Dissertations / Theses on the topic 'Activation de la liaison C(sp2)-H'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 25 dissertations / theses for your research on the topic 'Activation de la liaison C(sp2)-H.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Massouh, Joe. "Transition metals-catalyzed C(sp2)-H bond activation for aldehyde functionalization." Electronic Thesis or Diss., Ecole centrale de Marseille, 2022. http://www.theses.fr/2022ECDM0001.
Full textThe synthesis of α-ketoacid, precursor or analogue of amino-acid, presents a center of interest. One of the synthetic pathways leading to these molecules could be the direct functionalization of aldehyde. The C(sp2)-H bond activation of aldehyde catalyzed by organometallic complexes is a powerful tool to afford various elaborated products in a relatively sustainable manner.In the first chapter of this manuscript, we presented the organometallic complexes based on different transition metals like Rh, Co, Ru, Ni, and Ir, that are able to activate selectively the C(sp2)-H bond of aldehyde. The reported procedures involve transition metals at low oxidation state favoring the oxidative addition mechanism, or at high oxidation state favoring the concerted metalation deprotonation process. This presentation allows to display the advantages and the drawbacks of each approach and highlights the novelty in each concept.In the second chapter, according to bibliography, procedures were investigated to achieve aldehyde C-H functionalization with various reagents, notably carbon dioxide. Various transition metals at low oxidation states were studied, and the reactivity of the aldehyde substrate remained restricted to the reported examples under Rh(I)-catalysis. In the case of high oxidation state transition metals, Rh(III)-catalytic complex was found efficient to mediate new pathway to imides using dioxazolones in good yields (up to 97%). Numerous parameters affecting the C-H activation of aldehyde were screened, and the mechanistic investigations were supported by labelling tests. Unfortunately, we observed that some catalytic systems, that are able to achieve aromatic C(sp2)-H bond functionalization with carbon dioxide, were not efficient to afford the carboxylation of aldehydic C(sp2)-H bond. The third chapter disclosed the experimental procedures and the characterization of the new products, notably imides
Zhao, Liqin. "Palladium-catalyzed direct arylation via sp² and sp³ C-H activation of hetero(aromatics) and hydrocarbons for C-C bond formation." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S038/document.
Full textDuring this thesis, we were interested in the sp² and sp³ C-H bond activation catalyzed by palladium catalysts for the preparation of (hetero)aryl-aryls and biaryls. This method is considered as cost effective and environmentally attractive compared to the classical couplings such as Suzuki, Heck, or Negishi. First we described the palladium-catalyzed direct C2-arylation of benzothiophene in the absence of phosphine ligand with high selectivity. We also demonstrated that it is possible to active both C2 and C5 C-H bonds for access to 2,5-diarylated compounds in one step, and also to non-symmetrically substituted 2,5-diarylpyrroles via sequential C2 arylation followed by C5 arylation. We also studied the reactivity of polychlorobenzenes via palladium-catalyzed C-H activation. We finally examined the palladium-catalysed selective sp² and sp³ C-H bond activation of guaiazulene. The selectivity depends on the solvent and base: sp² C2-arylation (KOAc in ethylbenzene), sp² C3-arylation (KOAc in DMAc) and sp³ C4-Me arylation (CsOAc/K₂CO₃ in DMAc). Through this method, a challenging sp³ C-H bond was activated
Gonnard, Laurine. "Réactions métallo-catalysées : synthèse d'hétérocycles azotés saturés fonctionnalisés." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066438/document.
