Academic literature on the topic 'Active Galactic Nuclei – Blazars – Gamma-ray blazars'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Active Galactic Nuclei – Blazars – Gamma-ray blazars.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Active Galactic Nuclei – Blazars – Gamma-ray blazars"

1

TAVECCHIO, F. "GAMMA-RAY EMISSION FROM AGNS (SPECIAL FOCUS ON BL LAC OBJECTS)." International Journal of Modern Physics D 19, no. 06 (June 2010): 841–48. http://dx.doi.org/10.1142/s0218271810017081.

Full text
Abstract:
Blazars, radio-loud active galactic nuclei with the relativistic jet closely aligned with the line of sight, dominate the extragalactic sky observed at gamma-ray energies, above 100 MeV. We discuss some of the emission properties of these sources, focusing in particular on the "blazar sequence" and the interpretative models of the high-energy emission of BL Lac objects.
APA, Harvard, Vancouver, ISO, and other styles
2

Uwitonze, Emmanuel, Pheneas Nkundabakura, and Tom Mutabazi. "Determination of K4000 of potential blazar candidates among EGRET unidentified gamma-ray sources." Proceedings of the International Astronomical Union 15, S356 (October 2019): 355–57. http://dx.doi.org/10.1017/s1743921320003336.

Full text
Abstract:
AbstractBlazars are radio-loud Active Galactic Nuclei (AGN) with relativistic jets oriented towards the observer’s line-of-sight. Based on their optical spectra, blazars may be classified as flat-spectrum radio quasars (FSRQs) or BL Lacs. FSRQs are more luminous blazars with both narrow and broad emission and absorption lines, while BL Lacs are less luminous and featureless. Recent studies show that blazars dominate (˜93%) the already-identified EGRET sources (142), suggesting that among the unidentified sources (129) there could still be faint blazars. Due to the presence of a strong non-thermal component inside their jets, blazars are found to display a weaker depression at ˜4000 Å (K 4000 ≤ 0.4). In this study, we aimed at determining the K 4000 break for a selected sample among the potential blazar candidates from unidentified EGRET sources to confirm their blazar nature. We used two blazar candidates, 3EG J1800-0146 and 3EG J1709-0817 associated with radio counterparts, J1802-0207 and J1713-0817, respectively. Their optical counterparts were obtained through spectroscopic observations using Robert Stobie spectrograph (RSS) at the Southern African Large Telescope (SALT) in South Africa. The observed Ca II H & K lines depression at ˜4000 Å in spectra of these sources show a shallow depression, K 4000 = 0.35 ± 0.02 and 0.24 ± 0.01, respectively, suggesting that these sources are blazar candidates. Moreover, the redshifts z = 0.165 and 0.26 measured in their spectra confirm the extragalactic nature of these sources.
APA, Harvard, Vancouver, ISO, and other styles
3

Takahashi, T., H. Kubo, and G. Madejski. "ASCA Observations of Blazars." Highlights of Astronomy 11, no. 2 (1998): 812–15. http://dx.doi.org/10.1017/s1539299600018852.

Full text
Abstract:
During the last years it has become evident that blazar class of AGN emit a lot of energy in the gamma-ray regime. It is generally thought that the non-thermal emission from blazars, observed from radio to GeV/TeV 7-rays, is radiation of very energetic particles via both synchrotron and Compton processes. This underlines the importance of high-energy emission for models of the blazar class of active galactic nuclei. Most of the gamma-bright AGN are variable, and flares with time scales as short as a day have been observed. This suggests that the site of gamma-ray emission is very compact and situated in a fluid which moves relativistically at a small angle towards the observer. It is generally assumed that the emission originates from the jet of these objects.
APA, Harvard, Vancouver, ISO, and other styles
4

Langejahn, M., M. Kadler, J. Wilms, E. Litzinger, M. Kreter, N. Gehrels, W. H. Baumgartner, C. B. Markwardt, and J. Tueller. "Hard X-ray properties of radio-selected blazars." Astronomy & Astrophysics 637 (May 2020): A55. http://dx.doi.org/10.1051/0004-6361/202037469.

Full text
Abstract:
Context. Hard X-ray properties of beamed active galactic nuclei have been published in the 105-month Swift/BAT catalog, but there have not been any studies carried out so far on a well-defined, radio-selected sample of low-peaked blazars in the hard X-ray band. Aims. Using the statistically complete MOJAVE-1 sample, we aim to determine the hard X-ray properties of radio-selected blazars, including the enigmatic group of gamma-ray-faint blazars. Additionally, we aim to determine the contribution of radio-selected low-peaked blazars to the diffuse cosmic X-ray background (CXB). Methods. We determined photon indices, fluxes, and luminosities in the range of 20 keV–100 keV of the X-ray spectra of blazars and other extragalactic jets from the MOJAVE-1 sample, derived from the 105-month Swift/BAT survey. We calculated log N–log S distributions and determined the luminosity functions. Results. The majority of the MOJAVE-1 blazars are found to be hard X-ray emitters albeit many at low count rates. The log N–log S distribution for the hard X-ray emission of radio-selected blazars is clearly non-Euclidean, in contrast to the radio flux density distribution. Approximately 0.2% of the CXB in the 20 keV–100 keV band can be resolved into MOJAVE-1 blazars. Conclusions. The peculiar log N–log S distribution disparity might be attributed to different evolutionary paths in the X-ray and radio bands, as tested by luminosity-function modeling. X-ray variability can be ruled out as the dominant contributor. Low-peaked blazars constitute an intrinsically different source population in terms of CXB contribution compared to similar studies of X-ray-selected blazars. The hard X-ray flux and spectral index can serve as a good proxy for the gamma-ray detection probability of individual sources. Future observations combining deep X-ray survey, for example, with eROSITA, and targeted gamma-ray observations with CTA can benefit strongly from the tight connection between these high-energy bands for the different blazar sub-classes.
APA, Harvard, Vancouver, ISO, and other styles
5

Paggi, Alessandro, R. D'Abrusco, F. Massaro, M. Landoni, D. Milisavljevic, N. Masetti, F. Ricci, et al. "Multi-wavelength selection and identification of gamma-ray blazar candidates." Proceedings of the International Astronomical Union 10, S313 (September 2014): 58–63. http://dx.doi.org/10.1017/s1743921315001878.

