Academic literature on the topic 'Active Implantable Device'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Active Implantable Device.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Active Implantable Device"

1

Jensen, Maria Lund, and Jayme Coates. "Planning Human Factors Engineering for Development of Implantable Medical Devices." Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care 7, no. 1 (June 2018): 156–60. http://dx.doi.org/10.1177/2327857918071037.

Full text
Abstract:
Development of implantable medical devices is becoming increasingly interesting for manufacturers, but identifying the right Human Factors Engineering (HFE) approach to ensure safe use and effectiveness is challenging. Most active implantable devices are highly complex; they are built on extremely advanced, compact technology, often comprise systems of several device elements and accessories, and they span various types of user interfaces which must facilitate diverse interaction performed by several different user groups throughout the lifetime of the device. Furthermore, since treatment with implantable devices is often vital and by definition involves surgical procedures, potential risks related to use error can be severe. A systematic mapping of Product System Elements and Life Cycle Stages can help early identification of Use Cases, and for example user groups and high-level use risks, to be accounted for via HFE throughout development to optimize Human Factors processes and patient outcomes. This paper presents a concrete matrix tool which can facilitate an early systematic approach to planning and frontloading of Human Factors Engineering activities in complex medical device development.
APA, Harvard, Vancouver, ISO, and other styles
2

McEvedy, Samantha M., Jan Cameron, Eugene Lugg, Jennifer Miller, Chris Haedtke, Muna Hammash, Martha J. Biddle, et al. "Implantable cardioverter defibrillator knowledge and end-of-life device deactivation: A cross-sectional survey." Palliative Medicine 32, no. 1 (July 5, 2017): 156–63. http://dx.doi.org/10.1177/0269216317718438.

Full text
Abstract:
Background: End-of-life implantable cardioverter defibrillator deactivation discussions should commence before device implantation and be ongoing, yet many implantable cardioverter defibrillators remain active in patients’ last days. Aim: To examine associations among implantable cardioverter defibrillator knowledge, patient characteristics and attitudes to implantable cardioverter defibrillator deactivation. Design: Cross-sectional survey using the Experiences, Attitudes and Knowledge of End-of-Life Issues in Implantable Cardioverter Defibrillator Patients Questionnaire. Participants were classified as insufficient or sufficient implantable cardioverter defibrillator knowledge and the two groups were compared. Setting/participants: Implantable cardioverter defibrillator recipients ( n = 270, mean age 61 ± 14 years; 73% male) were recruited from cardiology and implantable cardioverter defibrillator clinics attached to two tertiary hospitals in Melbourne, Australia, and two in Kentucky, the United States. Results: Participants with insufficient implantable cardioverter defibrillator knowledge ( n = 77, 29%) were significantly older (mean age 66 vs 60 years, p = 0.001), less likely to be Caucasian (77% vs 87%, p = 0.047), less likely to have received implantable cardioverter defibrillator shocks (26% vs 40%, p = 0.031), and more likely to have indications of mild cognitive impairment (Montreal Cognitive Assessment score <24: 44% vs 16%, p < 0.001). Insufficient implantable cardioverter defibrillator knowledge was associated with attitudes suggesting unwillingness to discuss implantable cardioverter defibrillator deactivation, even during the last days towards end of life ( p < 0.05). Conclusion: Implantable cardioverter defibrillator recipients, especially those who are older or have mild cognitive impairment, often have limited knowledge about implantable cardioverter defibrillator deactivation. This study identified several potential teachable moments throughout the patients’ treatment trajectory. An interdisciplinary approach is required to ensure that discussions about implantable cardioverter defibrillator deactivation issues are initiated at appropriate time points, with family members ideally also included.
APA, Harvard, Vancouver, ISO, and other styles
3

Fong, Jeffrey, Zhiming Xiao, and Kenichi Takahata. "Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery." Lab on a Chip 15, no. 4 (2015): 1050–58. http://dx.doi.org/10.1039/c4lc01290a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Patil, B. P., Deepali Newaskar, Kunal Sharma, Tarun Baghmar, and Mahesh Ku Rajput. "EFFECT OF NUMBER OF TURNS AND MEDIUM BETWEEN COILS ON THE WIRELESS POWER TRANSFER EFFICIENCY OF AIMD’S." Biomedical Engineering: Applications, Basis and Communications 31, no. 02 (April 2019): 1950016. http://dx.doi.org/10.4015/s1016237219500169.

Full text
Abstract:
Active implantable medical devices (AIMDs) like implantable cardiac pacemakers play very important role in extending lives of patients with some cardiovascular diseases. The life of implantable device depends on life of battery. If this device can be charged from outside with power transfer device, then the cost of surgical procedures for patient can be saved. One must ensure, while transferring this power there should not be any abnormal effect on human body tissues. Wireless recharging of such devices through magnetic resonant coupling is of concern and hence the topic of more research to have uninterrupted supply from battery. The technique of wireless power transfer, primary or transmitting coil is assumed to be on body and receiver coil is assumed to be inside the human body. Several critical aspects need to be studied while designing coil for wireless power transfer (WPT). One of which is choice of operational frequency. In this research experiment, designed circuit is tested for checking power transfer was studied. Effect of the distance between primary and secondary coil affects the efficiency of power transfer. Authors also tied to test this for using different medium like air, placing 80 GSM paper and cloth. It is found that the medium between the primary and secondary affects the transfer of power. Careful thought needs to be given while designing power transfer system.
APA, Harvard, Vancouver, ISO, and other styles
5

Stoevelaar, Rik, Arianne Stoppelenburg, Rozemarijn L. van Bruchem-Visser, Anne Geert van Driel, Dominic AMJ Theuns, Martine E. Lokker, Rohit E. Bhagwandien, Agnes van der Heide, and Judith AC Rietjens. "Advance care planning and end-of-life care in patients with an implantable cardioverter defibrillator: The perspective of relatives." Palliative Medicine 35, no. 5 (April 13, 2021): 904–15. http://dx.doi.org/10.1177/02692163211001288.