Full textIn order to facilitate the total synthesis of active molecules used in pharmaceutical or agrochemical industries, chemists try constantly to develop new, general, practical and sustainable methods. In 2014, a study revealed that piperidine was the most frequently present aza-heterocycle in medicines approved by the Food and Drug Administration (FDA). In this context, three different methods were developed during this Ph.D in order to synthesize functionalized piperidines. A wide variety of substituted piperidines was first efficiently obtained by a cobalt catalyzed cross-coupling reaction between 4- and 3-halogenopiperidines and Grignard reagents. Cobalt has appeared as a good alternative to the expensive palladium salts or the toxic nickel salts. Moreover, it can prevent side reactions such as dehydrohalogenation or β-H elimination. Next, 2-dienylpiperidines, present in a myriad of alkaloids, were prepared by iron catalyzed cyclization from diallylic amino-alcools. Finally, new conditions for the ruthenium catalyzed C(sp3)‒H monoarylation of piperidines were developed. The influence of the electronic and steric properties of the directing group attached to the nitrogen of the piperidine was fully studied. These methods were then applied to the synthesis of other azacycles
Sofack-Kreutzer, Julien. "Synthèses de carbocycles et d'hétérocycles à cinq chaînons par activation de liaisons c(sp3)-h non activées." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00744243.
Full textRenaudat, Alice. "Fonctionnalisation de liaisons C(sp3)-H non activées catalysées par le palladium." Phd thesis, Université Claude Bernard - Lyon I, 2010. http://tel.archives-ouvertes.fr/tel-00704011.
Full textHitce, Julien. "Fonctionnalisation intramoléculaire de liaisons C(sp3)-H catalysée par le palladium : études méthodologiques et applications en synthèse organique." Paris 11, 2007. http://www.theses.fr/2007PA112192.
Full textA palladium-catalyzed intramolecular C(sp3)-H functionalization reaction of benzylic alkyl groups was studied. Both methodological and synthetic aspects were investigated. Thus, in order to determine the scope and the limitations of this new methodology and to emphasize its synthetic value, the reactivity of a variety of substrates was studied using a specifically designed catalyst. This transformation afforded either olefins adjacent to a quaternary carbon atom by dehydrogenation or polycycles by intramolecular arylation of C(sp3)-H bonds. The dehydrogenation methodology was illustrated in the synthesis of the antihypertensive drug verapamil. The mechanism of the new reaction involves 5- and 6-membered palladacycles: the C-H bond cleavage is an intramolecular process. Moreover, the catalytically active species is most probably a molecular complex though the formation of palladium nanoparticles was evidenced. Finally, selective palladium-catalyzed cascade reactions were designed. They combined C(sp3)-H functionalization, Heck cyclization, Heck arylation or olefin hydrogenation to afford valuable 4- and 5-membered carbocycles
Quint, Valentin. "Formation de liaison C-P par fonctionnalisation de liaison C-H sans métal de transition : aspects snthétiques et mécanistiques." Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC219/document.
Full textThis thesis describes the successful development of three modes of activation for the formation of Carbon–Phosphorus bonds under mild conditions and without the use of transition metals.First, a regioselective phosphorylation of pyridines has been developed via a sequential process consisting of the activation of the pyridine with a Lewis acid (BF3) followed by oxidative aromatization mediated by chloranil. The characterization of the Meisenheimer complex enabled to confirm the proposed reaction mechanism. Next, we developed a straightforward approach for the synthesis of benzo[b]phospholes from the reaction of secondary phosphine oxides and alkynes in the presence of an organic oxidant and eosin Y as a catalyst. Apart from the broad scope of this reaction, extensive mechanistic investigations, including EPR, NMR, steady state photolysis permitted the elucidation of the mechanism of this photoreaction. It has been suggested that the oxidant and the photocatalyst come together to form a ground state charge transfer complex that is the driving force of the photocatalyzed process. Finally, we developed a metal-free photoinduced approach for the phosphorylation of anilines and related structures. The reaction proceeded through the formation of an electron donor acceptor complexes between anilines derivatives (electron donors) and N–ethoxypyridinium (electron acceptor). Scope and limitations of this process are discussed along with detailed mechanistic studies
Guyonnet, Mathieu. "Synthèse totale d’alcaloïdes de type dibenzopyrrocoline par arylation C(sp3)-H intramoléculaire." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10143.
Full textThe direct functionalization of unactivated C-H bonds represents an atom- and stepeconomical alternative to more traditional synthetic methods based on functional group interconversion. Transition-metal catalysis has recently emerged as a powerful tool to functionalize otherwise unreactive C-H bonds. Whereas a lot of methodological studies have been developed in the past decade, few applications of these methodologies in multi-step or total synthesis have been reported in the literature. In this context, we envisioned the total synthesis of dibenzopyrrocoline alkaloids, a family of structurally original natural products, by using intramolecular C(sp3)-H arylation as a key step. This work led us to first develop a N-arylation / bromination / intramolecular C(sp3)-H arylation sequence which allowed us to access diverse fused tricyclic indolines. We next investigated the application of this strategy to the synthesis of the dibenzopyrrocoline motif. The difficulty to access the C(sp3)-H arylation precursor required an exploration of different synthetic pathways, which proved to be potentially promising. Finally the different performed methodological studies showed the feasibility of the intramolecular C(sp3)-H arylation of tertiary anilines, which was never described in the literature
Obenhuber, Andreas H. [Verfasser]. "Investigation into the chelate assisted activation of non-strained C(sp2)-C(sp2) single bonds using group 8, 9 and 10 transition metal complexes / Andreas H. Obenhuber." München : Verlag Dr. Hut, 2011. http://d-nb.info/1011441535/34.
Full textLEBRETON, HAQUETTE CAROLE. "Activation de la liaison c-h des alcanes par des complexes du rhodium (i)." Paris 6, 1999. http://www.theses.fr/1999PA066614.
Full textBarde, Etienne. "Catalyse au cobalt : applications en couplages croisés et en activation/fonctionnalisation de liaison C-H." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLET019.
Full textOrganic synthesis has been making outstanding recent progress because of the use of transition-metal catalysis into laboratory routine. Among different metals involved in catalysis, cobalt is interesting because of its low cost and toxicity but also because of its unique reactivity.During this thesis, cross-coupling and C—H bond activation reactions using cobalt complexes as catalysts were investigated.A simple catalytic system composed of diphosphine ligand and a cost-effective cobalt salt allowed us to functionnalize α-haloamides using Grignard reagents. A large variety of amides and Grignard reagents (aryl-, vinyl-, alkynyl-) were successfully tested, generating an interesting library of α-functionnalized amides.Moreover, simple cobalt salts were engaged in the activation of the C—H bond of benzamides for the aminoarylation of alkylidene cyclopropanes. Under mild conditions, original and polycyclic molecules were obtained in a single step.These results obtained in two different domains treated in this thesis demonstrate the high potential of simple cobalt salt in catalysis
Roudesly, Fares. "Fonctionnalisation C-H dirigée d'hétérocycles azotés." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS354.
Full textThis thesis work has brought its contribution the field of C-H activation / functionalization of nitrogenous containing rings as pyridine and pyrrole. First, we developed a strategy for a Pd- catalyzed regioselective allylation and alkenylation of azine N-oxides. The scope of this reactivity has been studied. Experimental studies and DFT calculations allowed us to propose a mechanism for the allylation and isomerization steps. We propose that the C-H activation step is the rate determining step of the catalytic cycle, and that it takes place through an outer sphere deprotonation / palladation mechanism. Next, we applied the Murai reaction to 2-pyrrole- carboxaldehyde derivatives using a Ru(0) complex. Under an atmospheric pressure of carbon monoxide, we could obtain the acylated products in the presence of various vinylsilanes and styrenes. The application of this reactivity to other 2-pyrrole carboxaldehyde derivatives is under study in the laboratory
Bheeter, Charles Beromeo. "Palladium-catalysed C-H bond activation for simpler access to ArSO₂R derivatives." Thesis, Rennes 1, 2013. http://www.theses.fr/2013REN1S171.