Full text
Abstract:
AbstractA significant fraction (~ 30%) of the gamma-ray sources detected by the Fermi Gamma-ray Space Telescope is still of unknown origin, being not yet associated with counterparts at lower energies. Many unidentified gamma-ray sources (UGSs) could be blazars, the largest identified population of extragalactic gamma-ray sources and the rarest class of active galactic nuclei. In particular, it has been found that blazars occupy a defined region in WISE three dimensional color space, well separated from that occupied by other sources in which thermal emission prevails. For farther sources with weaker IR emission, additional informations can be obtained combining WISE data with X-ray or radio emission. Alternatively, the low-frequency radio emission can be used for identifying potential gamma-ray candidate blazars. However, optical spectroscopic observations represent the tell-tale tool to confirm the exact nature of these sources. To this end, an extensive observational campaign has been performed with several optical telescopes, aimed at pinpointing the exact nature of gamma-ray candidate blazars selected with the different selection methods mentioned above. The results of this campaign lead to the discovery of 60 new gamma-ray blazars, thus confirming the effectiveness of these selection criteria.
APA, Harvard, Vancouver, ISO, and other styles
6

Bhatta, Gopal. "Blazar Jets as Possible Sources of Ultra-High Energy Photons: A Short Review." Universe 8, no. 10 (October 1, 2022): 513. http://dx.doi.org/10.3390/universe8100513.

Full text
Abstract:
In this paper, I present a qualitative discussion on the prospect of production of ultra-high photons in blazars. The sources are a subclass of active galactic nuclei which host supermassive black holes and fire relativistic jets into the intergalactic medium. The kpc-scale jets are believed to be dominated by Poynting flux and constitute one of the most efficient cosmic particle accelerators, that potentially are capable of accelerating the particles up to EeV energies. Recent IceCube detection of astrophysical neutrino emissions, in coincidence with the enhanced gamma-ray from Tev blazar TXS 0506 + 056, further supports hadronic models of blazar emissions in which particle acceleration processes, such as relativistic shocks, magnetic re-connection, and relativistic turbulence, could energize hadrons, e.g., protons, up to energies equivalent to billions of Lorentz factors. The ensuing photo-pionic processes may then result in gamma-rays accompanied by neutrino flux. Furthermore, the fact that blazars are the dominant source of observed TeV emission encourages search for signatures of acceleration scenarios that would lead to the creation of ultra-high-energy photons.
APA, Harvard, Vancouver, ISO, and other styles
7

Paggi, A., M. Bonato, C. M. Raiteri, M. Villata, G. De Zotti, and M. I. Carnerero. "A new multiwavelength census of blazars." Astronomy & Astrophysics 641 (September 2020): A62. http://dx.doi.org/10.1051/0004-6361/202038430.

Full text
Abstract:
Context. Blazars are the rarest and most powerful active galactic nuclei. They play a crucial and expanding role in the multifrequency and multimessenger astrophysics of today. Dominating the high-energy extragalactic sky, they have been recently associated with high-energy astrophysical neutrinos and they may be among the accelerators of the ultra-high energy cosmic rays. Current blazar catalogs, however, are incomplete and they are depleted, in particular, at low Galactic latitudes. Aims. Our study is aimed at augmenting the current blazar census, starting from a sample of ALMA calibrators that provides more homogeneous sky coverage, especially at low Galactic latitudes, to build a catalog of blazar candidates that can provide candidate counterparts to unassociated γ-ray sources and sources of high-energy neutrino emission or ultra-high energy cosmic rays. Methods. Based on the ALMA Calibrator Catalog, we compiled a selection of 1580 ALMA Blazar Candidates (ABCs) for which we collected multiwavelength information, including Gaia photometric, parallax, and proper motion data, as well as SDSS and LAMOST photometric and spectral data, WISE photometric data, X-ray (Swift-XRT, Chandra-ACIS and XMM-Newton-EPIC) count-rates and spectra, and Fermi-LAT fluxes and spectral slopes. We also compared our ALMA Blazar Candidates with existing blazar catalogs, such as 4FGL, 3HSP, WIBRaLS2, and the KDEBLLACS. Results. The ABC catalog fills in the gaps with regard to low Galactic latitude sources in current blazar catalogs. By cross-matching this catalog with Gaia DR2, SDSS DR12, LAMOST DR5, AllWISE, and 4FGL catalogs, we obtained 805, 295, 31, 1311, and 259 matches, respectively. ALMA Blazar Candidates are significantly dimmer than known blazars in the Gaia g band, while the difference in the Gaia b − r color between the two populations is less pronounced. Also, ABC sources appear bluer in SDSS than known blazars, although with low statistical significance. Most ABCs classified as QSO and BL Lac fall into the SDSS color regions of low redshift quasars, with some QSOs entering the regions of higher redshift quasars. We collected 110 optical spectra in SDSS DR12 and LAMOST DR5, which mostly classify the corresponding sources as QSO (98), while 12 sources turned out to be galactic objects. Regarding the WISE colors, we found that ABC sources are significantly bluer than known blazars in the w2 − w3 and w3 − w4 colors. In X-ray, we detected 173 ABCs and we were able to extract X-ray spectra for 92 of them. Our sources are, on average, similar in the X-ray band to known blazars in terms of count rates and spectral slopes, implying that our sample covers the same region of the blazar parameter space in this band. A comparison of γ-ray properties shows that the ABCs are, on average, dimmer and that their γ-ray spectra are softer than known blazars, indicating a significant contribution on the part of FSRQ sources. Making use of WISE colors, we classified 715 ABCs as candidate γ-ray blazar of different classes. Conclusions. We built a new catalog of 1580 candidate blazars with a rich multiwavelength data-set, filling in the gaps for low Galactic latitude sources in current blazar catalogs. This will be particularly important for the identification of the source population of high-energy neutrinos or ultra-high energy cosmic rays, or to verify the Gaia optical reference frame. In addition, ALMA Blazar Candidates can be investigated both through optical spectroscopic observation campaigns or through repeated photometric observations for variability studies. In this context, the data collected by the upcoming LSST surveys will provide a key tool for investigating the possible blazar nature of these sources.
APA, Harvard, Vancouver, ISO, and other styles
8