Full text
Abstract:
Background: Little is known about the last phase of life of patients with implantable cardioverter defibrillators and the practice of advance care planning in this population. Aim: To describe the last phase of life and advance care planning process of patients with an implantable cardioverter defibrillator, and to assess relatives’ satisfaction with treatment and care. Design: Mixed-methods study, including a survey and focus group study. Setting/participants: A survey among 170 relatives (response rate 59%) reporting about 154 deceased patients, and 5 subsequent focus groups with 23 relatives. Results: Relatives reported that 38% of patients had a conversation with a healthcare professional about implantable cardioverter defibrillator deactivation. Patients’ and relatives’ lack of knowledge about device functioning and the perceived lack of time of healthcare professionals were frequently mentioned barriers to advance care planning. Twenty-four percent of patients experienced a shock in the last month of life, which were, according to relatives, distressing for 74% of patients and 73% of relatives. Forty-two to sixty-one percent of relatives reported to be satisfied with different aspects of end-of-life care, such as the way in which wishes of the patient were respected. Quality of death was scored higher for patients with a deactivated device than those with an active device (6.74 vs 5.67 on a 10-point scale, p = 0.012). Conclusions: Implantable cardioverter defibrillator deactivation was discussed with a minority of patients. Device shocks were reported to be distressing to patients and relatives. Relatives of patients with a deactivated device reported a higher quality of death compared to relatives of patients with an active device.
APA, Harvard, Vancouver, ISO, and other styles
6

YOSHINO, Yuuki, and Masao TAKI. "Induced Voltage to an Active Implantable Medical Device by a Near-Field Intra-Body Communication Device." IEICE Transactions on Communications E94-B, no. 9 (2011): 2473–79. http://dx.doi.org/10.1587/transcom.e94.b.2473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yan, Bingxi. "Actuators for Implantable Devices: A Broad View." Micromachines 13, no. 10 (October 17, 2022): 1756. http://dx.doi.org/10.3390/mi13101756.

Full text
Abstract:
The choice of actuators dictates how an implantable biomedical device moves. Specifically, the concept of implantable robots consists of the three pillars: actuators, sensors, and powering. Robotic devices that require active motion are driven by a biocompatible actuator. Depending on the actuating mechanism, different types of actuators vary remarkably in strain/stress output, frequency, power consumption, and durability. Most reviews to date focus on specific type of actuating mechanism (electric, photonic, electrothermal, etc.) for biomedical applications. With a rapidly expanding library of novel actuators, however, the granular boundaries between subcategories turns the selection of actuators a laborious task, which can be particularly time-consuming to those unfamiliar with actuation. To offer a broad view, this study (1) showcases the recent advances in various types of actuating technologies that can be potentially implemented in vivo, (2) outlines technical advantages and the limitations of each type, and (3) provides use-specific suggestions on actuator choice for applications such as drug delivery, cardiovascular, and endoscopy implants.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Zhichao, Jianfeng Zheng, Yu Wang, Wolfgang Kainz, and Ji Chen. "On the Model Validation of Active Implantable Medical Device for MRI Safety Assessment." IEEE Transactions on Microwave Theory and Techniques 68, no. 6 (June 2020): 2234–42. http://dx.doi.org/10.1109/tmtt.2019.2957766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wagner, Marcel Vila, and Thomas Schanze. "Challenges of Medical Device Regulation for Small and Medium sized Enterprises." Current Directions in Biomedical Engineering 4, no. 1 (September 1, 2018): 653–56. http://dx.doi.org/10.1515/cdbme-2018-0157.

Full text
Abstract:
AbstractFor known reasons, the European Parliament was forced not only to revise the old Medical Device Directive (MDD) and the Active Implantable Medical Devices Directive (AIMDD), but to replace it with the extensive MDR. With the implementation of the Medical Device Regulation (MDR) in May 2017, manufacturers of medical devices will face new challenges for their products in the future, which also have to be implemented in a timely manner. Particularly small and medium-sized enterprises (SMEs) are concerned about whether a timely adaptation to the MDR and their requirements can be implemented. The conversion is associated with a huge effort for all producers of medical devices and certainly, produkt launchers. The purpose of this paper is to get an overview of the most relevant and emerging requirements that manufacturers need to adapt to sell their medical devices in compliance with the MDR regulations. It also explains the extent to which changes and innovations in the MDR are discusses and problems for SMEs.
APA, Harvard, Vancouver, ISO, and other styles
10

Paech, Christian, Victoria Ebel, Franziska Wagner, Stephanie Stadelmann, Annette M. Klein, Mirko Döhnert, Ingo Dähnert, and Roman Antonin Gebauer. "Quality of life and psychological co-morbidities in children and adolescents with cardiac pacemakers and implanted defibrillators: a cohort study in Eastern Germany." Cardiology in the Young 30, no. 4 (April 2020): 549–59. http://dx.doi.org/10.1017/s104795112000061x.

Full text
Abstract:
AbstractIntroduction:The implantation of a pacemaker or an implantable cardioverter-defibrillator during childhood may reduce quality of life and lead to mental health problems. This study aimed to evaluate potential mental health problems (i.e., depressive and anxiety symptoms) and quality of life in children with cardiac active devices in comparison to healthy peers.Methods:We analysed data of children with pacemakers or implantable cardioverter-defibrillators aged 6–18 years. Quality of life, depressive and anxiety symptoms were assessed by standardised questionnaires. The results were compared to age-matched reference groups.Results:Children with implantable cardioverter-defibrillator showed significant lower quality of life in comparison to reference group (p = 0.03), but there was no difference in quality of life between children with pacemaker and reference group. There was no significant difference in depressive symptoms between children with a cardiac rhythm device compared to reference group (self-report: p = 0.67; proxy report: p = 0.49). There was no significant difference in anxiety (p = 0.53) and depressive symptoms (p = 0.86) between children with pacemaker and children with implantable cardioverter-defibrillator.Conclusions:Living with an implantable cardioverter-defibrillator in childhood seems to decrease the patients’ quality of life. Although children with pacemaker and implantable cardioverter-defibrillator don’t seem to show more depressive and anxiety symptoms in comparison to their healthy peers, there still can be an increased risk for those children to develop mental health problems. Therefore, treating physicians should be aware of potential mental health problems and provide the patients and their families with appropriate therapeutic offers.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Active Implantable Device"

1

BRUNO, GIACOMO. "Leveraging nanochannels for a remotely controllable implantable drug delivery system." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2676478.

