Academic literature on the topic 'Actinobacillus pleuropneumoniae'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Actinobacillus pleuropneumoniae.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Actinobacillus pleuropneumoniae"
Andrusevich, A. S., E. L. Krasnikova, M. M. Misteyko, I. I. Strelchenya, M. S. Struk, and O. V. Malchik. "BIOCHEMICAL PROPERTIES OF ACTINOBACILLUS PLEUROPNEUMONIAE MUSEUM STRAINS." Ecology and Animal World, no. 1 (May 28, 2021): 58–62. http://dx.doi.org/10.47612/2224-1647-2021-1-58-62.
Full textRusaleyev, V. S. "ANTIBIOTIC RESISTANCE OF ACTINOBACILLUS PLEUROPNEUMONIAE IN SWINE: PROBLEMS AND SOLUTIONS." