Dissertations / Theses on the topic 'Active mater'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Active mater.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Fins, Carreira Aderito. "Matière active versus gravité : équation d’état et capillarité effectives de suspensions de particules autopropulsées." Electronic Thesis or Diss., Lyon 1, 2023. http://www.theses.fr/2023LYO10130.
Full textActive matter is a rapidly expanding field in recent years. It consists of entities able to use an energy source to produce local work such as self-propulsion. Such matter, by being out of equilibrium, has fascinating properties such as self-organization as seen in a flock of birds. However, active matter is not limited to biological systems. Active abiotic systems have also been developed. Indeed, during this thesis, we study a system made of self-propelled microparticles. Our objectives are to understand how they organize in the presence of gravity and in contact with a wall. Our system is made of Janus Au/Pt colloids that can self-propel in the presence of hydrogen peroxide by phoretic mechanisms. The colloids being denser than water, they form a monolayer on the bottom of their container. Provided a small tilting angle, we can observed 2D sedimentation. For colloidal systems at equilibrium, the sedimentation profile contains the equation of state of the system. For active systems, an equation of state does not exist in the general case, but analogous thermodynamic quantities can be defined. I measured the sedimentation profile of my active system and compared it to models developed for active Brownian particles in a "dry" environment (ABPs). I showed that the role of the background fluid cannot be neglected. In a second part, we studied the wetting properties of our system. Active mater is known to have effective wetting properties, yet no experimental study with a system analogous to ours has focused on the wetting phenomenon of a wall vertically immersed in a sediment. We show that an adhesion layer is formed with the density rising at the wall. To better understand the observed phenomena, we have confronted them with a numerical model of ABPs for which we can vary the interactions between the particles and the wall. By playing on the adhesion and the alignment with the wall, we are able to reproduce the experimental results. Indeed, the implementation of these interactions at the wall enables, to a certain extent, to take into account numerically the background fluid and thus the hydrodynamic and phoretic interactions that our colloids have with the wall. We thus show that these interactions greatly exacerbates the polarization of the propulsion velocity of the particles at the wall which is largely responsible for the density rise. Indeed, it is known that in the dilute and stationary regime, particles far from the wall are able to polarize against gravity. This polarization is amplified by an alignement with a vertical wall. Furthermore, the addition of an additional attraction allows particles to be more strongly trapped at the wall, and rise higher than ABPs without wall interactions would. As they rise, the particles will "evaporate" and fall away from the wall leading to global fluxes in the system. The wall acts as a pump that sets the particles in motion in the system collectively at a much larger scale than the particle. Finally, because we want to investigate the microrheology on active matter, we also present in this thesis all the updates on the design of a new magnetic microrheometer as well as the work on the stabilization of colloids on glass surfaces with the objective of designing custom imaging cells
Wioland, Hugo. "Self-organisation of confined active matter." Thesis, University of Cambridge, 2015. https://www.repository.cam.ac.uk/handle/1810/248745.
Full textFürthauer, Sebastian. "Active Chiral Processes in Soft Biological Matter." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-90152.
Full textWatson, Rose E. (Rose Elliott). "Active or Passive Voice: Does It Matter?" Thesis, University of North Texas, 1993. https://digital.library.unt.edu/ark:/67531/metadc501082/.
Full textSteimel, Joshua Paul. "Investigating non-equilibrium phenomena in active matter systems." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111339.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 189-209).
Active matter systems have very recently received a great deal of interest due to their rich emergent non-equilibrium behavior. Some of the most vital and ubiquitous biological systems and processes are active matter systems including reproduction, wound healing, dynamical adaptation, chemotaxis, and cell differentiation. Active matter systems span multiple length scales from meter to nanometer and can vary depending on the shape of the active agent, mode of motility, and environment. However, active matter systems are unified in that they are all composed of active units or particles that continuously convert ambient, stored, or chemical energy locally into motion and exhibit emergent non-equilibrium collective dynamical or phase behavior. Active matter systems have been studied extensively in the biological context, as well as in simulation and theory. However, there are relatively few artificial or synthetic experimental model soft active matter systems that can effectively mimic the rich emergent behavior exhibited by many active matter systems. Such model experimental systems are crucial not only to confirm the exotic behavior predicted by theoretical and simulation systems, but to study and investigate the underlying physical phenomenon which may contribute to or even drive some emergent phenomenon. These model systems are crucial to help determine what behavior is due to purely physical phenomenon and what behavior requires some type of biological or biochemical stimuli. In this thesis, I will develop several artificial experimental model active matter systems that are able to effectively mimic and reproduce some of the rich emergent non-equilibrium behavior exhibited by several active matter systems or processes, like chemotaxis, in order to uncover the underlying physical phenomenon that govern this emergent behavior. I will start by designing an extremely simple active matter system composed of a single active unit and then build up in complexity by adding many active components, changing the mode of motility, and including passive components which may or may not be fixed. I will show in this thesis that this emergent behavior is guided by fundamental physical phenomenon like friction and the mechanical properties of the environment. The thesis divides this study into two Parts. In Part I, I will develop an artificial soft active matter system that is able to effectively perform chemotaxis in a non-equilibrium manner by leveraging the concept of effective friction. The active component in this system will be magnetic particles that are coated with a biological ligand or receptor and placed on a substrate with the corresponding ligand or receptor. A rotating magnetic field will be applied and the magnetic particle will proceed to rotate with the applied field and convert some of that rotational energy into translational energy due to the effective friction induced by the breaking of reversible bonds between the surface of the particle and the substrate. I will then create gradients in the density of such binding sites and by placing the magnetic particle on a stochastic, random walk the differences in effective friction will lead to directed motion or drift reminiscent of chemotaxis. I will show that this concept of sensing based on effective friction induced by a binding interaction is general and scales with the affinity of the interaction being investigated (i.e. protein-lipid, metal ion, electrostatic, antigen-antibody, or hydrophobic interactions). In Part II, I will build up in complexity and develop an artificial soft active matter system consisting of two active units embedded in a dense passive matrix in order to mimic the emergent behavior of many biological systems composed of both active and passive components. In this system, an ultra-long range attractive interaction emerges due to a combination of activity and the mechanical properties of the dense passive media. The range of the interaction can be tuned by changing the level of activity, the actuation protocol, the mode of motility, the composition of the dense passive monolayer, and the concentration of active units. Alternatively, if the passive components are fixed to the substrate, the active components undergo a disorder induced delocalization and exhibit super-diffusive transport properties. On the basis of these results, I propose several guidelines to developing novel artificial soft active matter systems which bear future investigation. The findings in this thesis represent a comprehensive study of the exotic emergent non-equilibrium behavior exhibited by many active matter systems by developing novel artificial experimental soft model active matter systems. These novel model experimental systems revealed some underlying fundamental physical phenomenon that contribute to some of the non-equilibrium behavior observed in the biological system of interest. These results may generalize not only to other simulation or theoretical active matter systems but potentially to biological systems as well. This work will be essential not only in guiding the design of future artificial experimental soft active matter systems, but can also be extended towards designing hybrid artificial-biological soft active matter systems.
by Joshua Paul Steimel.
Ph. D.
Woodhouse, Francis Gordon. "Cytoplasmic streaming and self-organisation of active matter." Thesis, University of Cambridge, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648534.
Full textWatson, Garrett (Garrett A. ). "A method for detecting nonequilibrium dynamics in active matter." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120209.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-56).
Active force generation is an important class of out-of-equilibrium activity in cells. These forces play a crucial role in vital processes such as tissue folding, cell division and intracellular transport. It is important to determine the extent of such nonequilibrium activity during cellular processes to understand cell function. Here we present a framework for measuring nonequilibrium activity in biological active matter using time reversal asymmetry based on the Kullbeck-Leibler Divergence (KLD), also known as relative entropy. We estimate the KLD from a stationary time series using a k-nearest neighbors estimator, comparing the time-forwards process to the time-reversed process Using time series data of probe particles embedded in the actin cortex, we establish a lower bound for the entropy production of cortical activity. Our results demonstrate a reliable way to measure the breaking of detailed balance in mesoscopic systems.
by Garrett Watson.
S.B.
Ahmed, Israr. "Mathematical and computational modelling of soft and active matter." Thesis, University of Central Lancashire, 2016. http://clok.uclan.ac.uk/18641/.
Full textMahault, Benoît. "Outstanding problems in the statistical physics of active matter." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS250/document.
Full textActive matter, i.e. nonequilibrium systems composed of many particles capable of exploiting the energy present in their environment in order to produce systematic motion, has attracted much attention from the statistical mechanics and soft matter communities in the past decades. Active systems indeed cover a large variety of examples that range from biological to granular. This Ph.D. focusses on the study of minimal models of dry active matter (when the fluid surrounding particles is neglected), such as the Vicsek model: point-like particles moving at constant speed and aligning their velocities with those of their neighbors locally in presence of noise, that defines a nonequilibrium universalilty class for the transition to collective motion. Four current issues have been addressed: The definition of a new universality class of dry active matter with polar alignment and apolar motion, showing a continuous transition to quasilong-range polar order with continuously varying exponents, analogous to the equilibrium XY model, but that does not belong to the Kosterlitz-Thouless universality class. Then, the study of the faithfulness of kinetic theories for simple Vicsek-style models and their comparison with results obtained at the microscopic and hydrodynamic levels. Follows a quantitative assessment of Toner and Tu theory, which has allowed to compute the exponents characterizing fluctuations in the flocking phase of the Vicsek model, from large scale numerical simulations of the microscopic dynamics. Finally, the establishment of a formalism allowing for the derivation of hydrodynamic field theories for dry active matter models in three dimensions, and their study at the linear level
Peng, Chenhui. "ACTIVE COLLOIDS IN ISOTROPIC AND ANISOTROPIC ELECTROLYTES." Kent State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=kent1480622734084146.
Full textIşık, Onur Turan Gürsoy. "Response improvement by using active control of an earthquake excited building/." [s.l.]: [s.n.], 2004. http://library.iyte.edu.tr/tezler/master/insaatmuh/T000482.doc.
Full textButcher, Nicholas David. "Active Paralleling of High Power Voltage Source Inverters." Thesis, University of Canterbury. Electrical and Computer, 2007. http://hdl.handle.net/10092/3430.
Full textMecitoğlu, Güçbilmez Çiğdem Yemenicioğlu Ahmet. "Production of functional packaging materials by use of biopreservatives/." [s.l.]: [s.n.], 2005. http://library.iyte.edu.tr/tezlerengelli/master/biyoteknoloji/T000356.pdf.
Full textKeywords: Biopreservatives, antimicrobial enzymes, antioxidant proteins, edible films, functional packaging materials. Includes bibliographical references (leaves.88-101).
Dal, Cengio Sara. "Competition and Response: from Active Matter to Electrolytes under Confinement." Doctoral thesis, Universitat de Barcelona, 2020. http://hdl.handle.net/10803/670864.
Full textLa mayoría de los sistemas en la Naturaleza manifiestan fenómenos de transporte complejos que surgen de la interacción de múltiples escalas de tiempo y longitud, ya sean intrínsecas en la dinámica del sistema o forzadas externamente. Es el caso, por ejemplo, de una colonia de células migratorias cuyos mecanismos competitivos de autopropulsión e interacción permiten la reorganización en diferentes tejidos; o, al "acercar" y mirar el mismo sistema en una escala diferente, es el caso de los canales iónicos ubicados en las membranas de las células mencionadas. Estos canales exhiben típicamente una selectividad de iones extraordinaria y permeabilidad al agua debido a la interacción entre el confinamiento geométrico, las propiedades de la superficie y los conductos externos. Ya sea para investigar las estructuras colectivas del primer sistema, o las propiedades nanofluídicas del último, se basa en los intereses del lector. En cualquier caso, encontrará algo de reflexión en esta tesis.
Kyriakopoulos, Nikos. "Flocking in active matter systems : structure and response to perturbations." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231666.
Full textHubrich, Hanna. "Active Matter in Confined Geometries - Biophysics of Artificial Minimal Cortices." Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-152A-5.
Full textPeshkov, Anton. "Boltzmann-Ginzburg-Landau approach to simple models of active matter." Paris 6, 2013. http://www.theses.fr/2013PA066340.
Full textThe phenomenon of collective motion is present among many different biological systems like bird flocks or fish schools. In these systems, the collective motion arises without any leader or external force, and is only due to interaction among individuals and the out of equilibrium nature of the whole system. We want to study simple models of collective motion in order to establish universality classes among dry active matter, i. E. Individuals that interact without the help of a fluid medium. Many of such systems have already been studied microscopically. We want to obtain coarse-grained equations of such models to confirm the microscopical results and to predict new properties. We perform a derivation of hydrodynamic equations using the introduced Boltzmann-Ginzburg-Landau approach. The equations are derived for four different Vicsek type models. A simple polar model, a mixed case of polar particles with nematic interactions, a model of nematic particles with nematic interactions and finally a model for polar particles with metric free interactions. In each case, the obtained equations are studied analytically and numerically. We find out that the hydrodynamic equations reproduce faithfully the qualitative properties of underlying microscopical models, like the different observed phases and the nature of phase transition between them. Some new phases not previously observed in microscopical models are found. Most of them where a posteriori confirmed in simulations of microscopical models
Teeffelen, Sven van. "Active and passive soft matter: crystal growth, confinement, and swimming." Aachen Shaker, 2008. http://d-nb.info/992522447/04.
Full textFersula, Jérémy. "Swarm Robotics : distributed Online Learning in the realm of Active Matter." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS494.
Full textCPUs / GPUs, it becomes technically possible to develop small robots able to work in swarms of hundreds or thousands of units. When considering systems comprised of a large number of in- dependent robots in interaction, the individuality vanishes before the collective, and the global behavior of the ensemble has to emerge from local rules. Understanding the dynamics of large number of interacting units becomes a knowledge key to design controllable and efficient robotic swarms. This topic happens to be at the core of the field of active matter, in which the sys- tems of interest display collective effects emerging from physical interactions without computation. This thesis aims at using elements of active matter to design and understand robotic collectives, interacting both at the physical level and the software level through distributed learning algorithms. We start by studying experimentally the aggregation dynamics of a swarm of small vibrating robots performing phototaxis (i.e. search of light). The experiments are declined in different confi- gurations, either ad-hoc or implementing a distributed and online learning algorithm. This series of experiments act as a benchmark for the algorithm, showing its capabilities and limits in a real world situation. These experiments are further expanded by changing the outer shape of the robots, modifying the physical interactions by adding a force re-orientation response. This additional effect changes the global dynamics of the swarm, showing Morphological Computation at play. The new dynamics is understood through a physical model of self-alignment, allowing to extend the experimental work in sillico and hint for unseen global effects in swarms of re-orienting robots. Finally, we introduce a model of distributed learning through stochastic ODEs. This model is based on the exchange of internal degrees of freedom that couples to the dynamics of the particles, equivalents in the context of learning as a set of parameters and a controller. It shows similar results in simulation as the real-world experiments and opens up a way to a large-scale analysis of distributed and online learning dynamics
Marsden, Elliot James. "The collective dynamics of self-propelled particles in confining environments." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/21004.
Full textStefferson, Michael W. "Dynamics of Crowded and Active Biological Systems." Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823834.
Full textInteractions between particles and their environment can alter the dynamics of biological systems. In crowded media like the cell, interactions with obstacles can introduce anomalous subdiffusion. Active matter systems, e.g. , bacterial swarms, are nonequilibrium fluids where interparticle interactions and activity cause collective motion and dynamical phases. In this thesis, I discuss my advances in the fields of crowded media and active matter. For crowded media, I studied the effects of soft obstacles and bound mobility on tracer diffusion using a lattice Monte Carlo model. I characterized how bound motion can minimize the effects of hindered anomalous diffusion and obstacle percolation, which has implications for protein movement and interactions in cells. I extended the analysis of binding and bound motion to study the effects of transport across biofilters like the nuclear pore complex (NPC). Using a minimal model, I made predictions on the selectivity of the NPC in terms of physical parameters. Finally, I looked at active matter systems. Using dynamical density functional theory, I studied the temporal evolution of a self-propelled needle system. I mapped out a dynamical phase diagram and discuss the connection between a banding instability and microscopic interactions.
Johannemann, Jonathan. "COAL : a continuous active learning system." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111453.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 59-60).
In this thesis, our objective is to enable businesses looking to enhance their product by varying its attributes, where effectiveness of the new product is assessed by humans. To achieve this, we mapped the task to a machine learning problem. The solution is two fold: learn a non linear model that can map the attribute space to the human response, which can then be used to make predictions, and an active learning strategy that enables learning this model incrementally. We developed a system called Continuous active learning system (COAL).
by Jonathan Johannemann.
M. Fin.
Fischer, Andreas [Verfasser]. "Self-organization of active matter: The role of interactions / Andreas Fischer." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2020. http://d-nb.info/1224896599/34.
Full textFodor, Etienne. "Tracking nonequilibrium in living matter and self-propelled systems." Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC114.
Full textLiving systems operate far from equilibrium due to the continuous injection of energy provided by ATP supply. The dynamics of the intracellular components, such as proteins, organelles and cytoskeletal filaments, are driven by both thermal equilibrium fluctuations, and active stochastic forces generated by the molecular motors. Tracer particles are injected in living cens to study these fluctuations. To sort out genuine nonequilibrium fluctuations from purely thermal effects, measurements of spontaneous tracer fluctuations and of response are combined. We theoretically rationalize the observed fluctuations with a phenomenological model. This model, in turn, allows us to quantify the time, length and energy scales of the active fluctuations in three different experimental systems: living melanoma cells, living mouse oocytes, and epithelial tissues. Self-propelled particles are able to extract energy from their environment to perform a directed motion. Such a dynamics lead to a rich phenomenology that cannot be accounted for by equilibrium physics arguments. A striking example is the possibility for repulsive particles to undergo a phase separation, as reported in both experimental and numerical realizations. On a specific model of self-propulsion, we explore how far from equilibrium the dynamics operate. We quantify the breakdown of the irreversibility of the dynamics, and we delineate a bona fide effective equilibrium regime. Our insight into this regime is based on the analysis of fluctuations and response of the particles
Cohen, Jack Andrew. "Active colloids and polymer translocation." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e8fd2e5d-f96f-4f75-8be8-fc506155aa0f.
Full textGonzalez, Ibon Santiago. "DNA programmed assembly of active matter at the micro and nano scales." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:8cc298ba-d35c-4c58-8893-b1f2c9d6c65c.
Full textHubrich, Hanna [Verfasser]. "Active Matter in Confined Geometries - Biophysics of Artificial Minimal Cortices / Hanna Hubrich." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1224100298/34.
Full textJames, Martin [Verfasser]. "Turbulence and pattern formation in continuum models for active matter / Martin James." Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1225555973/34.
Full textBalin, Andrew. "Statistical mechanics of colloids and active matter in and out of equilibrium." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:2941a082-82ca-400b-ae6b-7c22e75cc90c.
Full textKaturi, Jaideep. "Guiding active particles through surface interactions." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/663989.
Full textLos organismos y sistemas vivos convierten energía almacenada internamente o derivada de sus alrededores en movimiento de forma continua. Esta actividad puede causar una constante auto-propulsión que lleva a estos sistemas a un estado fuera de equilibrio térmico. Gracias a esto, aparecen un gran número de fenómenos exóticos que no son accesibles para un sistema que se encuentra en equilibrio térmico. En los últimos años se ha clasificado a estos sistemas de no equilibro como “material activa”. La materia activa, por definición, incluye los sistemas compuestos de unidades activas, cada una de ellas capaz de convertir la energía almacenada o del entorno en movimiento sistemático. Existen varios ejemplos que van desde la escala sub-micrométrica, donde podemos encontrar a los microtúbulos asociados a proteínas motoras en el citoplasma, a las grandes escalas, donde se encuentran sistemas más familiares como peces o pájaros, pasando por la escala micrométrica, donde nadan las bacterias. Podemos diferenciar dos temas principales que se manifiestan en todos estos sistemas de materia activa. El primero es la aparición de fenómenos colectivos correlacionados a través de interacciones partícula-partícula, como ocurre en bandadas de pájaros, enjambres bacterianos y la cristalización de partículas auto-propulsadas. El segundo es la capacidad de estas unidades activas de interaccionar con sus alrededores a través del fenómeno de la auto-propulsión, por ejemplo, a través de quimiotaxia o reotaxia, como se puede observar en muchos sistemas biológicos y que ya han sido reportados en varios estudios. En esta tesis, me he enfocado en el estudio de este último tema principal: la interacción de partículas activas con su entorno local. Como modelo de sistema de materia activa, usamos partículas activas coloidales que se propulsan gracias al fenómeno de auto-difusioforesis. Estas partículas están recubiertas por dos materiales diferentes en cada una de sus caras, y son comúnmente llamadas “partículas Janus”. Una de sus caras está recubierta con Pt, material que cataliza la descomposición de H2O2, mientras que la otra cara está recubierta de un material inerte (SiO2). En una solución de H2O2, la reacción que ocurre en la parte catalítica produce un gradiente de concentración de producto a lo largo de la superficie de la partícula e induce un deslizamiento forético que la propulsa. En esta tesis se ha estudiado la dinámica de estas partículas "autoforéticas" cerca de superficies sólidas. De manera natural, las partículas interaccionan con su alrededor debido a los efectos foréticos e hidrodinámicos. Cuando estas partículas se hayan confinadas cerca de una superficie, observamos que se origina en ellas una fuerte interacción de alineamiento. A partir de ello, consideramos interesante diseñar ratchets micro estampados capaces de generar un flujo direccional de partículas activas. Por otra parte, estudiamos la influencia de aplicar un flujo de cizalla externo en la dinámica de las partículas activas cerca de superficies. A consecuencia del flujo externo, encontramos que en el sistema emerge una respuesta fuertemente direccional para las partículas activas en la dirección perpendicular al flujo provocando una migración "cross-stream" de partículas activas.
Ronceray, Pierre. "Contraction active de réseaux de fibres biologiques." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS154/document.
Full textLarge-scale force generation is essential for biological functionssuch as cell motility, embryonic development, wound healing and musclecontraction. In these processes, forces generated at the molecularlevel by motor proteins are transmitted by disordered fiber networks,resulting in large-scale active stresses. While fiber networks arewell characterized macroscopically, this stress generation bymicroscopic active units is not well understood. In this Thesis, Ipresent a comprehensive theoretical and numerical study of forcetransmission in elastic fiber networks. I show that the linear,small-force response of the networks is remarkably simple, as themacroscopic active stress depends only on the geometry of theforce-exerting unit. In contrast, as non-linear buckling occurs aroundthese units, local active forces are rectified towards isotropiccontraction, making the local geometry of force exertion irrelevant.This emergent contractility is amplified by non-linear forcetransmission through the network. This stress amplification isreinforced by the networks' disordered nature, but saturates for highdensities of active units. Our predictions are quantitativelyconsistent with experiments on reconstituted tissues and actomyosinnetworks, and that they shed light on the role of the networkmicrostructure in shaping active stresses in cells and tissue
Teeffelen, Sven van [Verfasser]. "Active and passive soft matter: crystal growth, confinement, and swimming / Sven van Teeffelen." Aachen : Shaker, 2009. http://d-nb.info/1162789883/34.
Full textTarama, Mitsusuke. "Dynamics of active deformable particle - Two types of active spinning motions and dynamics in external flow field -." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199091.
Full textDell'Arciprete, Dario. "Physics of bacterial microcolonies." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/23418.
Full textBain, Nicolas. "Hydrodynamics of polarized crowds : experiments and theory." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN078/document.
Full textModelling crowd motion is central to situations as diverse as risk prevention in mass events and visual effects rendering in the motion picture industry. The difficulty to perform quantitative measurements in model experiments, and the lack of reference experimental system, have however strongly limited our ability to model and control pedestrian flows. The aim of this thesis is to strengthen our understanding of human crowds, following two distinct approaches.First, we designed a numerical model to study the lane formation process among bidirectional flows of motile particles. We first evidenced the existence of two distinct phases: one fully laned and one homogeneously mixed, separated by a critical phase transition, unique to active systems. We then showed with a hydrodynamic approach that the mixed phase is algebraically correlated in the direction of the flow. We elucidated the origin of these strong correlations and proved that they were a universal feature of any system of oppositely moving particles, active of passive.Second, we conducted a substantial experimental campaign to establish a model experiment of human crowds. For that purpose we performed systematic measurements on crowds composed of tens of thousands of road-race participants in start corrals, a geometrically simple setup. We established that speed information propagates through polarized crowds over system spanning scales, while orientational information is lost in a few seconds. Building on these observations, we laid out a hydrodynamic theory of polarized crowds and demonstrated its predictive power
Heuermann, Geertje [Verfasser], and J. [Akademischer Betreuer] Blümer. "Active Shielding for Future Large-Scale Dark Matter Experiments / Geertje Heuermann. Betreuer: J. Blümer." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1095665391/34.
Full textMcCabe, Darren P. M. "Spatial location of active soil bacteria and their association with soil organic matter fractions." Thesis, University of Reading, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.559246.
Full textAlaimo, Francesco [Verfasser], Axel [Gutachter] Voigt, and Igor [Gutachter] Aronson. "Phase Field Crystal Modeling of Active Matter / Francesco Alaimo ; Gutachter: Axel Voigt, Igor Aronson." Dresden : Technische Universität Dresden, 2019. http://d-nb.info/1226900887/34.
Full textChoi, Mi Sun. "Self-Efficacy and Team Leader Equity Matter: A Study of Active Aging at Work." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555608990174517.
Full textChen, Hongshi. "Contribution to Active Probe for SNOM and Nanoscale Light-matter Interaction based on Photopolymerization." Electronic Thesis or Diss., Troyes, 2022. http://www.theses.fr/2022TROY0007.
Full textScanning Near-field Optical Microscope (SNOM) is a technology for high resolution optical imaging. The high spatial frequency information from the near-field is associated to high spatial resolution, allowing one to break the diffraction limit. The used local probe is still a key topical issue that has been addressed for long. The thesis deals with the development of an active near-field probe based on a polymer tip integrated at the extremity of an optical fiber. We polymerized polymer tip on the surface of the fiber end as a scanning optical probe. Shear-force method with micro tuning fork is used for controlling the probe-sample distance. After surface functionalization of the polymer probe, a few nano-emitters have been attached on the probe extremity, to obtain an active probe. Upon excitation, the nano-emitters can act as local light source for the active probe. Besides, while the development of such active hybrid probes turned out to be challenging, the developed strategy of attachment has been used on gold nanocubes on substrate, to create polarization-sensitive hybrid plasmon nano-emitters. We also extended this hybrid nano-emitters to single photon regime. Finally, the active probe was tested on two kinds of samples: silver nanowires and gold nanocubes. By using our new active probe, we obtained near-field information for those nanostructures and broke the diffraction limit
Djafer-Cherif, Ilyas. "Descriptions continues et stochastiques de la matière active." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS216/document.
Full textThis thesis purpose is to study simple "self-propelled" agents models: they are able to generate motion by consumming energy comming from their environment, without external forcing. Two models of that kind have been studied:-In the first part a Vicsek-style model has been studied, that is we particles are modeled by a couple (position,velocity) which evolution is dictated by simple rules of alignment and self-propulsion at constant speed. Here the alignment is nematic particles align along their long axis and alignment is not polar, contrarily to a polar alignment particles don't discriminate between head and tail . Compared to previous models of this type, the first novelty is the introduction of a pseudo-repulsion (in the Vicsek-spirit, modelized by a torque-like term) providing spatial extension to these particles. The second addition is a flipping rate which renders the persistence time of the direction of self-propulsion. In this part we describe several phase diagrams of this new model which show new phases not previously classified: arches but also "smectic" bands, some propreties of these structures have been measured. Hydrodynamic equations from the "Boltzmann-Ginzburg-Landau" method have been also developped, comparisons are performed: the hydrodynamic model recovers most phases and some of their propreties.-In the second part we study Neisseria Meningitidis, a bacteria which particularity is to generate pili: filamentous structures several micrometers long. By depolymerizing these structures at constant speed (~1µm/s), it is able to generate gigantic forces for the living word (~ 100pN). This bacteria has a tendancy to form spherical aggregates, showing all propreties of a liquid, in order to colonize the host organism. Viscosity and surface tension measure of these aggregates have shown the crucial role of the pili number. Using these data we've built a microscopic model which particularity is the presence of a stochastically attractive potential, that is to say that particles are transiting between an attractive state and a diffusive one. This part relates the model evolution in time. We've ben able to reproduce some aggregate propreties, in particular we've highlighted a variation of the diffusion between aggregate center and edges which fits experimental data
Geyer, Delphine. "Du mouvement au blocage collectif dans des assemblées de rouleurs colloïdaux : hydrodynamique et solidification des liquides polaires actifs." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN026/document.
Full textSpontaneous collective motion arises in many different systems, from assembly of synthetic shaken grains to living bird flocks. In order to understand the generic features of those collective behaviours, physisicts describe the flocks of motile units as ordered materials. In this thesis we study experimentally the dynamics of synthetic flocks and explore their hydrodynamic properties. We take advantage of the Quincke mechanism to motorize millions of colloids. Those Quincke rollers self-organize into a polar liquid, where all the particles, on average flow in the same direction. We provide the first experimental proof that the dynamics of polar liquids is well described by a theoretical prediction established more than twenty-five years ago. In particular, we demonstrate that two sound modes propagate along all directions of the fluid and we design a non invasive spectroscopic method to measure its hydrodynamics constants.Finally, we show that collective motion can be arrested in a dense flock. An active solid can nucleate, grow and propagate in a polar liquid. We establish that this solidification is a first order phase transition and demonstrate that the formation of this active solid is the first experimental proof of a complete motility induced phase separation of active particles (also known as MIPS)
Theurkauff, Isaac. "Collective Behavior of active colloids." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10251/document.
Full textWe study the collective behavior of an assembly of Janus Colloids. These are 1µm gold colloids with one half coated in platinum. When immersed in a peroxide bath, they self-propel, owing to diffusiophoresis and electrophoresis, moving at velocities of order 5µm/s. The velocity can be tune by adjusting the amount of peroxide in the bath. At the single particle level, the colloids undergo a persistent random walk. When in denser groups, the colloids interact through chemical and steric effects. The combination of these interactions, with the colloids activity, leads to collective effects. A dynamic cluster phase is observed, the formation of motile clusters of colloids, formed of up to 100 colloids. The clusters are in a stationary state, constantly moving, and exchanging colloids, they are also colliding, merging and breaking apart. We developed both the colloids, whose synthesis is described, and a high-throughput acquisition and analysis system. We measure the positions, and reconstruct the trajectories of thousands of colloids for a few minutes. From the trajectories, we extract statistical observables. We show that the sizes of clusters increases linearly as a function of the activity of the colloids. The probability distribution functions of sizes are power laws. As the density increases, a jamming transition is observed. The dense phase heterogeneous dynamics is characterized. We study the transition from the dense phase to a low density assembly with sedimentation experiments. The low density phase behaves as an ideal gas, allowing the definition of an effective temperature. We measure an equation of state for the system, and propose a heuristic collapse
Navarro, Argemí Eloy. "Hydrodynamic effects on active colloidal suspensions." Doctoral thesis, Universitat de Barcelona, 2018. http://hdl.handle.net/10803/665006.
Full textEn aquesta tesi ens proposem estudiar els efectes hidrodinàmics en suspensions col·loidals actives. La interacció hidrodinàmica es propaga a través del fluid en el que es desplacen els col·loids degut al flux que ells mateixos creen durant el seu moviment, podent donar lloc a l’emergència de fenòmens col·lectius, com l’autoorganització en estructures més complexes. Les interaccions hidrodinàmiques no són les úniques presents en el sistema, ja que pot haver-hi d’altres forces actuant entre els col·loids, o podem considerar l’efecte d’altres camps com la gravetat. Presentem el nostre estudi per a dos sistemes diferents: col·loids magnètics i partícules Janus. En aplicar un camp magnètic circular, es pot induir una rotació a una partícula que posseeixi un moment magnètic. Degut a l’acoplament del flux amb el creat per altres partícules i les parets del sistema, un rotor pot acabar desplaçant-se. Dos moments magnètics interactuen entre ells mitjançant la força dipolar, que afavoreix el seu alineament i la formació de cadenes de col·loids. Estudiem com el balanç entre interaccions hidrodinàmiques, magnètiques i efectes gravitatoris afecta a la morfologia de les estructures que poden formar els col·loids magnètics. Les partícules Janus tenen dues cares amb propietats químiques diferents, quelcom que dóna lloc a una interacció entre elles que depèn de la seva orientació relativa. Estudiem les estructures que poden aparèixer per a aquestes partícules com a funció de la intensitat, signe i abast d’aquesta interacció, així com de la forma del flux que creen en desplaçar-se. Metodològicament, hem combinat expressions analítiques aproximades per tenir una idea qualitativa dels fenòmens que hom pot esperar amb simulacions per ordinador per poder estudiar els fenòmens col·lectius en sistemes de més partícules.
Du, S., Wyk BJ Van, G. Qi, and C. Tu. "Chaotic system synchronization with an unknown master model using a hybrid HOD active control approach." Elsevier, 2009. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001363.
Full textEvans, Larissa Michelle. "Sexual Well-Being in Single, Sexually Active College Females: A Matter of Agency and Openness." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/50941.
Full textMaster of Science
Putzig, Elias. "An Exploration of the Phases and Structure Formation in Active Nematic Materials Using an Overdamped Continuum Theory." Thesis, Brandeis University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10620560.
Full textActive nematics are a class of nonequilibrium systems which have received much attention in the form of continuum models in recent years. For the dense, highly ordered case which is of particular interest, these models focus almost exclusively on suspensions of active particles in which the flow of the medium plays a key role in the dynamical equations. Many active nematics, however, reside at an interface or on a surface where friction excludes the effects of long-range flow. In the following pages we shall construct a general model which describes these systems with overdamped dynamical equations. Through numerical and analytical investigation we detail how many of the striking nonequilibrium behaviors of active nematics arise in such systems.
We shall first discuss how the activity in these systems gives rise to an instability in the nematic ordered state. This instability leads to phase-separation in which bands of ordered active nematic are interspersed with bands of the disordered phase. We expose the factors which control the density contrast and the stability of these bands through numerical investigation.
We then turn to the highly ordered phase of active nematic materials, in which striking nonequilibrium behaviors such as the spontaneous formation, self-propulsion, and ordering of charge-half defects occurs. We extend the overdamped model of an active nematic to describe these behaviors by including the advection of the director by the active forces in the dynamical equations. We find a new instability in the ordered state which gives rise to defect formation, as well as an analog of the instability which is seen in models of active nematic suspensions. Through numerical investigations we expose a rich phenomenology in the neighborhood of this new instability. The phenomenology includes a state in which the orientations of motile, transient defects form long-range order. This is the first continuum model to contain such a state, and we compare the behavior seen here with similar states seen in the experiments and simulations of Stephen DeCamp and Gabriel Redner et. al. [1]
Finally, we propose the measurement of defect shape as a mechanism for the comparison between continuum theories of active nematics and the experimental and simulated realiza- tions of these systems. We present a method for making these measurements which allows for averaging and statistical analysis, and use this method to determine how the shapes of defects depend on the parameters of our continuum theory. We then compare these with the shapes of defects which we measure in the experiments and simulations mentioned above in order to place these systems in the parameter space of our model. It is our hope that this mechanism for comparison between models and realizations of active nematics will provide a key to pairing the two more closely.
RAVAZZANO, LINDA. "STRUCTURE, DYNAMICS AND PHASE TRANSITIONS OF BIOLOGICAL MATTER." Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/926571.
Full textToreid, Eivind. "Active Control of Reactive Power in a Modern Electrical Rail Vehicle." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elkraftteknikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-13863.
Full textKeta, Yann-Edwin. "Emergence of disordered collective motion in dense systems of isotropic self-propelled particles." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS025.
Full textActive matter is a broad class of materials within which individual entities, the active particles, consume energy in order to perform movement. These materials are at the intersection of many distinct fields of research, such as biology, engineering, and physics, and have thus attracted considerable attention. Because of their perpetual consumption of energy, these systems are out of thermodynamic equilibrium. As a consequence they display a wealth of surprising phenomena which challenge our conception of equilibrium phases and dynamics. Among them, collective motion is particularly intriguing and exciting on multiple grounds. First because it emerges in systems with distinct length and time scales, from collections of cells to large crowds, flocks, and swarms, yet with some common characteristics. This thus suggests some sense of universality in the mechanisms leading to different collective behaviours. Second because parts of these motions display signatures shared with other equilibrium phenomena. While the latter are very diverse, ranging from the glass transition to inertial turbulence, these connections mean that a number of concepts and tools are readily available to describe out-of-equilibrium behaviours. Third because the possible applications of the understanding and control of these phenomena are far-reaching: treatment of specific pathologies, design of intelligent materials, crowd management, etc. In this Thesis, we focus on dense active matter, where the movement of individual particles is hindered by crowding effects, and aim to characterise how this competition leads to emerging collective motion. To this effect we use a simple model of two-dimensional isotropic self-propelled particles, namely active Ornstein-Uhlenbeck particles, where the departure from the equilibrium limit is controlled via the persistence time of propulsion forces. Owing to its simplicity, the phenomena described within this model have the potential to apply to a broad range of materials. We broadly map the phase behaviour of this model, from the equilibrium-like regime at small persistence to the to far-from-equilibrium regime at large persistence. We focus our efforts on the latter regime, where velocity correlations were recently shown to emerge. We demonstrate that a disordered liquid phase exists up to very large persistence, if polydispersity frustrates the ordering of the system, and that this persistent liquid displays various manifestations of disordered collective motion. First, we show that persistent systems are dynamically arrested at large packing fraction. Close to dynamical arrest, we find that the liquid displays dynamical heterogeneity similar to equilibrium dense systems. We investigate, in the idealised limit of infinite persistence, the microscopic processes leading to these heterogeneities. Then, away from dynamical arrest, we show that our model displays chaotic advection flows, as typically shown by turbulent systems. We highlight how this specific behaviour may be universal to a broader class of active systems relying on the competition of crowding and persistent forcing. Finally, in monodisperse systems which display long-range order at large packing fraction, we describe the far-from-equilibrium mechanisms leading to structural relaxation