Xiao, Hubing, Junhui Fan, Zhihao Ouyang, Liangjun Hu, Guohai Chen, Liping Fu, and Shaohua Zhang. "An Extensive Study of Blazar Broad Emission Line: Changing-look Blazars and the Baldwin Effect." Astrophysical Journal 936, no. 2 (September 1, 2022): 146. http://dx.doi.org/10.3847/1538-4357/ac887f.

Full text
Abstract:
Abstract It is known that the blazar jet emissions are dominated by nonthermal radiation, while the accretion disk jets are normally dominated by thermal emission. In this work, our aim is to study the connection between the two types of emission by investigating the correlation between the blazar emission-line intensity property, which embodies the nature of an accretion disk, and the γ-ray flux property, which is the representative of jet emission. We compiled a sample of 656 blazars with available emission-line equivalent widths (EWs), the GeV γ-ray flux, and the spectral energy distribution (SED) information from the literature. In this work, we found 55 previous blazar candidates of uncertain types (BCUs) that are now identified as flat-spectrum radio quasars (FSRQs), and found 52 “changing-look” blazars based on their EWs, 45 of which are newly confirmed. These changing-look blazars have a larger accretion ratio ( M ̇ / M ̇ Edd ) than BL Lacertae (BL Lac) objects. In addition, we suggest that the lower synchrotron peak blazars (LSPs) could be the source of changing-look blazars because 90.7% of the changing-look blazars in this work are confirmed as LSPs. An anticorrelation between EW and continuum intensity, the so-called global “Baldwin effect” (BEff), has been confirmed. We suggest that the steeper global BEff observed for the blazar than for radio-quiet active galactic nuclei (RQ-AGNs) is caused by the inverse Compton scattering of broad-emission-line photons. This interpretation is further supported by the positive correlation between the emission-line EW and intrinsic inverse Compton luminosity.
APA, Harvard, Vancouver, ISO, and other styles
9

Lott, B., E. Cavazzuti, S. Ciprini, S. Cutini, and D. Gasparrini. "Gamma-ray blazars and active galactic nuclei seen by the Fermi-LAT." Proceedings of the International Astronomical Union 10, S313 (September 2014): 12–16. http://dx.doi.org/10.1017/s1743921315001787.

Full text
Abstract:
AbstractThe third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25 using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes, |b| > 10 (with 28 duplicate associations, thus corresponding to 1563 gamma-ray sources among 2192 sources in the 3FGL catalog), a 71% increase over the second catalog based on 2 years of data. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., intermediate- and high-synchrotron-peaked FSRQs) have now been significantly detected.
APA, Harvard, Vancouver, ISO, and other styles
10

Sikora, Marek. "High-Energy Radiation From Active Galactic Nuclei." International Astronomical Union Colloquium 142 (1994): 923–28. http://dx.doi.org/10.1017/s0252921100078325.

Full text
Abstract:
AbstractTwo recent findings concerning high-energy radiation properties of active galactic nuclei—discovery of breaks in hard X-ray spectra of Seyfert galaxies, and discovery of huge fluxes of hard gamma rays from blazars—seem to press us to change our standard views about radiation production in these objects. I review briefly the existing radiation models, confront them with the newest observations, and discuss newly emerging theoretical pictures which attempt to account for the discoveries.Subject headings: galaxies: active — galaxies: nuclei — radiation mechanisms: nonthermal
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Active Galactic Nuclei – Blazars – Gamma-ray blazars"

1

Bastin, Fane Troy. "A multiwavelength investigation of blazar-type active galactic nuclei." Thesis, University of Canterbury. Department of Physics and Astronomy, 2013. http://hdl.handle.net/10092/11302.

