Academic literature on the topic 'Actions processing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Actions processing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Actions processing"
Müsseler, Jochen, Silke Steininger, and Peter Wühr. "Can Actions Affect Perceptual Processing?" Quarterly Journal of Experimental Psychology Section A 54, no. 1 (February 2001): 137–54. http://dx.doi.org/10.1080/02724980042000057.
Full textCullen, Kathleen E., Jessica X. Brooks, and Soroush G. Sadeghi. "How Actions Alter Sensory Processing." Annals of the New York Academy of Sciences 1164, no. 1 (May 2009): 29–36. http://dx.doi.org/10.1111/j.1749-6632.2009.03866.x.
Full textHeitger, Marcus H., Marc J. M. Macé, Jan Jastorff, Stephan P. Swinnen, and Guy A. Orban. "Cortical regions involved in the observation of bimanual actions." Journal of Neurophysiology 108, no. 9 (November 1, 2012): 2594–611. http://dx.doi.org/10.1152/jn.00408.2012.
Full textDemetre, James D., and Peter M. Vietze. "Discrepancy processing of actions in infancy." Infant Behavior and Development 9 (April 1986): 98. http://dx.doi.org/10.1016/s0163-6383(86)80100-x.
Full textRueschemeyer, Shirley-Ann, Oliver Lindemann, Daan van Rooij, Wessel van Dam, and Harold Bekkering. "Effects of Intentional Motor Actions on Embodied Language Processing." Experimental Psychology 57, no. 4 (December 1, 2010): 260–66. http://dx.doi.org/10.1027/1618-3169/a000031.
Full textBeauprez, Sophie-Anne, Yannick Blandin, Yves Almecija, and Christel Bidet-Ildei. "Physical and observational practices of unusual actions prime action verb processing." Brain and Cognition 138 (February 2020): 103630. http://dx.doi.org/10.1016/j.bandc.2019.103630.
Full textHeil, Lieke, Olympia Colizoli, Egbert Hartstra, Johan Kwisthout, Stan van Pelt, Iris van Rooij, and Harold Bekkering. "Processing of Prediction Errors in Mentalizing Areas." Journal of Cognitive Neuroscience 31, no. 6 (June 2019): 900–912. http://dx.doi.org/10.1162/jocn_a_01381.
Full textIanì, Francesco, Teresa Limata, Giuliana Mazzoni, and Monica Bucciarelli. "Observer’s body posture affects processing of other humans’ actions." Quarterly Journal of Experimental Psychology 74, no. 9 (March 29, 2021): 1595–604. http://dx.doi.org/10.1177/17470218211003518.
Full textKroczek, Leon O. H., Angelika Lingnau, Valentin Schwind, Christian Wolff, and Andreas Mühlberger. "Angry facial expressions bias towards aversive actions." PLOS ONE 16, no. 9 (September 1, 2021): e0256912. http://dx.doi.org/10.1371/journal.pone.0256912.
Full textGerson, Sarah A., Harold Bekkering, and Sabine Hunnius. "Short-term Motor Training, but Not Observational Training, Alters Neurocognitive Mechanisms of Action Processing in Infancy." Journal of Cognitive Neuroscience 27, no. 6 (June 2015): 1207–14. http://dx.doi.org/10.1162/jocn_a_00774.
Full textDissertations / Theses on the topic "Actions processing"
Elshaw, Mark. "Multimodal neural grounding of language processing for robot actions." Thesis, University of Sunderland, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.420517.
Full textBrooks, Jessica. "How actions alter sensory processing: reafference cancellation in the vestibular system." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106238.
Full textNos systèmes sensoriels doivent continuellement faire la différence entre des sensations dues aux événements extérieurs (exaférence) et des sensations provoquées par nos propres actions (réafférence). Faire la différence entre ces deux types de stimuli est essential pour permettre une perception et un control moteur précis. Cette distinction est possible, au niveau du système vestibulaire, grâce au fait qu'une prédiction des conséquences sensorielles de la commande motrice évaluée par un modèle interne est comparée avec le retour sensorielle réel; si la prédiction du model interne est similaire au retour sensoriel, le signale vestibulaire est supprimé; si ils sont différent, le signal vestibulaire n'est pas altéré. Les études présentées dans cette thèse ont pour but de comprendre ce mécanisme fondamental. Plus particulièrement, je cherche a établir 1- les règles qui gouvernent la suppression des réafférences vestibulaire, 2- l'adaptabilité du modèle interne qui sous-tend la suppression des réafférences vestibulaire et 3- le rôle du cervelet vestibulaire dans le processus de différentiation des mouvements actif et passif.Premièrement, j'ai montré que déranger le retour sensoriel pendant un mouvement actif perturbe la capacité des neurones vestibulaire centraux à supprimer les réafférences vestibulaire. Plus précisément, quand le retour proprioceptif est perturbé pendant un mouvement actif, le retour vestibulaire n'est plus supprimé. De plus, j'ai démontré que le retour vestibulaire due à des mouvements du corps est aussi supprimé au premier niveau central du traitement vestibulaire.Deuxièmement, j'ai démontré que le model interne sous-tendant la suppression des réafférences vestibulaire s'adapte pour que les neurones vestibulaire retrouvent leur capacité à supprimer les réafférences vestibulaire dans des conditions ou la relation entre la commande motrice et le mouvement de la tète sont perturbé. Mes résultats suggèrent fortement que le model interne utilisé pour prédire les conséquences sensorielles de la commande motrice est rapidement mis a jour quand il est en présence de nouvelles relations entre retour sensoriel attendu et réel. Finalement, je me suis intéressé au rôle que joue le cervelet pour encoder les mouvements passif et actif. J'ai trouvé qu'en condition passive, les neurones du noyau rostral de fastigial (FN rostral) encodent deux représentations différentes du mouvement; la moitié des neurones encodent les mouvements de la tète et l'autre moitié encode les mouvements du corps. Les neurones du FN rostral qui encodent les mouvements du corps fournissent le premier corrélat neural de la perception des mouvements du corps. Puis j'aborde la question de comment l'information vestibulaire est traite par le FN rostral pendant les mouvements actifs? Nous avons trouvé que la réponse des neurones dans le cervelet vestibulaire est atténuée pendant les mouvements actifs de la tète et du corps. Cela démontre pour la première fois que le cervelet des primates encode les exafférences.Dans leur ensemble les résultats de cette thèse fournissent des évidences solides en faveur de la suppression des réafférences vestibulaire pendant les mouvements actifs de la tète et du corps. Cette suppression est possible grâce à un mécanisme qui compare les prévisions des conséquences d'un mouvement volontaire générées par le cerveau avec le retour sensoriel réel.
Good, Daniel A. "Error Processing and Naturalistic Actions Following Moderate-to-Severe Traumatic Brain Injury." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3804.
Full textHandl, Andrea. "World of faces, words and actions : Observations and neural linkages in early life." Doctoral thesis, Uppsala universitet, Institutionen för psykologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-281242.
Full textNoonan, MaryAnn Philomena. "Linking actions to outcomes in the frontal lobe." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:e1bcccd1-2182-4f1d-94bd-b80ce67efb0e.
Full textMetzler, Hannah. "The influence of bodily actions on social perception and behaviour : assessing effects of power postures." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS287/document.
Full textExpansive and constrictive body postures serve a primary communicative function in humans and other animals by signalling power and dominance. Whether adopting such “power postures” influences the agent’s own perception and behaviour is currently a subject of debate. In this PhD thesis, I explored effects of adopting power postures on behaviours closely related to the postures’ primary function of social signalling by focusing on responses to faces as particularly salient social signals. In a series of experiments, I utilized reverse correlation methods to visualize mental representations of preferred facial traits. Mental representations of implicitly as well as explicitly preferred faces evoked an affiliative and slightly dominant impression, but revealed no replicable effects of power postures. Two further separate experiments investigated posture effects on the perception of threatening facial expressions, and approach vs. avoidance actions in response to such social signals. While postures did not influence explicit recognition of threatening facial expressions, they affected approach and avoidance actions in response to them. Specifically, adopting a constrictive posture increased the tendency to avoid individuals expressing anger. Finally, an attempt to replicate posture effects on levels of testosterone and cortisol demonstrated that even repeatedly adopting a power posture in a social context does not elicit hormonal changes. Altogether, these findings suggest that our body posture does not influence our mental representations and perception of other people’s faces per se, but could influence our actions in response to social signals
Spasic, Nemanja. "Anomaly Detection and Prediction of Human Actions in a Video Surveillance Environment." Thesis, University of Cape Town, 2007. http://pubs.cs.uct.ac.za/archive/00000449/.
Full textFlatters, Sarah Jane Louise. "The effect of nerve injury on the spinal and peripheral actions of galanin and interleukin-6 on sensory processing." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268771.
Full textMünster, Katja [Verfasser], Pia [Akademischer Betreuer] Knoeferle, and Stavros [Akademischer Betreuer] Skopeteas. "Effects of emotional facial expressions and depicted actions on situated language processing across the lifespan / Katja Münster ; Pia Knoeferle, Stavros Skopeteas." Bielefeld : Universitätsbibliothek Bielefeld, 2016. http://d-nb.info/1121187595/34.
Full textDecroix, Jérémy. "Dynamics of processing of visual kinematics and goal-related information during the recognition of object directed actions : behavioural and neurophysiological evidence." Thesis, Lille 3, 2020. https://pepite-depot.univ-lille.fr/RESTREINT/EDSHS/2020/2020LIL3H005.pdf.
Full textActions are complex, goal-directed, movements, and despite being hidden in the actor’s mind, observers successfully identify and anticipate actor’s goal. In this thesis, we identified two main approaches to explain how observers recognise others’ actions. Sensorimotor approaches consider action recognition as bottom-up propagation from the perception of visual kinematics to the recognition of action goals. Visual kinematics are viewed here as the primary source of visual information from which goal-related information is extracted. In contrast, predictive approaches assume that observers cannot make sense of visual kinematics without a prediction about the actor’s goal. Observers would extract goal-related information from non-motor sources of information to guide the processing of the visual kinematics. Information about the temporal dynamics of activation of visual kinematics and goal-related information during action visual processing is critical to disentangle the two approaches and to provide a better understanding of the mechanisms underlying action recognition, but empirical data in this direction are clearly lacking. In order to fill this gap, we investigated the relative priority given to visual kinematics versus non-motor goal-related information during the recognition of others’ actions. The contribution of visual kinematics and non-motor goal-related information was independently evaluated by introducing violations of grip and/or visual goal in photographs of object-directed actions. Using behavioural methods (priming and visual-search paradigms), we demonstrated that non-motor goal-related information was prioritised over visual kinematics during the first steps of visual action processing, whereas visual kinematics were prioritised over goal-related information later during visual action processing. Using neurophysiological methods (event-related potential and transcranial magnetic stimulation priming paradigms), we found that both visual kinematics and non-motor goal-related information are already processed during the perceptual stages of action processing, but that action semantic processing is guided by goal-related information rather than visual kinematics. We further provide evidence supporting the critical involvement of the frontoparietal network in the later integration of visual kinematics and non-motor goal-related information. We finally showed that the priority given to non-motor goal-related information over visual kinematics during action visual processing depends on individual social characteristics. Together, the findings reported are consistent with predictive approaches of action recognition. Results are discussed in the light of converging evidence suggesting that visual kinematics are used to update goal predictions that have been previously derived from non-motor goal-related information. Yet findings further orient towards a pluralist view of action understanding, in which the strategies used to process others’ actions may vary depending on situations and individuals
Books on the topic "Actions processing"
United States. Office of Personnel Management. The guide to processing personnel actions: Operating manual. 2nd ed. Washington, D.C: U.S. Office of Personnel Management, 1994.
Find full textJalote, P. Atomic actions in concurrent systems. Urbana, Ill: Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1985.
Find full textDivision, United States General Accounting Office Accounting and Information Management. Customs Service modernization: Actions initiated to correct ACE management and technical weaknesses. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 1999.
Find full textUnited States. General Accounting Office. Accounting and Information Management Division. Customs Service modernization: Actions initiated to correct ACE management and technical weaknesses. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 1999.
Find full textDombroff, Mark A. Litigation organization and management. 2nd ed. Englewood Cliffs, N.J: Prentice Hall Law & Business, 1991.
Find full textUnited States. General Accounting Office. Accounting and Information Management Division. Food and Drug Administration: Status of actions to address property control weaknesses. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 1999.
Find full textUnited States. General Accounting Office. Accounting and Information Management Division. Food and Drug Administration: Status of actions to address property control weaknesses. Washington, D.C. (P.O. Box 37050, Washington, D.C. 20013): The Office, 1999.
Find full textLevin, B. M. EXITT - a simulation model of occupant decisions and actions in residential fires: Users guide and program description. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Find full textS, Land Douglas, and Wilmer, Cutler & Pickering., eds. Wilmer, Cutler & Pickering manual on litigation support databases. New York: Wiley Law Publications, 1987.
Find full textSiemer, Deanne C. Wilmer, Cutler & Pickering manual on litigation support databases. 2nd ed. New York: Wiley Law Publications, 1989.
Find full textBook chapters on the topic "Actions processing"
Özeroğlu, Burak, and Ediz Şaykol. "Counting Human Actions in Video During Physical Exercise." In Neural Information Processing, 497–504. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-26561-2_59.
Full textSzulc, Marcin, Jakub Łyskawa, and Paweł Wawrzyński. "A Framework for Reinforcement Learning with Autocorrelated Actions." In Neural Information Processing, 90–101. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63833-7_8.
Full textAlahari, Karteek, and C. V. Jawahar. "Discriminative Actions for Recognising Events." In Computer Vision, Graphics and Image Processing, 552–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11949619_49.
Full textBietenholz, Wolfgang, Norbert Eicker, Andreas Frommer, Thomas Lippert, Björn Medeke, and Klaus Schilling. "A Preconditioner for Improved Fermion Actions." In Euro-Par’99 Parallel Processing, 1040–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48311-x_145.
Full textWilliamson, Julie R., and Stephen Brewster. "Capturing Performative Actions for Interaction and Social Awareness." In Mobile Social Signal Processing, 51–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54325-8_6.
Full textde Brock, Bert. "Declarative Semantics of Actions and Instructions." In Lecture Notes in Business Information Processing, 297–308. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52306-0_20.
Full textErmolayev, Vadim, Natalya Keberle, Wolf-Ekkehard Matzke, and Richard Sohnius. "Fuzzy Time Intervals for Simulating Actions." In Lecture Notes in Business Information Processing, 429–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78942-0_42.
Full textPérez-Ramírez, Miguel, and Chris Fox. "Imperatives as Obligatory and Permitted Actions." In Computational Linguistics and Intelligent Text Processing, 52–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36456-0_6.
Full textGardner, Ross M., and Donna R. Krouskup. "Actions of the Initial Responding Officer." In Practical Crime Scene Processing and Investigation, 51–62. Third Edition. | Boca Raton, FL : CRC Press, [2019] | Revised: CRC Press, 2018. http://dx.doi.org/10.4324/9781315170596-3.
Full textLu, Zhicheng, Yuk Ying Chung, Henry Wing Fung Yeung, Seid Miad Zandavi, Weiming Zhi, and Wei-Chang Yeh. "Using Hidden Markov Model to Predict Human Actions with Swarm Intelligence." In Neural Information Processing, 21–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70093-9_3.
Full textConference papers on the topic "Actions processing"
Roy, Debaditya, C. Krishna Mohan, and K. Sri Rama Murty. "Action Recognition Based on Discriminative Embedding of Actions Using Siamese Networks." In 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018. http://dx.doi.org/10.1109/icip.2018.8451226.
Full textHausmann, Steffen, and François Bry. "Towards complex actions for complex event processing." In the 7th ACM international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2488222.2488261.
Full textZhang, Hong-Bo, Song-Zhi Su, Shao-Zi Li, Duan-Sheng Chen, Bineng Zhong, and Rongrong Ji. "Seeing actions through scene context." In 2013 Visual Communications and Image Processing (VCIP). IEEE, 2013. http://dx.doi.org/10.1109/vcip.2013.6706382.
Full textFarhadi, Hamid, Ping Du, and Akihiro Nakao. "Enhancing OpenFlow actions to offload packet-in processing." In 2014 16th Asia-Pacific Network Operations and Management Symposium (APNOMS). IEEE, 2014. http://dx.doi.org/10.1109/apnoms.2014.6996603.
Full textWang, Liang, and Debin Zhao. "Recognizing actions using salient features." In 2011 IEEE 13th International Workshop on Multimedia Signal Processing (MMSP). IEEE, 2011. http://dx.doi.org/10.1109/mmsp.2011.6093832.
Full textPark, Song Jun, and Dale Shires. "Learning optimal actions with imperfect images." In Real-Time Image Processing and Deep Learning 2019, edited by Nasser Kehtarnavaz and Matthias F. Carlsohn. SPIE, 2019. http://dx.doi.org/10.1117/12.2518921.
Full textSharma, Bishwajit, KS Venkatesh, and Amitabha Mukerjee. "Fourier shape-frequency words for actions." In 2011 IEEE International Conference on Image Information Processing (ICIIP). IEEE, 2011. http://dx.doi.org/10.1109/iciip.2011.6108939.
Full textKilickaya, M., and Z. Telatar. "Recognizing human actions from still images." In 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, 2013. http://dx.doi.org/10.1109/siu.2013.6531181.
Full textDawar, Neha, and Nasser Kehtarnavaz. "Continuous detection and recognition of actions of interest among actions of non-interest using a depth camera." In 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. http://dx.doi.org/10.1109/icip.2017.8297079.
Full textRadulescu, Bogdan Alexandru, and Victorita Radulescu. "Model of Human Actions Recognition Based on 2D Kernel." In ASME 2021 30th Conference on Information Storage and Processing Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/isps2021-65031.
Full textReports on the topic "Actions processing"
Beranich, S., N. Berger, D. Bierley, T. M. Bond, C. Burt, J. A. Caldwell, V. A. Dery, et al. Environmental assessment of remedial action at the inactive uraniferous lignite processing sites at Belfield and Bowman, North Dakota. [UMTRA Project]. Office of Scientific and Technical Information (OSTI), September 1989. http://dx.doi.org/10.2172/6302456.
Full textBolton, Laura. Criminal Activity and Deforestation in Latin America. Institute of Development Studies (IDS), December 2020. http://dx.doi.org/10.19088/k4d.2021.003.
Full textAuthor, Not Given. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3, Calculations: Preliminary final. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10184968.
Full textUS Department of Energy response to standards for remedial actions at inactive uranium processing sites: Proposed rule. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6290066.
Full textRadiological surveillance of Remedial Action activities at the processing site, Falls City, Texas. Final report. Office of Scientific and Technical Information (OSTI), April 1993. http://dx.doi.org/10.2172/31661.
Full textFinal audit report of remedial action construction at the UMTRA Project, Grand Junction, Colorado, processing site. Office of Scientific and Technical Information (OSTI), February 1995. http://dx.doi.org/10.2172/71315.
Full textEnvironmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10104657.
Full textEnvironmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10162240.
Full textEnvironmental assessment of remedial action at the Naturita Uranium processing site near Naturita, Colorado. Revision 1. Office of Scientific and Technical Information (OSTI), August 1993. http://dx.doi.org/10.2172/10184936.
Full textEnvironmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3. Office of Scientific and Technical Information (OSTI), February 1994. http://dx.doi.org/10.2172/10128081.
Full text