Full textDuring this Ph.D. period, we were interested in the C-H bonds activation catalysed by palladium catalysts for the preparation of biaryls units bearing SO₂R group. Many biological compounds present a SO₂R function and thus we chose to activate this family of substrates. This method is considered as cost effective and environmentally attractive compared to other types of couplings such as Suzuki, Stille, or Negishi. First, we demonstrated that it is possible to apply C-H bond activation method for the direct arylation of thiophene derivatives bearing a SO₂R substituent. We then established palladium-catalysed system for the selective C2 arylation of N-tosylpyrrole derivatives. We found that N-tosylpyrrole is more reactive than free NH-pyrrole. We also studied the direct arylation of heteroarenes using bromobenzenes bearing SO₂R substituents either at C2 or C4 via palladium-catalysed C-H activation. This method provides a simpler access to substituted SO₂R derivatives. Finally we developed the first palladium-catalysed dehydrogenative sp³ C-H bond functionalization/activation of N-alkyl-benzenesulfonamides to produce N-alkenyl-benzenesulfonamides. The reaction proceeds with easily accessible ligand-free Pd(OAc)₂ catalyst for aryl bromides bearing electron-withdrawing groups or PdCl(C₃H₅)(dppb) catalyst for aryl bromides with electron-donating substituents. We found that the reaction tolerates a variety of substituents both on nitrogen and on the bromobenzene moiety
Gref, Aurore. "Activation de la liaison C-H : oxydation des hydrocarbures saturés en présence de catalyseurs de fer par l'oxygène moléculaire, activé électrochimiquement." Paris 11, 1986. http://www.theses.fr/1987PA112021.
Full textBy modifying the so-called "Gif" chemical system we established on electrochemical one for oxidation of saturated hydrocarbons. This system hos the cluster FeII FeIII 2o(OAc)6PY3. 5 as catalyst and comprises pyridine, an acid (trifluoroacetic or 2-picolinic) and molecular oxygen activated at the cathode. After having analysed the electrochemical behoviour of each of the components of the systems by cyclic voltammetry we were in a position to chose the optimum conditions under which to work. Were obtained a similar selectivity with the electrochemical system as with the chemical one: attach occurs preferentially at the secondary C-H bond and results in the preponderant formation of ketones and an efficiency (electronic yield) which is clearly superior (con reach 70% in the case of cyclohexane). Use of hydrogen peroxide resulted in same selectivity as that obtained by molecular oxygen activated at the cathode in the presence of on acid, although with lower yields. This lead us to propose that the some active species were involved in the two processes. The latter might be on iron-oxo species of low oxidation state, and the presence of pyridine as ligand might confer a particular selectivity to it different to that observed in other systems
Gref, Aurore. "Activation de la liaison C-H oxydation des hydrocarbures saturés en présence de catalyseurs de fer par l'oxygène moléculaire activé électrochimiquement /." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb376055913.
Full textBrazi, Eric. "Activation de la liaison C-H hydroxylation catalytique des hydrocarbures par de nouveaux complexes alkylperoxydiques de cobalt (III), désydrogénation sélective et catalytique de cycloalcanes... /." Grenoble 2 : ANRT, 1987. http://catalogue.bnf.fr/ark:/12148/cb37603426w.
Full textBordeaux, Mélanie. "Ingénierie moléculaire de cytochromes P450 pour l'hydroxylation des alcanes." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2012. http://www.theses.fr/2012ENCM0009/document.
Full textActivation of inert molecules such as alkanes is considered as one of the most difficult challenges in catalysis, due to the high stability of the C-H bond. To comply with the principles of green chemistry, functionalization methods must respect multiple requirements, such as the use of non-toxic solvents and reagents, in addition to reducing energy usage whilst maintaining maximal activity. To satisfy these conditions, we decided to focus on the use of an enzymatic system. Indeed, unactivated C-H bonds can be functionalized under mild conditions by monooxygenases, such as cytochrome P450s, but their activity is relatively limited. In order to have cytochrome P450s more active on alkanes, we describe the fusion between a member of the CYP153 family and an electron donor partner. This fusion protein has been characterized and its catalytic properties studied. We have shown that the fusion increases significantly the alkane hydroxylase activity. Our second step was to continue to exploit the potential of this biocatalyst by attempting to reduce the volume of its active site using site-directed mutagenesis for the hydroxylation of gaseous alkanes, including methane. Finally, various modifications of the reaction conditions allowed us to achieve the terminal hydroxylation of octane with a previously unequalled activity
Nguyen, Khac Minh Huy. "Activation de liaisons C-H au moyen d’un système catalytique bio-inspiré pour la synthèse d’hétérocycles d’intérêt pharmacologique." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB023.
Full textNaturally occurring metalloenzymes constitute a rich source of inspiration for the design of synthetic catalysts because of their ability to perform controlled aerobic oxidations under very mild conditions. Among metalloenzymes, copper amine oxidases (CuAOs) promote selective aerobic oxidation of primary amines through the cooperation of a quinone-based cofactor (topaquinone) and a copper ion. Recently, there has been a boost in the development of biomimetic catalysts for the aerobic oxidation of amines to imines owing to the importance of imines as pivotal intermediates in the synthesis of fine chemicals and pharmaceuticals. In our laboratory, a CuAOs-like homogeneous co-catalytic system has been described for the atom-economical oxidation of primary amines to imines, under ambient air. The catalytic process combines two redox couples in a way reminiscent of CuAOs: the o-iminoquinone organocatalyst 1ox, generated in situ from the corresponding o-aminophenol 1red, is the substrate-selective catalyst, whereas the copper (II) salt serves as an electron transfer mediator. Interestingly, low loadings of biocompatible CuII and organocatalyst 1ox are sufficient to activate the α-C-H bond of primary aliphatic amines, which are converted, under ambient air, into cross-coupled imines through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The mild reaction conditions are highly favorable from a synthetic viewpoint, in particular for trapping the unstable alkylimines in situ for further reactions. So, we have envisioned the use of this bioinspired co-catalytic system in the one-pot synthesis of heterocycles of pharmacological interest. In the first part of the thesis, we envisioned that the Cu(II)/1ox cooperative system might be utilized to synthesize novel 1,4-benzoxazine derivatives. In the specific case of R1R2CHCH2NH2 amines, the catalytic process should stop after a few turnovers, because the catalyst 1ox should be trapped through inverse-electron-demand Diels-Alder (IEDDA) reaction with the simultaneously in situ generated tautomeric enamine form of the alkylimine extruded during the catalytic process, leading to 1,4-benzoxazine derivatives. Unfortunately, this protocol failed to produce the expected cycloadducts in acceptable yields as enamines rapidly decomposed under ambient air. For this reason, we have developed a tandem oxidation-inverse electron demand Diels-Alder reaction as an alternative: a stoichiometric amount of activated MnO2, in deaerated methanol, was then sufficient to convert various o-aminophenol derivatives into o-iminoquinone heterodienes which were trapped in situ by different enamine dienophiles leading to the expected 1,4-benzoxazine derivatives under mild conditions. The possibility of introducing variations in both cycloaddition partners led to highly substituted 1,4-benzoxazine cycloadducts with up to five elements of diversity. Among these compounds, a 3,3-diphenyl-substituted-1,4-benzoxazine derivative was identified as an effective neuroprotective agent in newborn mice, suggesting that it could be a potential candidate for the treatment and prevention of cerebral palsy. In the second part of the thesis, the Cu(II)/1ox cooperative system has been successfully used for the catalytic oxidative coupling of a diverse range of activated and non-activated primary amines with o-amino-anilines under ambient air leading to benzimidazoles of biological interest through multistep oxidation and nucleophilic addition reactions. Through the variation of both solvent and coupling partners, MeOH proved to be the best solvent for this transformation because it provided the ideal balance of 1ox solvation and reaction rate, except when reactive N-alkyl o-aminoanilines were used as in situ imine traps, due to the concomitant formation of a benzimidazole byproduct originated from MeOH itself. (...)
Cuny, Guylaine. "Synthèse de moyens et grands cycles fusionnés à des dihydroazaphenanthrènes et synthèse de 1,4-benzodiazépine-2,5-diones par N-arylations intramoléculaires catalysées au palladium ou au cuivre : nouvelle synthèse de 5-aminooxazoles trisubstitués." Paris 11, 2004. http://www.theses.fr/2004PA112232.
Full textIn the first part of this manuscript we described dihydrozaphenanthrene fused macrocyclic ring synthesis using a unique domino sequence n-arylation/c-h activation/ c-c bond forming process. This sequence is catalyzed by palladium and is the unique way to rapidly acces to macrocyclic ring via n-arylation with good to excellent yield. During this study, we demonstrated that our substrate acted as ligand for the palladium and favorised the cyclisation. We also determined bond formation order and proved that c-n bond formation preceded c-c bond formation. And we have been able to isolate an intermediate palladium complex, which allowed us to propose a possible mechanism for this transformation. This methodology was successfully applied to 5,6-dihydro-8h-5,7a-diaza-cyclohepta[jk]phenanthrene-4,7-dione synthesis. Then, we demonstrated that copper could be a good catalyst to promote intramolecular n-arylation to produce 1,4-benzodiazepine-2,5-dione. In a second part, we described a new way to synthetize 5-aminooxazole using a passerini modified two component reaction between an aldehyde and an isocyanoacetamide. Those reactions could have been diastereoselectively controlled and applied to rapid synthesis of dipeptide containing norstatine motif
Jahjah, Hussein Rabih. "Réactions radicalaires photo initiées de dérivés de la furanone et leur valorisation en synthèse organique." Reims, 2010. http://theses.univ-reims.fr/sciences/2010REIMS001.pdf.
Full textPhotochemistry plays an increasing role in organic chemistry, as a powerful approach to obtain under mild conditions a large number of compounds inaccessible by conventional methods. During this work, we looked at different aspects of the photochemical reactivity of furanone derivatives. Irradiation of furanones functionalized by tetrahydropyran and glucose in the presence of acetone as sensitizer led by a mechanism of energy transfer to a regioselective intramolecular radical reaction where the addition occurs in α position of the furanone. An important step in this mechanism is the hydrogen abstraction. A reaction of epimerization was shown at the anomeric center of β-anomers molecules. This type of photochemical reaction can be controlled to prepare highly functionalized structures (a family of Carba-Sugars). We have carried out a selective addition at a α-position of α,β-unsaturated carbonyl compound by a single-electron transfer via the formation of an exciplex or radical ion pair in contact. The mechanism of this reaction was revealed by a deuterium-labeling and interpretation of the regioselectivity. The isotopic-labeling allowed us to discover the origin of hydrogen added in β position of a furanone. Structures accessible by this method may have anti-inflammatory, analgesic, antipyretic and diuretic as well as bactericidal activities
Li, Chen. "CH bond activation of methane and unsaturated molecules by a transient eta2-cyclopropene complex of niobium : synthesis, characterization and mechanistic studies." Thesis, Toulouse, INSA, 2015. http://www.theses.fr/2015ISAT0029/document.
Full textChapter 1 reports a literature summary of the different ways of cleaving a hydrocarbon C-H bond, mostparticularly methane, with both early and late transition metal complexes. For early transition metals ourattention is focused on three mechanisms: i) the σ-bond metathesis, ii) the α-H abstraction/1,2-CH bond addition and iii) the β-H abstraction/1,3-CH bond addition.Chapter 2 challenges the problem of the activation of a CH bond of methane by a transient η2-cyclopropene complex of niobium. High pressure solution NMR, isotopic labelling studies and kinetic analyses of the degenerate exchange of methane in the methyl complex [TpMe2NbCH3(c-C3H5)(MeCCMe)] (1) are reported. Stoichiometric methane activation by the mesitylene complex [TpMe2Nb(CH2-3,5-C6H3Me2)(c-C3H5)(MeCCMe)] (2) giving 1 is also realized. Evidence is provided that these reactions proceed via an intramolecular abstraction of a β-H of the cyclopropyl group from either methane or mesitylene from 1 or 2, respectively, yielding the transient unsaturated η2-cyclopropene intermediate [TpMe2Nb(η2-c-C3H4)(MeCCMe)] (A). This is followed by itsmechanistic reverse 1,3-CH bond addition of methane yielding the product.Chapter 3 explores the reactivity of complex 1 towards heteroaromatics, unsaturated hydrocarbons, pentafluorobenzene and ferrocene (FcH) via the β-H abstraction/1,3-CH bond activation mechanism. Compound 1 is able to selectively activate the C-H bond of furan, thiophene, 1-cyclopentene, phenylacetylene, pentafluorobenzene and ferrocene, yielding the corresponding products [TpMe2NbX(c-C3H5)(MeCCMe)] (X = 2-C4H3O, 2-C4H3S, 1-C5H7, PhC≡C C6F5, Fc) which have been isolated and characterized by 1H, 13C NMR spectroscopy, electrochemical studies and X-ray diffraction analysis
Graux, Lionel. "Nouveaux complexes de ruthénium (II) associés aux Oxydes de Phosphine Secondaire (OPS) : Synthèse, caractérisation et application en catalyse." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4366/document.
Full textThe past decade has witnessed a renewed interest for Secondary Phosphine Oxides (SPO) in catalysis as preligands of transition metals. While the coordination chemistry and catalytic activity of these species have been mainly studied with palladium and platinum, only few examples with ruthenium have been reported so far.We investigated the synthesis of new ruthenium(II) complexes associated to one or two phosphinous acid ligand (PA) (SPO tautomer) which were fully characterised. Then we were interested in the role played by the ligand during the catalytic cycle. The use of different ruthenium sources allowed us to isolate [Ru]/SPO complexes (oxygen coordinated) and [Ru]/PA complexes (phosphorous coordinated). We evaluated the catalytic activities of these well-defined complexes in C-H bond activation and cycloisomerisation from alkynes or ynamides. During the course of these studies, the influence of ligand stereoelectronic parameters in the catalytic process have been demonstrated.Moreover, in a side project, we explored a new reactivity of ynamides with cyclic 1,3-diketones catalysed by palladium, cationic gold or ruthenium complexes. This reactivity gives access to alpha-alkoxysubstituted enamides
Brazi, Eric. "Activation de la liaison C-H : hydroxylation catalytique des hydrocarbures par de nouveaux complexes alkylperoxydiques de cobalt (iii), déshydrogénation sélective et catalytique de cycloalcanes en présence d'éponges à hydrogènes à base d'uranium métal." Paris 6, 1987. http://www.theses.fr/1987PA066680.
Full textSkhiri, Aymen. "Réactivité des chlorures de benzènesulfonyle pour l'accès à des hétéroarènes et alcènes arylés via des réactions pallado-catalysées." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S080.
Full textIn this thesis we have been interested in the synthesis of arylated heterocycles via the activation of sp2 C-H bonds of heteroaromatics and to the synthesis of halo-substituted arylated alkenes using palladium-catalysis. The products obtained are considered to be molecular bricks which are of interest to biochemists as well as to the preparation of materials. The catalyst system Pd(MeCN)2Cl2/Li2CO3/dioxane allows the direct access to a wide variety of arylated molecules from heteroarenes or alkenes and benzenesulfonyl chlorides. We have developed a method for the direct β-arylation of selenophenes from selenophenes and benzenesulfonyl chlorides. We have also shown that the use of (poly)halogenated benzenesulfonyl chlorides makes it possible to synthesize, by Pd-catalyzed reactions, (poly)halo-substituted arylated heteroarenes, stilbenes or cinnamates
Graux, Lionel. "Nouveaux complexes de ruthénium (II) associés aux Oxydes de Phosphine Secondaire (OPS) : Synthèse, caractérisation et application en catalyse." Electronic Thesis or Diss., Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4366.
Full textThe past decade has witnessed a renewed interest for Secondary Phosphine Oxides (SPO) in catalysis as preligands of transition metals. While the coordination chemistry and catalytic activity of these species have been mainly studied with palladium and platinum, only few examples with ruthenium have been reported so far.We investigated the synthesis of new ruthenium(II) complexes associated to one or two phosphinous acid ligand (PA) (SPO tautomer) which were fully characterised. Then we were interested in the role played by the ligand during the catalytic cycle. The use of different ruthenium sources allowed us to isolate [Ru]/SPO complexes (oxygen coordinated) and [Ru]/PA complexes (phosphorous coordinated). We evaluated the catalytic activities of these well-defined complexes in C-H bond activation and cycloisomerisation from alkynes or ynamides. During the course of these studies, the influence of ligand stereoelectronic parameters in the catalytic process have been demonstrated.Moreover, in a side project, we explored a new reactivity of ynamides with cyclic 1,3-diketones catalysed by palladium, cationic gold or ruthenium complexes. This reactivity gives access to alpha-alkoxysubstituted enamides