Full text
Abstract:
This work is focused on the research on how to leverage nanochannels in the eld of Nanomedicine. More speci cally the study of different diffusion regimes at the nanoscale thanks to the close collaboration between the Politecnico di Torino, Turin, Italy, and the Methodist Hospital Research Institute, Houston, Texas. The therapeutics ow through nanochannels can be tightly controlled by several factors such as channels dimension, channel polarity, solution ionic strength just to name a few. The major advantage of this nanotechnology is that the drug ow results to be linear over time and practically independent on the concentration gradient between the molecules reservoir and the outer regions. Therefore, it is possible to develop a reliable, robust, drug delivery implant that does not rely on mechanical components. This implant was extensively tested both in vitro and in vivo condition, providing remarkable results that lead to several publications. The nanochannels, key compo- nent of the device, were fabricated using cutting edge photolithography techniques starting from a silicon wafer. The result is a highly compacted and mechanical robust silicon membrane containing more the 300,000 parallel, identical slit nanochan- nels. The diffusion ow through the membranes was studied with a wide range of nanochannels size ranging from 250 nm down to 2.5 nm. At the ultra-nanoscale (less than 10 nm) the molecules passage is highly affected by the electrostatic forces and close interaction forces, requiring a new and more accurate model to describe the phenomena, since the continuum hypothesis is no longer valid. This lead to two additional articles (yet to be published) concerning the ow of nitrogen gases and different drug molecules affected by the channel hindrance. Last portion of the presented thesis is centered on how electric elds across the nanochannel membrane can affect the passage of charged molecules. The results proved that, depending on the channel dimension and the ionic strength of the solution different phenomena can occur. With channels greater than the 100 nm in height it is possible to encounter behavior well described by electrophoretic or electroosmotic ows. On the other vii hand, in the ultra-nanoscale regime ionic concentration polarization is vastly predom- inant. However, regardless on the phenomena involved, it is possible to effectively control, thanks to the application of a strong electric eld (greater than 1kV/m), the ow of the charged therapeutics increasing, decreasing or even stopping the drug release. This lead to the development of a more advance implantable platform that can be remotely controlled via Bluetooth Low Energy. This new device will be able to continuously change the patient’s dosage depending on several factor such as time, patient’s sex, age, or health condition in that instant, granting access to true personalized therapies. Over the course of the pH.D., the technology was developed and tested for several therapeutics. Nano-electro uidics was successfully leveraged for the modulation drug such as Enalapril, Methotrexate, Penrindropil, Atenolol, Cezafolin and DF-1. The molecules were selected as a model analytes due to their valences, which render the molecules responsive to applied potentials, as well as their possible use as ther- apeutics to treat a broad range of diseases, including rheumatoid arthritis, several types of cancer, and hypertension. Release experiments were conducted in high ionic strength solutions to better simulate the in vivo environment. Experiments demon- strated that reproducible, active modulation could be achieved for clinically relevant molecules and sustained for long periods depending on the power consumption and battery capacity. This study evolved from a raw concept to a truly implantable device currently tested in vivo.
APA, Harvard, Vancouver, ISO, and other styles
2

Siegel, Alice. "Etude de l’interaction mécanique entre un dispositif médical implantable actif crânien et le crâne face à des sollicitations dynamiques." Thesis, Paris, ENSAM, 2019. http://www.theses.fr/2019ENAM0012.

Full text
Abstract:
Dans le cadre du développement accru d’implants crâniens actifs, l’étude de la résistance du complexe crâne-implant face à des chocs modérés est nécessaire afin d’assurer la sécurité du patient. Le but de cette thèse est de quantifier l’interaction mécanique entre le crâne et l’implant afin de développer un modèle éléments finis prédictif utilisable pour la conception des futurs dispositifs. Dans un premier temps, des essais matériaux sur titane et silicone ont permis d’extraire les paramètres élastiques, plastiques et de viscosité de leurs lois de comportement. Ces paramètres ont ensuite été implémentés dans un modèle éléments finis de l’implant sous sollicitations dynamiques, validé par des essais de choc de 2,5 J. L’implant dissipe une partie de l’énergie du choc et le modèle obtenu permet d’optimiser la conception de l’implant afin qu’il reste fonctionnel et étanche après l’impact. La troisième partie porte sur l’élaboration d’un modèle éléments finis du complexe crâne-implant sous sollicitations dynamiques. Des essais sur têtes cadavériques ovines ont permis d’optimiser les paramètres d’endommagement du crâne. Le modèle complet du complexe crâne-implant, corrélé à des essais de choc, apporte des éléments de réponses sur le comportement du crâne implanté face un choc mécanique, permettant ainsi d’optimiser la conception de l’implant afin de garantir l’intégrité du crâne.Ce modèle représente un premier outil pour l’analyse de l’interaction mécanique entre crâne et implant actif, et permet de dimensionner ce dernier de sorte à garantir son fonctionnement et son étanchéité, tout en assurant l’intégrité du crâne
Active cranial implants are more and more developed to cure neurological diseases. In this context it is necessary to evaluate the mechanical resistance of the skull-implant complex under impact conditions as to ensure the patient’s security. The aim of this study is to quantify the mechanical interactions between the skull and the implant as to develop a finite element model for predictive purpose and for use in cranial implant design methodologies for future implants. First, material tests were necessary to identify the material law parameters of titanium and silicone. They were then used in a finite element model of the implant under dynamic loading, validated against 2.5 J-impact tests. The implant dissipates part of the impact energy and the model enables to optimize the design of implants for it to keep functional and hermetic after the impact. In the third part, a finite element model of the skull-implant complex is developed under dynamic loading. Impact tests on ovine cadaver heads are performed for model validation by enhancing the damage parameters of the three-layered skull and give insight into the behavior of the implanted skull under impact.This model is a primary tool for analyzing the mechanical interaction between the skull and an active implant and enables for an optimized design for functional and hermetic implants, while keeping the skull safe
APA, Harvard, Vancouver, ISO, and other styles
3

Gercek, Cihan. "Immunité des implants cardiaques actifs aux champs électriques de 50/60 Hz." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0226/document.