Full text
Abstract:
A multiwavelength investigation is conducted for nineteen blazar-type active galactic nuclei. Studies of variability timescales and flux duty cycles are performed at x- and gamma-rays for each source, with the relationship between flux and spectral index also being probed at gamma wavelengths. The correlation between these two energy ranges is also investigated, by utilising the Discrete Correlation Function with both one and ten day binning. The sources were chosen for their availability over a range of different x- and gamma-ray data sources: observations utilised include 0.2 - 150 keV x-ray data from the Swift mission and 200 MeV- 300 GeV gamma-ray data from the Fermi mission. Daily-binned Fermi data is used to calculate the smallest rise and decay e-folding times in gamma for each source. The results range from 0.4 to 21 days, corresponding to limits on the size of the gamma emission region ranging from Rd^-1 = 4.39 x 10^12 to Rd^-1 = 5.14 x 10^14 m. Flux duty cycles for fourteen sources are created from Fermi data, with six displaying structure at high fluxes that indicate flaring states have occured. Five of these six sources also display clear flares in their light curves, confirming these results. The relationship between the flux and the spectral index shows eight of nineteen sources exhibit harder-when-brighter behaviour. Four of these eight have been previously confirmed to display such behaviour. Results from the Discrete Correlation Function show a correlation at a time lag of ~ 600 days for H 1426+428, of uncertain origin. Gaussian functions are fitted to possible near-zero peaks in 3C 66A, 3C 454.3 and Mrk 421, which could be indicative of a synchrotron self-Compton component to the emission of these objects.
APA, Harvard, Vancouver, ISO, and other styles
2

Dickinson, Mark R. "Very high energy gamma ray observations of southern hemisphere blazars." Thesis, Durham University, 1997. http://etheses.dur.ac.uk/4705/.

Full text
Abstract:
This thesis is concerned with very high energy γ-ray observations of blazars observable from the southern hemisphere. The data presented were obtained using the recently deployed University of Durham Mark 6 high sensitivity Čerenkov telescope. Chapters 1 and 2 are introductory; the subjects of γ-ray astronomy, extensive air showers, Čerenkov light production, the development of the atmospheric Čerenkov technique and the current status of TeV astronomy are discussed. Chapter 3 introduces the telescopes operated by the University of Durham. The Mark 6 telescope, designed to have a low threshold energy and a high resolution imaging system, is discussed in detail. Chapter 4 presents the calibration and analysis techniques routinely applied to data obtained with the Mark 6 telescope. The chapter concludes with a set of moment parameter selections designed to reject a significant fraction of the cosmic ray cascades, while retaining the majority of γ-rays cascades. These selections have resulted in a 5σ detection of PSR 1706-44. Chapter 5 discusses active galactic nuclei and in particular blazars. Topics included are recent high energy observations; the differences between the radio/X-ray selected BL Lacs and flat spectrum radio quasars; the infrared background; high energy flux variability and γ-ray production mechanisms within these objects. The chapter concludes with a list of possible very high energy γ-ray emitting blazars observable with the Mark 6 Čerenkov telescope. Chapter 6 presents the results from four of these very high-energy γ-ray blazar candidates; PKS 0548-322, PKS 1514-24, PKS 2005-489 and PKS 2155-304. There is no evidence for γ-ray emission from these sources, either in the form of a steady flux or variable activity. Three sigma integral flux upper limits above 300 GeV are produced for these objects and the implications of these observations are discussed. The conclusions are presented in Chapter 7 as well as ideas for future work.
APA, Harvard, Vancouver, ISO, and other styles
3

Roustazadeh, Sheikhyousefi Parisa. "Pair Cascades in Blazars and Radio Galaxies." Ohio University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1327333900.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arrieta, Lobo Maialen. "A study of the emission processes of two different types of gamma-emitting Active Galactic Nuclei." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLE0010/document.

Full text
Abstract:
Ce manuscrit de thèse présente l’étude des processus d’émission de deux types de noyaux actifs de galaxie détectés aux rayons gamma : des blazars vues au TeV et des Narrow Line Seyfert 1s (NLS1s) détectés au GeV. La distribution spectrale d’énergie des blazars peut être décrite en général par des modèles 'one-zone synchrotron self-Compton'. Ce modèle a été appliqué au blazar 1ES2322-409 qui fut premièrement détecté au TeV par l’expérience HESS. Des composantes externes comme le tore, le disque d’accrétion, la couronne X ou la 'Broad Line Region' sont nécessaires pour expliquer la radiation observée dans des NLS1 qui émettent des rayons gamma. Un modèle numérique qui considère ces champs des photons externes a été développé. Ce modèle explique l’émission observée et la transition entre des états bas et des états d’émission augmentée pour trois NLS1s vues au régime gamma : 1H0323+342, B20954+25A et PMN J0948+0022
This thesis manuscript presents the study of the emission processes of two types of gamma-emitting active galactic nuclei: TeV-detected blazars and GeV-detected Narrow Line Seyfert 1s (NLS1s).The Spectral Energy Distribution (SED) of TeV blazars can in general be well described by simple one-zone synchrotron self-Compton models. Such model has been applied to the blazar 1ES2322-409 that was first detected at TeV by the HESS collaboration.Additional external photon fields such as the obscuring torus, the accretion disc, the X-ray corona or the broad line region are necessary to describe the observed radiation and broad-band SED of gamma-emitting NLS1s. A numerical model that takes into account emission from these external fields has been developed. The model explains the observed emission and the transition from quiescent to gamma-ray flaring states of three gamma-emitting NLS1s: 1H0323+342, B20954+25A and PMN J0948+0022
APA, Harvard, Vancouver, ISO, and other styles
5

Beckmann, Volker. "Unification of Active Galactic Nuclei at X-rays and soft gamma-rays." Habilitation à diriger des recherches, Université Paris-Diderot - Paris VII, 2010. http://tel.archives-ouvertes.fr/tel-00601042.

