyofiziksel özelliklerini keşfetmek ve binlerce kasılmadarbesini inceleyebilmek için fare embriyosunun yavaş gelişiminden ve fare embriyosununboyut manipülasyonuna dayanıklılığından faydalandık.Bölünme aşamaları sırasında, zigotta ve 2 hücreli aşamada periyodik hareketlerinzaman zaman ortaya çıktığını ve ikinci tur bölünmeden sonra bu hareketlerin sistematik halegeldiğini bulduk. İlginç bir şekilde, salınım periyodunun zigot aşamasında 200 saniyeden, 8hücreli aşamada 80 saniyeye sistematik olarak azaldığını gözlemledik. Hücreler ardışıkbölünmeleriyle sürekli küçüldüğünden, hücre boyutu PeCoWaCo'nun başlatılmasında vedüzenlenmesinde önemli bir belirleyici olabilir. Hücreleri geniş bir hücre yarıçapı aralığında(10-40 μm) küçük parçalara bölerek veya birbirleriyle birleştirerek PeCoWaCo'nunbaşlatılmasının, kalıcılığının veya genel özelliklerinin hücre boyutuna bağlı olmadığını bulduk.PeCoWaCo periyodunu takiben, embriyo hücrelerinin zigottan 8 hücreli aşamaya kadar yüzeygerilimini kademeli olarak azalttığını ve yapay olarak korteksleri yumuşatılan hücrelerinPeCoWaCo'yu zamanından önce geliştirdiğini keşfettik. Bu sonuçlarla bölünme aşamalarısırasında, kortikal yumuşama, ilke implantasyon öncesi morfogenezinden önce zigotikkasılmaları uyandırdığını gösterdik. Ayrıca, genetik mutantlar ve kimyasallar kullanarakaktomiyozin kasılmasını manipüle ederek, PeCoWaCo periyodunun F-aktin polimerizasyonhızı ve miyozin motor aktivitesinin düzenlenmesi ile ayarlanabileceğini gösterdik.Sonuç olarak, PeCoWaCo'nun biyofiziksel ve moleküler yönleriyle ilgili bulgularımız,aktomiyosin kontraktilitesinin implantasyon öncesi morfogenezinden önce nasıl uyandığını,ayrıca hem mekanik hem de moleküler olarak nasıl düzenlendiğini anlamamıza yardımcı olur
Elmezgueldi, Mohammed. "Régulation de la contraction du muscle lisse par les protéines associées au filament fin : caractérisation des interfaces actine-calponine et actine-caldesmone." Montpellier 1, 1994. http://www.theses.fr/1994MON13525.
Full textChaussepied, Patrick. "Transduction de l'énergie par le complexe actomyosine dans le muscle squelettique : intercommunication entre le site ATPasique et les sites de reconnaissance de l'actine." Montpellier 2, 1986. http://www.theses.fr/1986MON20042.
Full textEnnomani, Hajer. "Contractile response of biomimetic actomyosin systems." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAY054/document.
Full textCellular contractility – the internal generation of force by a cell orchestrated by theactomyosin machinery – is a critical regulator of a wide range of cellular processes includingthe establishment of cell polarity, cell migration, tissue integrity or morphogenesis duringdevelopment. Disruptions of the force generation and of mechanical properties of living cellsaffect their physiological functions and consequently can lead to pathological defectsincluding cancer. However, the parameters or mechanisms that drive force production by theactin-myosin system and their mode of regulation in cells are not fully understood. During myPhD, I used biomimetic system made of a minimum set of proteins to study the properties ofactomyosin contractile systems. The goal was to understand how/if the actin architecture canmediate the contractile response. For this purpose, I was first interested in building a varietyof actin organization that will serve next as substrate for myosin during contraction. Tounderstand the general principles that dictate geometrically-controlled actin assembly, wedeveloped a model that allowed us to identify key parameters including filaments/filamentsinteraction, filament mechanical property and contact activation between actin filamentsgrowing from the adjacent pattern and the nucleation area. These actin templates were usedthen to evaluate the response of oriented actin structures to myosin-induced contractility. Idemonstrated that crosslinking level modulates the myosin-induced deformation of actinnetworks according to their architecture. I showed also that crosslinkers are necessary tosustain myosin-driven deformation and force production of dynamic actin networks. Inaddition, we developed numerical simulation in order to relate the observed myosin-drivenactin deformation with the underlying microscopic mechanism. This work revealed howdiverse cellular actin networks contract differently to a define set of biochemical conditionsand hence how dynamic rearrangements can modulate network contractility
Venkova, Larisa. "Régulation du volume cellulaire en réponse aux déformations." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS396/document.
Full textThe field of biomechanics significantly progressed in the last two decades. The importance of the feedback between biochemical signaling and physical properties was revealed in many studies. Cells within tissues constantly generate and experience mechanical forces. Biochemical perturbations inside the cells as well as alterations in the mechanical environment can shift the tiny balance of normal physiological state and lead to pathologies, e.g. cancer. Although the mechanical properties of individual cells can alter when they are within the tissues, the understanding of single cell mechanics is still important. Differentiation, immune cell migration, and cancer invasion strongly depend on the mechanical properties of individual cells. Mechanical deformations can lead to a change in cell surface area and volume. We are particularly interested in single mammalian cell volume regulation in the context of deformations of different timescales. For the moment, volume regulation in this context was out from the research interest, probably due to the difficulties of accurate measurements, and cell volume often considered as a constant parameter. We developed a method for cell volume measurements based on a fluorescent exclusion that allowed us to perform precise volume measurements of individual live cells. In the present study, we mainly focused on cell volume regulation while dynamic spreading on a substrate (timescale – minutes). We demonstrated that there are different regimes for volume regulation while spreading: cells decrease, increase or do not change volume, and a type of the regime depends on the state of the actomyosin cortex and spreading speed. We obtained that faster-spreading cells tend to lose more volume. Our hypothesis is that during fast Arp2/3-driven lamellipodia extension actin pull on the membrane that generates tension and activation of ion transport and regulatory volume loss. Inhibition of actin polymerization or Arp2/3-dependent actin branching decreases spreading speed and volume loss. Next, we showed that inhibition of contractility increases spreading speed and volume loss. However, inhibition of Arp2/3 complex in cells with low contractility leads to fast spreading without volume loss. Our explanation is that inhibition of Arp2/3 induces cell blebbing and even fast deformation does not lead to volume loss as a cell can relax tension by membrane unfolding. We also showed that volume regulation in response to fast mechanical compression (timescale – milliseconds) independent of adhesion also depends on the actomyosin cortex state. Control cells lose up to 30% of volume under confinement, as the cell membrane is attached to the cortex and cannot be unfolded in response to the tension increase. Disruption of actin cortex leads to membrane detachment and prevents volume loss under confinement. Additionally, we showed that cell volume response to the osmotic shock (timescale – seconds) is more complex than it used to be known in the literature. For instance, our data indicate that at the level of individual cells initial volume response to the change of external osmolarity is not a uniform passive process. Using osmotic shock technique, we also confirmed that cells have a large excess of membrane folded in reservoirs. Taken together, our data show that cell volume and surface area are coupled through surface tension homeostasis and as deformations induce surface tension increase, they lead to change volume and surface area
Mendes, Pinto Inês. "Spatiotemporal mechanisms for actomyosin ring assembly and contraction in budding yeast cell division." Doctoral thesis, Universidade Nova de Lisboa. Instituto de Tecnologia Química e Biológica, 2012. http://hdl.handle.net/10362/8571.
Full textAnimal and yeast cells use a contractile ring that is attached to the plasma membrane to create a cleavage furrow that partitions a cell into two in the latest step of cell division. The contractile ring is a network of actin and myosin-II motor filaments embedded in a complex and compact protein core structure at the cell division site. In the absence of myosin-II, cells fail to assemble the contractile ring pursuing death or rapidly evolving divergent pathways to restore growth and cytokinesis, an event associated to aneuploidy, a common trait in cancer development and progression. The molecular mechanisms underlying myosin-II localization and function at the cell division site with actin ring assembly and contraction remain poorly understood. Based on analogy to the striated muscle, it has been classically proposed that contractile stress in the actomyosin ring is generated via a “sliding filament” mechanism in which bipolar myosin-II motor filaments walk along actin filaments, within organized sarcomere-like arrays. However, ultra-structural and genetic studies in different cellular systems have shown that contractile rings are more complex than striated muscles, and in some examples the motor activity can actually be dispensable for the contractibility of the cytokinetic ring.(...)
PhD fellowship awarded by the Rong Li laboratory and a previous awarded fellow of the GABBA PhD program at the Faculty of Medicine, University of Porto, Portugal and the Portuguese Foundation for Science and Technology, Portugal. Apoio financeiro da Fundação para a Ciência e Tecnologia e do Fundo Social Europeu no âmbito do Quadro Comunitário de Apoio, BD n°SFRH/BD/11760/2003.
Redwood, Charles Stuart. "Identification of the functional domains of smooth muscle caldesmon." Thesis, Imperial College London, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243858.
Full textKrüger, Daniel [Verfasser], and Ulrich [Akademischer Betreuer] Schwarz. "Regulation of Actomyosin Contraction during Tissue Morphogenesis: Genes and Mechanics / Daniel Krüger ; Betreuer: Ulrich Schwarz." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://d-nb.info/1196097712/34.
Full textKrüger, Daniel [Verfasser], and Ulrich S. [Akademischer Betreuer] Schwarz. "Regulation of Actomyosin Contraction during Tissue Morphogenesis: Genes and Mechanics / Daniel Krüger ; Betreuer: Ulrich Schwarz." Heidelberg : Universitätsbibliothek Heidelberg, 2019. http://nbn-resolving.de/urn:nbn:de:bsz:16-heidok-271886.
Full textSumi, Angughali Aheto 1986. "On contractile actomyosin waves and their role in junctional remodeling during epithelial constriction." Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/565600.
Full textLos tejidos epiteliales llevan a cabo una remodelación extensiva durante el desarrollo embrionario. Estudios recientes han revelada que, en un sinnumero de procesos de desarrollo embrionario, la remodelación epitelial se asocia con pulsaciones de áreas en células individuales y con flujos corticales de actomiosina. Durante el cierre dorsal de Drosophila, la amnioserosa (AS), un tejido contractil que cubre la región dorsal del embrión, se observan pulsaciones contráctiles en células individuales y flujos regulares de actomiosina durante la reducción de la superficial apical celular. Al día de hoy, no se conoce el mecanismo biofísico que produce estas pulsaciones celulares ni y el papel que tienen las oscilaciones contráctiles de actomiosina en el epitelio del cierre dorsal embrionario. En este proyecto, se desarrolló un modelo biofísico para entender estas oscilaciones celulares. El modelo se basa en propiedades intrínsecas de la célula como la rotación de la corteza celular, la contractilidad activa mediante moléculas productoras de fuerza y la elasticidad celular. Utilizando éste modelo, se muestra que acoplando estas tres propiedades clave es suficiente para generar oscilaciones celulares estables. Además, dentro de este marco, se han generado oscilaciones mediante el acoplamiento de varias unidades oscilantes y la introducción de un término de difusión para considerar el intercambio de moléculas productoras de fuerza entre las unidades. A continuación, se investigó el papel de estas oscilaciones contráctiles de actomiosina en la remodelación de tejidos. Como resultado, se desarrolla una técnica innovadora que permite aplicar extensión mecánica al tejido de AS y estudiar la respuesta celular ante tal estrés. Con este método, se pueden detener las pulsaciones contráctiles y los flujos de actomiosina en células de la AS. Se muestra que este arresto celular está asociado con la relocalización de actina y miosina de la región central de las células hacia las uniones adherentes intercelulares para mantener su integridad durante la extension epitelial. Esta relocalización de miosina se correlaciona directamente con la tensión en uniones intercelulares y no ocurre en células en las que el reciclaje cellular a través de endocitosis se ha bloqueado. El resultado es un exceso en la acumulación de membrana plasmática en células oscilantes que no responden a la extension epitelial. Tras liberar al tejido de la extension epithelial, la miosina se relocaliza a la área central de las células y las pulsaciones continuan. Esto indica que las células pueden cambiar entre dos estados según la tension aplicada: uno dónde las células muestran oscilaciones asociadas con pulsaciones contráctiles de actomiosina, y otra donde la forma celular se establece con la localización preferente de miosina en las uniones intercelulares. Además, tras liberar el tejido de una extensión de alta duración (>10mins), las uniones intercelulares sufrieron corrugaciones. La localización consistente de oscilaciones de miosina en las regions corrugadas, resulta en una extension y reducción en la longitud de las uniones intercelulares. Además, durante el cierre dorsal, las células de la AS reducen sus areas constantemente, mientras mantienen uniones intercelulares de espesor consistente y longitud relativa a su área. Esto no es el caso cuando la endocitosis se bloquea o la actividad de miosina se reduce. Nuestros resultados no solo muestran las propiedades fundamentales de la corteza cellular de actomiosina, también indican el papel de oscilaciones contráctiles de miosina en la remodelación de uniones intercelulares durante la constricción de la AS.
Books on the topic "Actomyosine – Contraction"
1933-, Sugi Haruo, Pollack Gerald H, International Union of Physiological Sciences., and Symposium on Mechanisms of Work Production and Work Absorption in Muscle (1997 : Hakone-machi, Japan), eds. Mechanisms of work production and work absorption in muscle. New York: Plenum Press, 1998.
Find full text1945-, Squire John, ed. Molecular mechanisms in muscular contraction. London: Macmillan, 1989.
Find full text1945-, Squire John, ed. Molecular mechanisms in muscular contraction. Boca Raton, Fla: CRC Press, 1990.
Find full text1945-, Squire John, ed. Molecular mechanisms in muscular contraction. Boca Raton, Fla: CRC Press, 1989.
Find full textE, Alia Emmanuele, Arena Nicolò, Russo Matteo A, and University of Asssare. Institute of Histology and General Embryology., eds. Contractile proteins in muscle and non-muscle cell systems: Biochemistry, physiology, and pathology. New York: Praeger, 1985.
Find full textKurskiĭ, Mikhail Dmitrievich. Reguli͡a︡t͡s︡ii͡a︡ vnutrikletochnoĭ kont͡s︡entrat͡s︡ii kalʹt͡s︡ii͡a︡ v mysht͡s︡akh. Kiev: Nauk. dumka, 1987.
Find full textE, Alia Emanuele, Arena Nicolò, Russo Matteo A, Università degli studi di Sassari. Institute of Histology and General Embryology., and Symposium on Biochemistry, Physiology, and Pathology of Contractile Proteins in Muscle and Nonmuscle Cell Systems (1st : 1983 : Sassari, Italy), eds. Contractile proteins in muscle and non-muscle cell systems: Biochemistry, physiology, and pathology. New York: Praeger, 1985.
Find full text(Editor), Haruo Sugi, and Gerald H. Pollack (Editor), eds. Mechanisms of Work Production and Work Absorption in Muscle (Advances in Experimental Medicine and Biology). Springer, 1999.
Find full text1945-, Squire John, ed. Molecular mechanisms in muscular contraction. Basingstoke: Macmillan, 1990.
Find full textBook chapters on the topic "Actomyosine – Contraction"
Rall, Jack A. "Setting the Stage: Myosin, Actin, Actomyosin and ATP." In Mechanism of Muscular Contraction, 1–27. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2007-5_1.
Full textCurtin, N. A., T. G. West, M. A. Ferenczi, Z. H. He, Y. B. Sun, M. Irving, and R. C. Woledge. "Rate of Actomyosin ATP Hydrolysis Diminishes During Isometric Contraction." In Advances in Experimental Medicine and Biology, 613–26. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-9029-7_54.
Full textYanagida, Toshio, Akihiko Ishijima, Kiwamu Saito, and Yoshie Harada. "Coupling Between Atpase and Force-Generating Attachment-Detachment Cycles of Actomyosin In Vitro." In Mechanism of Myofilament Sliding in Muscle Contraction, 339–49. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2872-2_33.
Full text"Contractile Actomyosin Ring (CAR)." In Encyclopedia of Systems Biology, 498. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_100278.
Full textMurrell, Michael, Todd Thoresen, and Margaret Gardel. "Reconstitution of Contractile Actomyosin Arrays." In Methods in Enzymology, 265–82. Elsevier, 2014. http://dx.doi.org/10.1016/b978-0-12-397924-7.00015-7.
Full textRöper, Katja. "Integration of Cell–Cell Adhesion and Contractile Actomyosin Activity During Morphogenesis." In Current Topics in Developmental Biology, 103–27. Elsevier, 2015. http://dx.doi.org/10.1016/bs.ctdb.2014.11.017.
Full textGoldberg, Michael L., Kristin C. Gunsalus, Roger E. Karess, and Fred Chang. "Cytokinesis." In Dynamics of Cell Division, 270–316. Oxford University PressOxford, 1998. http://dx.doi.org/10.1093/oso/9780199636839.003.0009.
Full textZacheus Cande, W. "[45] Preparation of N-ethylmaleimide-modified heavy meromyosin and its use as a functional probe of actomyosin-based motility." In Structural and Contractile Proteins Part C: The Contractile Apparatus and the Cytoskeleton, 473–77. Elsevier, 1986. http://dx.doi.org/10.1016/0076-6879(86)34113-2.
Full textMatsuda, Miho, and Sergei Y. Sokol. "Xenopus neural tube closure: A vertebrate model linking planar cell polarity to actomyosin contractions." In Current Topics in Developmental Biology, 41–60. Elsevier, 2021. http://dx.doi.org/10.1016/bs.ctdb.2021.04.001.
Full textConference papers on the topic "Actomyosine – Contraction"
Owen, Drew, and Evan Zamir. "The Role of Actomyosin Contractility During Early Avian Gastrulation." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19574.
Full textWang, Hailong, Alexander A. Svoronos, Thomas Boudou, Jeffrey R. Morgan, Christopher S. Chen, and Vivek B. Shenoy. "Necking and Failure of Constrained Contractile 3D Microtissues: Role of Geometry and Stiffness." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14091.
Full textZelenska, Kateryna S., Nataliya E. Nurishchenko, Tetyana V. Beregova, Olga V. Shelyuk, and Yuliya V. Tseysler. "Age-related deterioration of contractile activity of actomyosin complex in rat gastrointestinal smooth muscle." In 14th International Conference on Global Research and Education, Inter-Academia 2015. Japan Society of Applied Physics, 2016. http://dx.doi.org/10.7567/jjapcp.4.011302.
Full textAprodu, Iuliana, Alberto Redaelli, Franco Maria Montevecchi, and Monica Soncini. "Mechanical Characterization of Myosin II, Actin and Their Complexes by Molecular Mechanics Approach." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95670.
Full textMcGarry, J. P., C. S. Chen, V. S. Deshpande, R. M. McMeeking, and A. G. Evans. "Cells on a Bed of Micro-Needles: Modeling of the Scaling of the Response." In ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176593.
Full textHsu, Hui-Ju, Andrea Locke, Susan Q. Vanderzyl, and Roland Kaunas. "Stretch-Induced Stress Fiber Remodeling and MAPK Activations Depend on Mechanical Strain Rate." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53464.
Full textCohen, I., and J. G. White. "DIFFERENT SITES FOR FIBRINOGEN AND FIBRIN RECEPTORS ON PLATELETS." In XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643521.
Full text