Full text
Abstract:
La directive européenne 2013/35/UE précise les exigences minimales pour la protection des travailleurs exposés aux champs électromagnétiques et définit les porteurs d’implants comme travailleurs à risques particuliers. Concernant les porteurs de défibrillateur automatique implantable (DAI) ou de stimulateur cardiaque (SC), l’exposition au champ électrique ou magnétique d’extrêmement basse fréquence crée des inductions à l'intérieur du corps humain pouvant générer une tension perturbatrice susceptible de causer le dysfonctionnement de l’implant. Le sujet de ce travail de thèse porte sur la compatibilité électromagnétique des implants cardiaques soumis à un champ électrique basses fréquences (50/60 Hz). Des simulations numériques ont été effectuées afin de concevoir un banc expérimental pour l’exposition de fantômes incluant des stimulateurs ou des défibrillateurs implantables. Une étude expérimentale a permis d’établir par provocation les seuils de champ électrique permettant d’éviter tout dysfonctionnement éventuel de l’implant. Dans la partie simulation numérique ; un modèle humain virtuel (fantôme numérique contenant un implant cardiaque) a été placé en position debout sous une exposition verticale à un champ électrique. La méthode des éléments finis a été utilisée pour définir les phénomènes induits au niveau de l’implant cardiaque avec une résolution de 2mm (logiciel CST®). Dans la partie expérimentale, un banc d'essai dimensionné pour permettre de générer un champ électrique pouvant atteindre 100 kV/m aux fréquences 50-60 Hz a été conçu, optimisé et réalisé afin d’analyser le comportement des implants cardiaques. Plusieurs configurations ont été étudiées. Sur 54 implants cardiaques actifs testés (43 stimulateurs et 11 défibrillateurs) à des niveaux de champs électriques très élevés (100 kV/m) générés par notre dispositif expérimental, aux fréquences de 50-60 Hz, aucune défaillance n’a été observée pour des niveaux d’exposition publics et pour la plupart des configurations (+99%) sauf pour six stimulateurs cardiaques dans le cas d’une configuration « pire cas » peu réaliste en clinique : mode unipolaire avec une sensibilité maximale et en détection auriculaire. Les implants configurés avec une sensibilité nominale en mode bipolaire résistent bien à des champs électriques dépassant les valeurs seuils telles que définies par 2013/UE/35
The European Directive 2013/ 35 / EU specify minimum requirements for the protection of workers exposed to electromagnetic fields and define with implants as “workers at particular risk”. Regarding the implantable cardioverter defibrillator wearers (ICD) or pacemaker (PM), exposure to electric or magnetic field of extremely low frequency creates inductions inside the human body that generate interference voltage which may cause the dysfunction of the implant. This thesis investigates the electromagnetic compatibility of cardiac implants subjected to an electric field low frequency (50/60 Hz). Computational simulations are effectuated in order to design an experimental bench for the exposure of a phantom including pacemakers or implantable defibrillators. A provocative study is established to define the electric field thresholds for preventing any malfunction of the implant. In numerical simulations; a virtual human model (digital phantom containing a cardiac implant) was placed in an upright position in a vertical exposure to an electric field. The finite element method was used to define the inductions in the cardiac implant level with a resolution of 2 mm (CST® software). In the experimental part, a test bench designed to allow generating an electric field up to 100 kV / m at frequencies 50-60 Hz was constructed, optimized and employed to investigate the behavior of cardiac implants.Several configurations were studied. 54 active cardiac implants (43 pacemakers and 11 defibrillators) are submitted to very high electric field of 50-60 Hz (up to 100 kV / m) inside the experimental bench. No failure was observed for public exposure levels for most configurations (+ 99%) except for six pacemakers in the case of a configuration clinically almost inexistent: unipolar mode with maximum sensitivity and atrial sensing.The implants configured with a nominal sensitivity in bipolar mode are resistant to electric fields exceeding the low action levels (ALs), even for the most high ALs, as defined by 2013 / 35 / EU
APA, Harvard, Vancouver, ISO, and other styles
4

Castagnola, Valentina. "Implantable microelectrodes on soft substrate with nanostructured active surface for stimulation and recording of brain activities." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2646/.

Full text
Abstract:
Les prothèses neuronales implantables offrent de nos jours une réelle opportunité pour restaurer des fonctions perdues par des patients atteints de lésions cérébrales ou de la moelle épinière, en associant un canal non-musculaire au cerveau ce qui permet la connexion de machines au système nerveux. La fiabilité sur le long terme de ces dispositifs, se présentant sous la forme d'électrodes implantables, est un facteur crucial pour envisager des applications dans le domaine des interfaces cerveau-machine. Cependant, les électrodes actuelles pour l'enregistrement et la stimulation se détériorent en quelques mois voire quelques semaines. Ce défaut de fiabilité sur le long terme, principalement lié à une réaction chronique contre un corps étranger, est induit au départ par le traumatisme consécutif à l'insertion du dispositif et s'aggrave ensuite, durant les mouvements du cerveau, à cause des propriétés mécaniques inadaptées de l'électrode par rapport à celles du tissu. Au cours du temps, l'ensemble de ces facteurs inflammatoires conduit à l'encapsulation de l'électrode par une couche isolante de cellules réactives détériorant ainsi la qualité de l'interface entre le dispositif implanté et le tissu cérébral. Pour s'affranchir de ce phénomène, la biocompatibilité des matériaux et des procédés, ainsi que les propriétés mécaniques de l'électrode doivent être pris en considération. Durant cette thèse, nous avons abordé la question en développant un procédé de fabrication simple pour réaliser des dispositifs implantables souples en parylène. Les électrodes flexibles ainsi obtenues sont totalement biocompatibles et leur compliance est adaptée à celle du tissu cérébral ce qui limite fortement la réaction inflammatoire occasionnée par les mouvements du cerveau. Après avoir optimisé le procédé de fabrication, nous avons focalisé notre étude sur les performances du dispositif et sa stabilité. L'utilisation d'une grande densité d'électrodes micrométriques, avec un diamètre de 10 à 50 µm, permet de localiser les zones d'enregistrement en rendant possible, par exemple, la conversion d'un ensemble de signaux électrophysiologiques en une commande de mouvement. En contrepartie, la réduction de la taille des électrodes conduit à une augmentation de l'impédance ce qui dégrade la qualité d'enregistrement des signaux. Ici, un polymère conducteur organique, le poly(3,4-ethylenedioxythiophene), PEDOT, a été utilisé pour améliorer les caractéristiques électriques d'enregistrement d'électrodes de petites dimensions. Le PEDOT a été déposé sur la surface des électrodes par électrochimie avec une grande reproductibilité. Des dépôts homogènes avec des conductivités électriques très élevées ont été obtenus en utilisant différents procédés électrochimiques. Grâce à l'augmentation du rapport surface/volume induit par la présence de la couche de PEDOT, une diminution significative de l'impédance de l'électrode (jusqu'à 3 ordres de grandeur) a été obtenue sur une large plage de fréquences. De tests de vieillissement thermique accéléré ont également été effectués sans influence notable sur les propriétés électriques démontrant ainsi la stabilité de la couche de PEDOT durant plusieurs mois. Les dispositifs ainsi obtenus, fabriqués en parylène avec un dépôt de PEDOT sur la surface active des électrodes, ont été testés in vitro et in vivo sur des cerveaux de souris. Un meilleur rapport signal sur bruit a été mesuré durant des enregistrements neuronaux en comparaison avec des résultats obtenus avec des électrodes commerciales. En conclusion, la technologie décrite ici, associant stabilité sur le long terme et faible impédance, a permis d'obtenir des électrodes implantables parfaitement adaptées pour le développement d'interfaces neuronales chroniques
Implantable neural prosthetics devices offer, nowadays, a promising opportunity for the restoration of lost functions in patients affected by brain or spinal cord injury, by providing the brain with a non-muscular channel able to link machines to the nervous system. The long term reliability of these devices constituted by implantable electrodes has emerged as a crucial factor in view of the application in the "brain-machine interface" domain. However, current electrodes for recording or stimulation still fail within months or even weeks. This lack of long-term reliability, mainly related to the chronic foreign body reaction, is induced, at the beginning, by insertion trauma, and then exacerbated as a result of mechanical mismatch between the electrode and the tissue during brain motion. All these inflammatory factors lead, over the time, to the encapsulation of the electrode by an insulating layer of reactive cells thus impacting the quality of the interface between the implanted device and the brain tissue. To overcome this phenomenon, both the biocompatibility of materials and processes, and the mechanical properties of the electrodes have to be considered. During this PhD, we have addressed both issues by developing a simple process to fabricate soft implantable devices fully made of parylene. The resulting flexible electrodes are fully biocompatible and more compliant with the brain tissue thus limiting the inflammatory reaction during brain motions. Once the fabrication process has been completed, our study has been focused on the device performances and stability. The use of high density micrometer electrodes with a diameter ranging from 10 to 50 µm, on one hand, provides more localized recordings and allows converting a series of electrophysiological signals into, for instance, a movement command. On the other hand, as the electrode dimensions decrease, the impedance increases affecting the quality of signal recordings. Here, an organic conductive polymer, the poly(3,4-ethylenedioxythiophene), PEDOT, has been used to improve the recording characteristics of small electrodes. PEDOT was deposited on electrode surfaces by electrochemical deposition with a high reproducibility. Homogeneous coatings with a high electrical conductivity were obtained using various electrochemical routes. Thanks to the increase of the surface to volume ratio provided by the PEDOT coating, a significant lowering of the electrode impedance (up to 3 orders of magnitude) has been obtained over a wide range of frequencies. Thermal accelerated ageing tests were also performed without any significant impact on the electrical properties demonstrating the stability of the PEDOT coatings over several months. The resulting devices, made of parylene with a PEDOT coating on the active surface of electrodes, have been tested in vitro and in vivo in mice brain. An improved signal to noise ratio during neural recording has been measured in comparison to results obtained with commercially available electrodes. In conclusion, the technology described here, combining long-term stability and low impedance, make these implantable electrodes suitable candidates for the development of chronic neural interfaces
APA, Harvard, Vancouver, ISO, and other styles
5

Frewin, Christopher L. "The Neuron-Silicon Carbide Interface: Biocompatibility Study and BMI Device Development." Scholar Commons, 2009. https://scholarcommons.usf.edu/etd/1973.

Full text
Abstract:
Damage to the central nervous system (CNS) leads to the generation of an immune response which culminates with the encapsulation of the damaged area. The encapsulation, known as a glial scar, essentially breaks neural signal pathways and blocks signal transmissions to and from the CNS. The effect is the loss of motor and sensory control for the damaged individual. One method that has been used successfully to treat this problem is the use of a brain-machine interface (BMI) which can intercept signals from the brain and use these signals to control a machine. Although there are many types of BMI devices, implantable devices show the greatest promise with the ability to target specific areas of the CNS, with reduced noise levels and faster signal interception, and the fact that they can also be used to send signals to neurons. The largest problem that has plagued this type of BMI device is that the materials that have been used for their construction are not chemically resilient, elicit a negative biological response, or have difficulty functioning for extended periods of time in the harsh body environment. Many of these implantable devices experience catastrophic failure within weeks to months because of these negative factors. New materials must be examined to advance the future utilization of BMI devices to assist people with CNS damage or disease. We have proposed that two semiconductor materials, cubic silicon carbide (3C-SiC) and nanocrystalline diamond (NCD), which should provide solutions to the material biocompatibility problems experienced by implantable BMI devices. We have shown in this study that these two materials show chemical resilience to neuronal cellular processes, and we show evidence which indicates that these materials possess good biocompatibility with neural cell lines that, in the worst case, is comparable to celltreated polystyrene and, in most cases, even surpasses polystyrene. We have utilized 3C-SiC within an electrode device and activated the action potential of differentiated PC12 cells. This work details our initial efforts to modify the surfaces of these materials in order to improve cellular interaction and biocompatibility, and we examine our current and future work on improving our implantable BMI devices.
APA, Harvard, Vancouver, ISO, and other styles
6

Bouldi, Melina. "Vers une application sûre de l'IRM en présence d'implants actifs." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY056/document.

Full text
Abstract:
L'IRM est généralement considérée comme une méthode d'imagerie extrêmement sûre. Cependant, en présence d'implants conducteurs, des risques pour la santé du patient existent, plus particulièrement en terme d'échauffement radio-fréquence (RF) des tissus en contact avec l'implant. Suivant les recommandations des fabricants et des autorités sanitaires, certains dispositifs implantés sont autorisés en environnement IRM, sous conditions strictes qui limitent la qualité des images ou rendent l'acquisition impossible. Le but de cette thèse était d'optimiser et de valider les méthodes pour l'évaluation de la sécurité IRM en présence d'implants. Augmenter la prévisibilité des échauffements qui risquent de se produire dans chaque cas précis devrait permettre un élargissement des applications possibles de l'IRM chez des patients porteurs d'implants actifs.Ce projet est basé sur trois approches :- Des mesures et développements de méthodes IRM sur des objet-tests. Des techniques pré-existantes de cartographie du champ RF ont été optimisées afin de couvrir l'ensemble de la gamme dynamique présente dans le cas de courants RF induits dans des conducteurs. Pour ce faire, la technique AMFI (“Actual Multiple Flip-Angle Imaging”) a été développée. Un travail d'optimisation a également été mené sur la thermométrie IRM rapide via la méthode PRFS (“Proton Resonance Frequency Shift”).- Le développement de simulations numériques visant à étudier les interactions électromagnétiques entre les implants et le résonateur RF, ainsi que leurs répercussions thermiques. Un modèle de résonateur RF a été construit et validé à la fois théoriquement et expérimentalement. Le réglage du résonateur a donné lieu au développement d'une méthode numérique originale permettant de déterminer rapidement et précisément les valeurs des capacités. L'évaluation des courants RF induits dans des implants filaires conducteurs, via l'utilisation des cartes de champ RF, a également été développée. Cette méthode de mesure des courants RF induits ouvre la possibilité d'évaluer la sécurité au niveau individuel par une acquisition à faible débit d'absorption spécifique, avant toute autre acquisition IRM, dans le cas d'un possible futur protocole incluant des patients.- La construction d'un modèle numérique simplifié d'une électrode de stimulation cérébrale, via l'utilisation de la théorie des lignes de transmission. Ce modèle rend les simulations RF abordables, et présente les mêmes propriétés électriques que l'électrode réelle. L'échauffement RF en présence d'une électrode DBS a ainsi pu être évalué numériquement par l'intermédiaire de simulations recouvrant la taille du résonateur RF corps-entier.L'ensemble des outils développés au cours de cette thèse permet finalement une amélioration des méthodes disponibles afin d'évaluer la sécurité RF en présence d'implants conducteurs
MRI is generally considered to be an exceptionally safe imaging method. However, in the presence of electrically conducting implants health risks exist, particularly in terms of RF heating of the tissues in contact with the implant. Some implants are cleared by the manufacturers or regulatory agencies for MR imaging of patients, but only under strictly limited conditions which often degrade image quality and exclude many configurations. The goal of this thesis project was to optimize and validate the methods for the assessment of MR safety in the presence of active implants. Increasing the predictability of the risk of RF heating in individual subjects should allow MRI to find wider applications in patients implanted with active devices.This project is based on three distinct approaches:- Measurements and MR method developments performed on test objects. Existing B1-mapping techniques were optimized for the specific needs of high dynamic range encountered in the presence of induced RF currents in conductors, leading to the “Actual Multiple Flip-Angle Imaging” technique. Further work has been performed on the optimization of rapid “Proton Resonance Frequency Shift” MR thermography.- The development of numerical simulations of the electromagnetic interactions between the RF resonator and implants as well as their thermal impact. A numerical RF resonator model was built and validated it using both theoretical and experimental studies. The optimization of the resonator has led to the development of an original method to rapidly and precisely adjust the individual capacitor values to obtain a given targeted current distribution. Separately, the measurement of RF currents induced in conductive wires, via B1 mapping, was developed. This method to measure RF currents in a specific configuration opens the possibility to evaluate RF safety in individual subjects using a low-SAR prescan prior to other acquisitions, for use in hypothetical future protocols on patients.- The construction of a simplified numerical model of deep brain stimulation electrodes, using transmission line theory. This model renders RF simulations tractable, while exhibiting the same electrical behavior as the real implant, allowing evaluation of RF heating in simulations covering the size of a whole-body MR resonator.The set of tools developed improve upon the currently available methods for the evaluation of RF safety in the presence of conductive implants
APA, Harvard, Vancouver, ISO, and other styles
7

Hsieh, Sheng-Kai, and 謝勝凱. "A 13.56 MHz Regulated Dual-Output Active Rectifier with Adaptive Offset Compensation for Implantable Medical Devices." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/uk7957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Yueh-Hsuan, and 李岳軒. "The Design of CMOS 13.56-MHz High Efficiency 1X/3X Active Rectifier and Low Dropout Regulators for Implantable Medical Devices." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/ts7j26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lin, Tzu-Han, and 林子涵. "The Design of CMOS 13.56-MHz High Efficiency 2X/3X Active Rectifier and Low Dropout Regulators for Implantable Medical Devices." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/fyaz98.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Syu, Ruei-Syuan, and 許睿軒. "The Design of CMOS Analog Front-End Acquisition Circuits for Electrocorticography (ECoG) and Evoked Compound Action Potential (ECAP) Recording in Implantable Medical Devices." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/xd928n.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Active Implantable Device"

1

Schoenmakers, C. C. W. CE marking for medical devices: A handbook to the medical devices directives : Medical Device Directive 93/42/EEC : the Active Implantable Medical Device Directive 90/396/EEC. New York, NY: Standards Information Network/IEEE Press, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Britain, Great. Consumer protection: The Active Implantable Medical Devices (Amendment and Transitional Provisions) Regulations 1995. London: HMSO, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Consumer protection: The Active Implantable Medical Devices Regulations 1992. London: HMSO, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

The Active Implantable Medical Devices Regulations 1992 (Statutory Instruments: 1992: 3146). Stationery Office Books, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

ANSI/AAMI/ISO 14117:2019; Active implantable medical devices—Electromagnetic compatibility—EMC test protocols for implantable cardiac pacemakers, implantable cardioverter defibrillators and cardiac resynchronization devices. AAMI, 2019. http://dx.doi.org/10.2345/9781570207280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

ANSI/AAMI/ISO 14708-3:2017; Implants for surgery — Active implantable medical devices — Part 3: Implantable neurostimulators. AAMI, 2017. http://dx.doi.org/10.2345/9781570206580.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

ANSI/AAMI/ISO 14708-4:2008/(R)2011; Implants for surgery—Active implantable medical devices—Part 4: Implantable infusion pumps. AAMI, 2009. http://dx.doi.org/10.2345/9781570203596.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

The Active Implantable Medical Devices (Amendment and Transitional Provisions) Regulations 1995 (Statutory Instruments: 1995: 1671). Stationery Office Books, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

AAMI TIR41:2011/(R)2020; Active implantable medical devices—Guidance for designation of left ventricle and implantable cardioverter defibrillator lead connectors and pulse generator connector cavities for implantable pacemakers and implantable cardioverter defibrillators. AAMI, 2011. http://dx.doi.org/10.2345/9781570204340.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Active Implantable Device"

1

Nahler, Gerhard. "active implantable medical device." In Dictionary of Pharmaceutical Medicine, 2. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Brown, James E., Rui Qiang, Paul J. Stadnik, Larry J. Stotts, and Jeffrey A. Von Arx. "RF-Induced Unintended Stimulation for Implantable Medical Devices in MRI." In Brain and Human Body Modeling 2020, 283–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45623-8_17.

Full text
Abstract:
AbstractHistorically, patients with implantable medical devices have been denied access to magnetic resonance imaging (MRI) due to several potentially hazardous interactions. There has been significant interest in recent years to provide access to MRI to patients with implantable medical devices, as it is the preferred imaging modality for soft tissue imaging. Among the potential hazards of MRI for patients with an active implantable medical device is radio frequency (RF)-induced unintended stimulation. RF energy incident on the device may be rectified by internal active components. Any rectified waveform present at the lead electrodes may stimulate nearby tissue. In order to assess the risk to the patient, device manufacturers use computational human models (CHMs) to quantify the incident RF on the device and perform in vitro testing to determine the likelihood of unintended stimulation. The use of CHMs enables the investigation of millions of scenarios of scan parameters, patient sizes and anatomies, and MR system technologies.
APA, Harvard, Vancouver, ISO, and other styles
3

Brown, James E., Paul J. Stadnik, Jeffrey A. Von Arx, and Dirk Muessig. "RF-induced Heating Near Active Implanted Medical Devices in MRI: Impact of Tissue Simulating Medium." In Brain and Human Body Modelling 2021, 125–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15451-5_8.

Full text
Abstract:
AbstractRecent advances in the MR conditional safety assessment of active implantable medical devices (AIMDs) have begun providing guidelines in the development of transfer functions for evaluating risk to the patient due to RF-induced heating. This work introduces the complexity of the analysis of RF-induced heating and explores the impact of the computational human model (CHM) on the resulting analysis. Through historical analysis techniques, simplified structures, and real medical device geometries, the interaction of the AIMD lead with the tissue simulating medium (TSM) can be better understood. Finally, a general guiding principle for MR manufacturers is identified, whereby the thickness of the lead insulation can be used to determine the appropriate TSM for the most accurate in vivo predictions of RF-induced heating.
APA, Harvard, Vancouver, ISO, and other styles
4

Rahmat-Samii, Yahya, and Jaehoon Kim. "Planar Antennas for Active Implantable Medical Devices." In Implanted Antennas in Medical Wireless Communications, 57–69. Cham: Springer International Publishing, 2006. http://dx.doi.org/10.1007/978-3-031-01531-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kim, Chunho. "Evolution of Advanced Miniaturization for Active Implantable Medical Devices." In Nano-Bio- Electronic, Photonic and MEMS Packaging, 407–15. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-49991-4_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Matriano, James. "CHAPTER 7. Addressing Immunogenicity for Implantable Drug-delivery Devices and Long-acting Injectables, Including Pharmacokinetic and Pharmacodynamic Correlations." In Drug Development and Pharmaceutical Science, 131–59. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164958-00131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

"The Active Implantable Medical Device Directive (AIMDD)." In International Labeling Requirements for Medical Devices, Medical Equipment and Diagnostic Products, 273–84. CRC Press, 2003. http://dx.doi.org/10.1201/9780203488393-30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

"The Active Implantable Medical Device Directive (AIMDD)." In International Labeling Requirements for Medical Devices, Medical Equipment and Diagnostic Products. Informa Healthcare, 2003. http://dx.doi.org/10.1201/9780203488393.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sohail, M. Rizwan, Daniel C. DeSimone, and James M. Steckelberg. "Infections of cardiovascular implantable devices." In Schlossberg's Clinical Infectious Disease, edited by Cheston B. Cunha, 281–86. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780190888367.003.0042.

Full text
Abstract:
This chapter assesses infections of cardiovascular implantable devices. Cardiovascular implantable electronic devices (CIED) include permanent pacemakers (PPM), implantable cardioverter-defibrillators (ICD), and cardiac resynchronization therapy (CRT) devices. The reported risk of CIED infection depends on the complexity of the device and host comorbid conditions. Once infected, complete device removal and systemic antibiotic therapy are necessary to achieve cure. Earlier versions of CIEDs required surgical placement of epicardial leads, which was facilitated by sternotomy, and generators were mostly placed in the abdominal area. However, in contemporary practice, most device leads are placed percutaneously via the subclavian vein, and the device generator resides in a subcutaneous pocket in the pectoral area. Use of epicardial leads is now reserved for special situations where transvenous lead placement is not possible or deemed high risk due to active or recent bloodstream infection.
APA, Harvard, Vancouver, ISO, and other styles
10

"5: General requirements for non-implantable parts." In AAMI/ISO TIR10974:2018; Assessment of the safety of magnetic resonance imaging for patients with an active implantable medical device. AAMI, 2018. http://dx.doi.org/10.2345/9781570206993.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Active Implantable Device"

1

Cheng, Ming-Yuan, Weiguo Chen, Ruiqi Lim, and Ramona Damalerio. "Hybrid hermetic housings for active implantable neural device." In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC). IEEE, 2017. http://dx.doi.org/10.1109/eptc.2017.8277483.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Akbarzadeh, Saeed, Xiao Gu, Zhipeng Wu, and Benny Lo. "A Novel Active Human Echolocation Device." In 2022 IEEE-EMBS International Conference on Wearable and Implantable Body Sensor Networks (BSN). IEEE, 2022. http://dx.doi.org/10.1109/bsn56160.2022.9928448.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Drexler, Elizabeth S., Andrew J. Slifka, Nicholas Barbosa, and John W. Drexler. "Interaction of Environmental Conditions: Role in the Reliability of Active Implantable Devices." In ASME 2007 2nd Frontiers in Biomedical Devices Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/biomed2007-38072.

Full text
Abstract:
Environmental conditions can have major influence on the lifetimes and reliability of active implantable medical devices (e.g., neurostimulators, cochlear implants, internal cardioverter defibrillators). These environmental conditions can range from those encountered by the device in processing and production to transportation and storage to actual operation. Although one might argue that the environmental conditions found in the first two situations are harsher than those of the third, failures that result from those situations are screened before implantation. If we assume that the active medical device is in perfect operational form at the time it is implanted, it will still experience a host of environmental conditions that can affect reliability. In fact, the ultimate goal of these medical devices is to restore the patient, wherever they may reside, to normal activities. A list of some environmental conditions that may be experienced by a device implanted in a representative patient is found in Table 1.
APA, Harvard, Vancouver, ISO, and other styles
4

Nelson, Jody J., Wes Clement, Brian Martel, Richard Kautz, and Katarina H. Nelson. "Assessment of active implantable medical device interaction in hybrid electric vehicles." In 2008 IEEE International Symposium on Electromagnetic Compatibility - EMC 2008. IEEE, 2008. http://dx.doi.org/10.1109/isemc.2008.4652064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Campi, Tommaso, Silvano Cruciani, Mauro Feliziani, and Akimasa Hirata. "Wireless power transfer system applied to an active implantable medical device." In 2014 IEEE Wireless Power Transfer Conference (WPTC). IEEE, 2014. http://dx.doi.org/10.1109/wpt.2014.6839612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gas, Piotr, and Arkadiusz Miaskowski. "A Heating from a Standard Active Implantable Medical Device under MRI Exposure." In 2019 15th Selected Issues of Electrical Engineering and Electronics (WZEE). IEEE, 2019. http://dx.doi.org/10.1109/wzee48932.2019.8979783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chang, Jiajun, Qianlong Lan, Ran Guo, Jianfeng Zheng, Ji Chen, and Wolfgang Kainz. "Prediction of Active Implantable Medical Device Electromagnetic Models Using a Neural Network." In 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). IEEE, 2021. http://dx.doi.org/10.1109/aps/ursi47566.2021.9704511.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hikage, T., Y. Kawamura, T. Nojima, B. Koike, H. Fujimoto, and T. Toyoshima. "Active implantable medical device EMI assessments for electromagnetic emitters operating in various RF bands." In 2011 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications (IMWS 2011). IEEE, 2011. http://dx.doi.org/10.1109/imws.2011.5877102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Ran, Jianfeng Zheng, Zhichao Wang, Rui Yang, Ji Chen, and Thomas Hoegh. "Reducing the Radiofrequency-Induced Heating of Active Implantable Medical Device with Load Impedance Modification." In 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hikage, Takashi, Yoshifumi Kawamura, and Toshio Nojima. "Numerical estimation methodology for RFID/Active Implantable Medical Device-EMI based upon FDTD analysis." In 2011 XXXth URSI General Assembly and Scientific Symposium. IEEE, 2011. http://dx.doi.org/10.1109/ursigass.2011.6051331.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Active Implantable Device"

1

Drexler, Elizabeth S., William F. Regnault, and John A. Tesk. Measurement methods for evaluation of the reliability of active implantable medical devices :. Gaithersburg, MD: National Institute of Standards and Technology, 2006. http://dx.doi.org/10.6028/nist.sp.1047.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography