Academic literature on the topic 'Active implantable medical device (AMID)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Active implantable medical device (AMID).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Active implantable medical device (AMID)"
Newaskar, Deepali, and B. P. Patil. "Rechargeable Active Implantable Medical Devices (AIMDs)." International Journal of Online and Biomedical Engineering (iJOE) 19, no. 13 (September 18, 2023): 108–19. http://dx.doi.org/10.3991/ijoe.v19i13.41197.
Full textJensen, Maria Lund, and Jayme Coates. "Planning Human Factors Engineering for Development of Implantable Medical Devices." Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 7, no. 1 (June 2018): 156–60. http://dx.doi.org/10.1177/2327857918071037.
Full textYOSHINO, Yuuki, and Masao TAKI. "Induced Voltage to an Active Implantable Medical Device by a Near-Field Intra-Body Communication Device." IEICE Transactions on Communications E94-B, no. 9 (2011): 2473–79. http://dx.doi.org/10.1587/transcom.e94.b.2473.
Full textWang, Zhichao, Jianfeng Zheng, Yu Wang, Wolfgang Kainz, and Ji Chen. "On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment." IEEE Transactions on Microwave Theory and Techniques 68, no. 6 (June 2020): 2234–42. http://dx.doi.org/10.1109/tmtt.2019.2957766.
Full textWang, Zhichao, Jianfeng Zheng, Yu Wang, Wolfgang Kainz, and Ji Chen. "Erratum to “On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment”." IEEE Transactions on Microwave Theory and Techniques 68, no. 6 (June 2020): 2469. http://dx.doi.org/10.1109/tmtt.2020.2978595.
Full textCrisp, S. "The Medical Device Directives and Their Impact on the Development and Manufacturing of Medical Implants." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 210, no. 4 (December 1996): 233–39. http://dx.doi.org/10.1243/pime_proc_1996_210_419_02.
Full textHikage, Takashi, Toshio Nojima, and Hiroshi Fujimoto. "Active implantable medical device EMI assessment for wireless power transfer operating in LF and HF bands." Physics in Medicine and Biology 61, no. 12 (May 25, 2016): 4522–36. http://dx.doi.org/10.1088/0031-9155/61/12/4522.
Full textEgitto, Frank D., Rabindra N. Das, Glen E. Thomas, and Susan Bagen. "Miniaturization of Electronic Substrates for Medical Device Applications." International Symposium on Microelectronics 2012, no. 1 (January 1, 2012): 000186–91. http://dx.doi.org/10.4071/isom-2012-ta57.
Full textMattei, Eugenio, Giovanni Calcagnini, Federica Censi, Iole Pinto, Andrea Bogi, and Rosaria Falsaperla. "Workers with Active Implantable Medical Devices Exposed to EMF: In Vitro Test for the Risk Assessment." Environments 6, no. 11 (November 15, 2019): 119. http://dx.doi.org/10.3390/environments6110119.
Full textWagner, Marcel Vila, and Thomas Schanze. "Challenges of Medical Device Regulation for Small and Medium sized Enterprises." Current Directions in Biomedical Engineering 4, no. 1 (September 1, 2018): 653–56. http://dx.doi.org/10.1515/cdbme-2018-0157.
Full textDissertations / Theses on the topic "Active implantable medical device (AMID)"
Indmeskine, Fatima-Ezahra. "Evaluation et qualification de la fiabilité des composants et des procédés d’assemblages électroniques pour applications médicales." Electronic Thesis or Diss., Angers, 2024. http://www.theses.fr/2024ANGE0029.
Full textElectronics in AIMDs expose patients to risks in case of component failure. Unlike aeronautics, where redundancy is common, AIMDs face constraints like miniaturisation that hinder its application. Additionally, the "medical grade" of components lacks standardization, complicating qualification. The absence of specific standards and limited studies on AIMD environments makes mission profile development challenging. To address this, a state-of-the-art review defined a mission profile integrating environmental constraints critical for reliability tests, as these strongly influence component failures. A methodology based on the mission profile, FMMEA, experimental designs, and accelerated tests was developed to qualify SMD components, including resistors, ceramic capacitors, inductors, and integrated circuits. This solves two key issues: designing efficient accelerated tests to detect latent quality defects and demonstrating reliability aligned with the mission profile. This work is part of the R&D project "RECOME"
Siegel, Alice. "Etude de l’interaction mécanique entre un dispositif médical implantable actif crânien et le crâne face à des sollicitations dynamiques." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0012.
Full textActive cranial implants are more and more developed to cure neurological diseases. In this context it is necessary to evaluate the mechanical resistance of the skull-implant complex under impact conditions as to ensure the patient’s security. The aim of this study is to quantify the mechanical interactions between the skull and the implant as to develop a finite element model for predictive purpose and for use in cranial implant design methodologies for future implants. First, material tests were necessary to identify the material law parameters of titanium and silicone. They were then used in a finite element model of the implant under dynamic loading, validated against 2.5 J-impact tests. The implant dissipates part of the impact energy and the model enables to optimize the design of implants for it to keep functional and hermetic after the impact. In the third part, a finite element model of the skull-implant complex is developed under dynamic loading. Impact tests on ovine cadaver heads are performed for model validation by enhancing the damage parameters of the three-layered skull and give insight into the behavior of the implanted skull under impact.This model is a primary tool for analyzing the mechanical interaction between the skull and an active implant and enables for an optimized design for functional and hermetic implants, while keeping the skull safe
Books on the topic "Active implantable medical device (AMID)"
Schoenmakers, C. C. W. CE marking for medical devices: A handbook to the medical devices directives : Medical Device Directive 93/42/EEC : the Active Implantable Medical Device Directive 90/396/EEC. New York, NY: Standards Information Network/IEEE Press, 1997.
Find full textAAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.
Full textBook chapters on the topic "Active implantable medical device (AMID)"
Nahler, Gerhard. "active implantable medical device." In Dictionary of Pharmaceutical Medicine, 2. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_16.
Full textBrown, James E., Rui Qiang, Paul J. Stadnik, Larry J. Stotts, and Jeffrey A. Von Arx. "RF-Induced Unintended Stimulation for Implantable Medical Devices in MRI." In Brain and Human Body Modeling 2020, 283–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_17.
Full textBrown, James E., Paul J. Stadnik, Jeffrey A. Von Arx, and Dirk Muessig. "RF-induced Heating Near Active Implanted Medical Devices in MRI: Impact of Tissue Simulating Medium." In Brain and Human Body Modelling 2021, 125–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_8.
Full text"The Active Implantable Medical Device Directive (AIMDD)." In International Labeling Requirements for Medical Devices, Medical Equipment and Diagnostic Products, 273–84. CRC Press, 2003. http://dx.doi.org/10.1201/9780203488393-30.
Full text"The Active Implantable Medical Device Directive (AIMDD)." In International Labeling Requirements for Medical Devices, Medical Equipment and Diagnostic Products. Informa Healthcare, 2003. http://dx.doi.org/10.1201/9780203488393.ch16.
Full text"5: General requirements for non-implantable parts." In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch5.
Full textRen, Tingting, Meina Fang, Han Luo, Lingjian Zeng, and Cheng Zeng. "Study on Calibration of Extracorporeal Pacemaker." In Studies in Health Technology and Informatics. IOS Press, 2023. http://dx.doi.org/10.3233/shti230869.
Full text"9: Protection from harm to the patient caused by gradient-induced device heating." In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch9.
Full text"15: Protection from harm to the patient caused by RF-induced malfunction and RF rectification." In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch15.
Full text"10: Protection from harm to the patient caused by gradient-induced vibration." In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch10.
Full textConference papers on the topic "Active implantable medical device (AMID)"
Nelson, Jody J., Wes Clement, Brian Martel, Richard Kautz, and Katarina H. Nelson. "Assessment of active implantable medical device interaction in hybrid electric vehicles." In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652064.
Full textCampi, Tommaso, Silvano Cruciani, Mauro Feliziani, and Akimasa Hirata. "Wireless power transfer system applied to an active implantable medical device." In 2014 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2014. http://dx.doi.org/10.1109/wpt.2014.6839612.
Full textGas, Piotr, and Arkadiusz Miaskowski. "A Heating from a Standard Active Implantable Medical Device under MRI Exposure." In 2019 15th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE, 2019. http://dx.doi.org/10.1109/wzee48932.2019.8979783.
Full textChang, Jiajun, Qianlong Lan, Ran Guo, Jianfeng Zheng, Ji Chen, and Wolfgang Kainz. "Prediction of Active Implantable Medical Device Electromagnetic Models Using a Neural Network." In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704511.
Full textLong, Tiangang, Changqing Jiang, and Luming Li. "Electrode Sensitivity for MRI-RF Induced Heating Evaluation of Active Implantable Medical Device." In 2023 IEEE MTT-S International Microwave Biomedical Conference (IMBioC). IEEE, 2023. http://dx.doi.org/10.1109/imbioc56839.2023.10305093.
Full textHikage, T., Y. Kawamura, T. Nojima, B. Koike, H. Fujimoto, and T. Toyoshima. "Active implantable medical device EMI assessments for electromagnetic emitters operating in various RF bands." In 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS 2011). IEEE, 2011. http://dx.doi.org/10.1109/imws.2011.5877102.
Full textGuo, Ran, Jianfeng Zheng, Zhichao Wang, Rui Yang, Ji Chen, and Thomas Hoegh. "Reducing the Radiofrequency-Induced Heating of Active Implantable Medical Device with Load Impedance Modification." In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329822.
Full textHikage, Takashi, Yoshifumi Kawamura, and Toshio Nojima. "Numerical estimation methodology for RFID/Active Implantable Medical Device-EMI based upon FDTD analysis." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051331.
Full textZhao, Y. X., J. Chen, J. Y. Zhang, L. H. Li, and C. Lin. "Testing based on cyclomatic complexity analysis in software development of active implantable medical device." In International Conference on Automation, Mechanical and Electrical Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/amee141042.
Full textHu, Wei, Yu Wang, Qingyan Wang, Md Zahidul Islam, Jeffrey Tsang, Wolfgang Kainz, and Ji Chen. "RF-Induced Heating for Active Implantable Medical Device with Dual Parallel Leads under MRI." In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704099.
Full text