Full text
Abstract:
Through the work on X-ray and gamma-ray data of AGN I contributed significantly to the progress in the unification of AGN since I finished my PhD in 2000.

The study of the evolutionary behaviour of X-ray selected blazars (Beckmann & Wolter 2001; Beckmann et al. 2002, 2003b; Beckmann 2003) shows that their evolution is not as strongly negative as indicated by previous studies. The overall luminosity function is consistent with no evolution in the 0.1−2.4 keV band as seen by ROSAT/PSPC. There is still a difference compared to the luminosity function of FSRQ and LBL, which seem to show a positive evolution, indicating that they have been more luminous and/or numerous at cosmological distances. We indicated a scenario in order to explain this discrepancy, in which the high luminous FSRQ develop into the fainter LBL and finally into the BL Lac objects with high frequency peaks in their spectral energy distribution but overall low bolometric luminosity.

Studying the variability pattern of hard X-ray selected Seyfert galaxies, we actually found differences between type 1 and type 2 objects, in the sense that type 2 seemed to be more variable (Beckmann et al. 2007a). This breaking of the unified model is caused by the different average luminosity of the absorbed and unabsorbed sources, as discussed in Sect. 4.7.3. This can be explained by a larger inner disk radius when the AGN core is most active (the so-called receding disc model).

The work on the sample characteristics of hard X-ray detected AGN also led to the proof that the average intrinsic spectra of type 1 and type 2 objects are the same when reflection processes are taken into account (Beckmann et al. 2009d). This also explains why in the past Seyfert 2 objects were seen to have harder X-ray spectra than Seyfert 1, as the stronger reflection hump in the type 2 objects makes the spectra appear to be flatter, although the underlying continuum is the same.

Further strong evidence for the unification scheme comes from the observation of a fundamental plane which connects type 1 and type 2 objects smoothly (Beckmann et al. 2009d). In addition, in the case of the Seyfert 1.9 galaxy MCG-05-23-016 I showed that the spectral energy distribution of this source and its accretion rate is similar to that of a Galactic binary (Beckmann et al. 2008a).

Throughout the studies I have shown that the intrinsic spectral shape appears to be very stable on weeks to year time scale (Beckmann et al. 2004d, 2005b, 2007b, 2008a). This implies that the overall geometry of the AGN over these time scales did not change dramatically. The variations in intensity can then be explained in two ways: either the amount of material emitting the hard X-rays varies, or the amount of plasma visible to the observer varied, e.g. through different orientation of the disk with respect to the observer. In an upcoming paper we will show though, that NGC 4151 indeed also shows different spectral states, similar to the low-hard versus high-soft spectra in Galactic black hole binaries (Lubinski et al. 2010). A similar result seems to emerge from our INTEGRAL studies on NGC 2110 (Beckmann & Do Cao 2011). For INTEGRAL's AO-8 I have submitted a proposal in order to study spectral states in the Seyfert 2 galaxy NGC 2992, which seems to show a state change over the past 5 years as seen in Swift/BAT longterm monitoring.

The work on the luminosity function of AGN at hardest X-rays (Beckmann et al. 2006d) had a large impact on our understanding of the cosmic X-ray background. As this was the first study of its kind, it showed for the first time that indeed the fraction of highly obscured Compton thick AGN is much lower than expected before the launch of INTEGRAL and Swift. The X-ray luminosity function we revealed is indeed not consistent with the source population seen by INTEGRAL (Beckmann et al. 2006a, 2009d; Sazonov et al. 2007) and Swift (Tueller et al. 2008) being the only contributors to the cosmic hard X-ray background. Thus other sources outside the parameter space observable by these missions have to contribute significantly to the cosmic X-ray background. Our work on the luminosity function triggered several other studies on this issue. The subsequent derived luminosity functions by other groups (Sazonov et al. 2007; Tueller et al. 2008; Paltani et al. 2008) are consistent with our findings.

This also gave rise to an increased interest in the exact shape of the Cosmic X-ray background around its peak at 30 keV, triggering several attempts to a new measurement. Background studies were presented based on a Earth-occultation observation by INTEGRAL (Churazov et al. 2007, 2008; Türler et al. 2010) and by Swift (Ajello et al. 2008).

The understanding of the emission processes in AGN requires knowledge over a wide range of the spectral energy distribution (SED). In studies using CGRO/EGRET and Fermi/LAT data I derived the SED for blazars and non-blazars towards the gamma-ray range (Beckmann 2003; Beckmann et al. 2004b, 2010b). The work on the LAT data not only presented the gamma-ray detection of five gamma-ray blazars (QSO B0836+710, RX J1111.5+3452, H 1426+428, RX J1924.8-2914, and PKS 2149-306) for the first time, but also showed the potential in the combination of INTEGRAL and Fermi data. In the case of Cen A I derived the total energy output of the inverse Compton component based on the combined LAT, ISGRI, and JEM-X data, showing evidence for a spectral break at several hundred keV (Beckmann et al. 2010b).
In addition I successfully showed that gamma-ray blazars can be predicted through the study of their synchrotron branch at energies below 2 keV (Beckmann 2003 and this work).

Contributions of mine to research in fields other than AGN include the study of INTEGRAL detected gamma-ray bursts (e.g. Beckmann et al. 2003a, 2004a, 2008b, 2009a). Here and in collaboration with other colleagues I showed the potential of INTEGRAL data on GRB research. In the field of Galactic X-ray binaries I published one of the first Swift results on a newly discovered highly absorbed HMXB, IGR J16283-4838 (Beckmann et al. 2005a, 2006b). I also contributed significantly to analysis of many other Galactic sources, as shown in Section 4.6.1.

APA, Harvard, Vancouver, ISO, and other styles
6

Dmytriiev, Anton. "Exploring active galactic nuclei at extreme energies : analysis and modeling of multi-wavelength flares and preparation of CTA." Thesis, Université de Paris (2019-....), 2020. https://theses.md.univ-paris-diderot.fr/Dmytriiev_Anton_va2.pdf.

Full text
Abstract:
De nombreuses questions liées à la physique des jets des Noyaux Actifs de Galaxies restent ouvertes. Une classe particulière d’AGN, les blazars, a un jet pointant vers la Terre. Une telle orientation du jet nous permet de sonder une riche variété de phénomènes physiques mal compris sur les écoulements relativistes. Les blazars montrent une émission non thermique, provenant du jet, qui est très variable sur tout le spectre électromagnétique, des radiofréquences aux rayons gamma du TeV. Le flux d’énergie peut augmenter d’un ordre de grandeur sur des échelles de temps aussi courtes que quelques minutes, un phénomène appelé “sursaut” (flare), et aussi longues que des mois ou même des années. Malgré la quantité croissante de données disponibles sur plusieurs longueurs d’onde (multi-wavelength, MWL), l’origine et les mécanismes physiques derrière les sursauts fréquemment observés dans les blazars ne sont toujours pas bien compris. De nombreuses tentatives ont été faites pour décrire les flares avec différents modèles d’émission, mais les propriétés détaillées de l’évolution temporelle des flux dans différentes bandes spectrales restent difficiles à reproduire. Afin d’identifier les processus physiques impliqués lors des sursauts de blazars, j’ai développé un code radiatif polyvalent, basé sur un traitement dépendant du temps de l’accélération des particules, de l’échappement et du refroidissement radiatif. Le code calcule l’évolution dans le temps de la fonction de distribution des électrons dans la zone d’émission du blazar et le spectre de l’émission Synchrotron Self-Compton (SSC) par ces électrons. J’ai appliqué le code à un sursaut multi-lambda géant du blazar Mrk 421, représentant de la classe des BL Lacertae, qui est le sursaut le plus brillant détecté jusqu’ici en provenance de cette source. Dans notre approche, nous considérons le sursaut comme une perturbation modérée de l’état de flux stationnaire et recherchons des interprétations avec un nombre minimum de paramètres libres. En conséquence, j’ai développé un nouveau scénario physique de l’activité observé pendant le sursaut, qui décrit l’ensemble des données, comprenant des spectres à l’état haut de la source dans différentes gammes d’énergie, et des courbes de lumière multi-lambda du domaine optique aux rayons gamma VHE. Dans ce scénario, le processus déclenchant le sursaut est l’accélération des particules par un processus de type Fermi du second ordre, dû à la turbulence qui emerge au voisinage de la région d’émission stationnaire du blazar. Dans cette thèse, j’ai également effectué une analyse des données du High Energy Stereoscopic System (H.E.S.S.) de deux sursauts géants du blazar 3C 279, représentant de la classe des Flat Spectrum Radio Quasars (FSRQ). Enfin, j’ai contribué à la préparation du Cherenkov Telescope Array (CTA), qui est un observatoire de rayons gamma au sol de nouvelle génération, dont l’entrée en service est prévue à partir de 2022. L’instrument, qui est actuellement en cours de développement, aura des performances considérablement améliorées par rapport aux Imaging Atmospheric Cherenkov Telescopes (IACTs) qui sont actuellement en fonctionnement, y compris une couverture spectrale sans précédent de quelques dizaines de GeV à ~300 TeV. Dans le cadre du CTA, j’ai effectué des simulations de performances optiques du Gamma-Ray Cherenkov Telescope (GCT), l’un des trois modèles proposés de télescopes de petite taille (SST) pour CTA. De plus, en utilisant les observations d’étoiles brillantes effectuées par le prototype de télescope installé sur le site de l’Observatoire de Paris à Meudon, j’ai étudié l’effet de la micro-rugosité des miroirs du télescope sur la fonction d’étalement du point (PSF) et calculé le niveau de qualité de polissage des miroirs requis pour optimiser les performances
Many questions related to the physics of jets of Active Galactic Nuclei remain open. A particular subclass of AGN, blazars, have a jet pointing towards the Earth. Such suitable orientation of the jet allows us to probe a rich variety of poorly understood physical phenomena related to relativistic outflows. Blazars show non-thermal emission, originating from the jet, which is highly variable across the entire electromagnetic spectrum, from radio frequencies to TeV gamma-rays. The energy flux can enhance by an order of magnitude on time-scales as short as minutes, a phenomenon referred to as a “flare”, and as long as months or even years. Despite the growing amount of available multi-wavelength (MWL) data, the origin and the physical mechanisms behind the frequently observed flaring events in blazars are still not well understood. Many attempts have been made to describe the flares with different emission models, but detailed properties of flux variation patterns (light curves) in different wavebands remain difficult to reproduce. In order to identify physical processes that are involved during blazar outbursts, I have developed a versatile radiative code, based on a time-dependent treatment of particle acceleration, escape and radiative cooling. The code computes time evolution of the distribution function of electrons in the blazar emitting zone and the spectrum of the Synchrotron Self-Compton (SSC) emission by these electrons. I applied the code to a giant MWL flare of the blazar Mrk 421, a representative of the BL Lacertae class, which is the brightest VHE flare ever detected from this source. In our approach, we consider the flare as a moderate perturbation of the quiescent state and search for interpretations with a minimum number of free parameters. As a result, I developed a novel physical scenario of the flaring activity that describes the data set, comprising spectra in the high state of the source in different energy ranges, and MWL light curves from the optical domain to the VHE gamma-ray band. In this scenario, the process initiating the outburst is the second-order Fermi acceleration of particles due to turbulence arising in the vicinity of the blazar stationary emission region. In this thesis, I also performed analysis of High Energy Stereoscopic System (H.E.S.S.) data of two giant flares of the blazar 3C 279, a representative of the Flat Spectrum Radio Quasars (FSRQ) class. Finally, I contributed to preparation of Cherenkov Telescope Array (CTA), which is a new-generation ground-based gamma-ray observatory, expected to start operations in 2022. The instrument, which is presently under development, will have greatly improved performance compared to currently operating Imaging Atmospheric Cherenkov Telescopes (IACTs), including unprecedented spectral coverage from a few tens of GeV to ~300 TeV. In the context of CTA, I performed simulations of the optical performance of the Gamma-Ray Cherenkov Telescope (GCT), one of the three proposed designs of Small-Size Telescopes (SST) for CTA. Also, using the observations of bright stars done by the telescope prototype installed on the site of Paris Observatory in Meudon, I studied the effect of micro-roughness of the telescope mirrors on the point spread function (PSF) and calculated the level of the mirror polishing quality required to optimize the performances
APA, Harvard, Vancouver, ISO, and other styles
7

Organokov, Mukharbek. "ANTARES search for high-energy neutrinos from TeV-emitting blazars, Markarian 421 and 501, in coïncidence with HAWC gamma-ray tiares." Thesis, Strasbourg, 2019. http://www.theses.fr/2019STRAE039.

Full text
Abstract:
Les neutrinos sont des messagers uniques pour détecter les phénomènes violents de l’Univers. Les sources potentielles de neutrinos cosmiques sont, par exemple, les Noyaux Actifs de Galaxie (NAGs), ou les sursauts gammas. Dans le cas d’un accélérateur astrophysique de rayons cosmiques hadroniques, la production de neutrinos s’accompagne éventuellement d’émissions gammas de haute énergie. La recherche des coïncidences entre des neutrinos de haute énergie détectés avec le télescope à neutrinos ANTARES et des photons gamma captés par l’observatoire HAWC est présentée. La recherche dans une fenêtre temporelle particulière réduit le bruit de fond de manière significative dans les données du télescope à neutrinos et augmente donc le potentiel de découverte. Dans cette thèse, les résultats de la recherche de neutrinos détectés en corrélation avec un signal gamma en provenance de 2 NAG particulier, Markarian 421 et Markarian 501, sont présentés. En tant que blazars les plus proches de la Terre, ils constituent d’excellentes sources pour tester le scénario de connexion blazar-neutrinos, en particulier lors de leurs "bouffées" d’activités (flares) pour lesquelles la recherche de neutrinos en fonction du temps peut présenter une probabilité de détection plus élevée
Neutrinos are unique messengers for detecting violent phenomena in the Universe. Potential sources of cosmic neutrinos are, for example, Active Galactic Nuclei (AGNs) or Gamma-Ray Bursts (GRBs). In the case of hadronic cosmic rays acceleration, the production of neutrinos is possibly accompanied by high-energy gamma-ray emissions. The search for coincidences between high-energy neutrinos detected by the ANTARES neutrino telescope and gamma-rays detected by the HAWC gamma-ray observatory is presented. Searching in a particular time window significantly reduces the background noise in the neutrino data and thus increases the discovery potential. In this thesis, the results of a search for neutrinos detected in correlation with a gamma-ray signal from two particular AGNs, Markarian 421 and Markarian 501, are presented. As the blazars closest to Earth, they are excellent sources for testing the blazar-neutrino connection scenario, especially during the increase of their activities (flares) in which the search for neutrinos may have a higher detection probability
APA, Harvard, Vancouver, ISO, and other styles
8

Valtonen-Mattila, Nora. "High Energy gamma-ray behavior of a potential astrophysical neutrino source : The case of TXS 0506+056." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-90569.

Full text
Abstract:
Blazars are a type of Active Galaxy that emit strong astrophysical jets. The association of a HE gamma-ray flare from the blazar TXS 0506+056 to the IceCube-170922A neutrino event in 2017, opened the possibility to a link between these two events. In this thesis, we will look at the HE gamma-ray behavior of TXS 0506+056 using data obtained from the Fermi-LAT by taking into account the other set of neutrino events associated with this source from 2014-2015. We will investigate whether both neutrino events present with comparable HE gamma-ray behavior by analyzing the lightcurves and the spectra for a quiet state, the 2014-2015 period, and the flare centered around the neutrino event from 2017. The results of the analysis performed in this thesis show no strong indication of a change in the gamma-ray behaviour in these potential neutrino detections.
APA, Harvard, Vancouver, ISO, and other styles
9

Escande, Lise. "Variabilité des blazars détectés par le télescope spatial Fermi-LAT : étude de 3C 454.3 et développement d’une méthode de génération de courbes de lumière optimisées." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14565/document.

Full text
Abstract:
Dédié à l'étude du ciel en rayons gamma, le satellite Fermi comporte à son bord le Large Area Telescope (LAT), sensible au rayonnement gamma de 20 MeV à 300 GeV. Les données recueillies par le LAT depuis son lancement en 2008 ont permis de multiplier par 10 le nombre de noyaux actifs de galaxie (NAG) détectés dans le domaine du GeV. Les rayons gamma observés dans les NAGs proviennent de processus énergétiques faisant intervenir des particules chargées de très haute énergie. Ces particules sont confinées dans un jet de plasma magnétisé qui prend sa source dans une région proche du trou noir supermassif habitant la zone centrale de la galaxie hôte. Ce jet s’éloigne à des vitesses aussi élevées que 0.9999c, formant dans de nombreux cas des lobes radio sur des échelles du kiloparsec voire du mégaparsec. Les NAGs dont le jet fait un angle faible avec la ligne de visée sont appelés blazars. La combinaison de cette très faible inclinaison du jet par rapport à la ligne de visée et de vitesses d’éjection relativistes donne lieu à des effets relativistes : mouvements apparents superluminiques, amplification de la luminosité et modification des échelles de temps. Les blazars sont caractérisés par une extrême variabilité à toutes les longueurs d’onde, sur des échelles de temps allant de quelques minutes à plusieurs mois. Une étude temporelle et spectrale du plus brillant d'entre ceux détectés par le LAT, 3C 454.3, a été réalisée afin de contraindre les modèles d'émission. Une nouvelle méthode de génération de courbes de lumière à échantillonnage adaptatif est également proposée dans cette thèse. Celle-ci permet d'extraire le maximum d'information des données du LAT quel que soit l'état de flux de la source
The Fermi Gamma-ray Space Telescope was launched on 2008 June 11, carrying the Large Area Telescope(LAT), sensitive to gamma-rays in the 20 MeV – 300 GeV energy range. The data collected since then allowed to multiply by a factor of 10 the number of Active Galactic Nuclei (AGN) detected in the GeV range. Gamma-rays observed in AGNs come from energetic precesses bringing into play very high energy charged particles. These particles are confined in a magnetized plasma jet rising in a region close to the supermassive black hole in the center of the host galaxy. This jet moves away with velocities as high as 0.9999c, forming in many cases radio lobes on kiloparsec or even megaparsec scales. Among the AGNs, those whose jet inclination angle to the line of sight is small are called blazars. The combination of this small inclination angle with relativistic ejection speeds leds to relativistic effects : apparent superluminal motions, amplification of the luminosity and modification of the time scales. Blazars are characterized by extreme variability at all wavelengths, on time scales from a few minutes to several months. A temporal and spectral study of the most luminous of those detected by the LAT, 3C 454.3, was done so as to constrain emission models. A new method for generating adaptive-binning lightcurves is also suggested in this thesis. It allows to extract the maximum of information from the LAT data whatever the flux state of the source
APA, Harvard, Vancouver, ISO, and other styles
10

O'Rourke, Brogan Roisín. "AGN Candidates for High Energy Neutrino Emission in IceCube." Thesis, Uppsala universitet, Högenergifysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-409739.

Full text
Abstract:
Since the construction of the IceCube Neutrino Observatory was completed in 2010, many amazing discoveries have been made in the field of neutrino physics. Recently a neutrino event has been linked to an blazar-type active galactic nucleus source, bringing us one step closer to understanding the production of high-energy extragalactic neutrinos and ushering in a new era of multimessenger astronomy. This was found by linking the neutrino event to one of the Fermi Collaboration’s gamma ray sources which had a blazar counterpart. The quest to link other neutrino events to AGN (active galactic nuclei) sources through collaboration with the Fermi Large Area Telescope has turned up some interesting candidates. The fact that some of these potential sources are not blazars is curious and, although unconfirmed as neutrino sources, these objects merit further investigation due to their unusual nature.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Active Galactic Nuclei – Blazars – Gamma-ray blazars"

1

Urry, Claudia Megan. X-ray temporal and spectral studies of blazars with the Ginga satellite: Final report for NASA grant, NAG8-697. Baltimore, MD: Space Telescope Science Institute, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

United States. National Aeronautics and Space Administration., ed. X-ray temporal and spectral studies of blazars with the Ginga satellite: Final report for NASA grant, NAG8-697. Baltimore, MD: Space Telescope Science Institute, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

United States. National Aeronautics and Space Administration., ed. X-ray temporal and spectral studies of blazars with the Ginga satellite: Final report for NASA grant, NAG8-697. Baltimore, MD: Space Telescope Science Institute, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Active Galactic Nuclei – Blazars – Gamma-ray blazars"

1

Romero, Gustavo E., M. Boettcher, S. Markoff, and F. Tavecchio. "Relativistic Jets in Active Galactic Nuclei and Microquasars." In Jets and Winds in Pulsar Wind Nebulae, Gamma-Ray Bursts and Blazars, 5–61. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1292-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Treves, A., G. Ghisellini, L. Maraschi, and E. G. Tanzi. "Spectral Properties of Blazars Observed at Ultraviolet and X-Ray Frequencies." In Structure and Evolution of Active Galactic Nuclei, 63–80. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4562-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Maraschi, Laura, Gabriele Ghisellini, and Alfredo Boccasile. "Gamma-Rays from Blazars: a Comparison of 3C 279, PKS 0537-441 and Mrk 421." In The Nature of Compact Objects in Active Galactic Nuclei, 381–84. Cambridge University Press, 1994. http://dx.doi.org/10.1017/cbo9780511564765.090.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Active Galactic Nuclei – Blazars – Gamma-ray blazars"

1

Lott, Benoit. "Gamma-ray blazars and Active Galactic Nuclei seen by the Fermi-LAT." In 11th European VLBI Network Symposium & Users Meeting. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.178.0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography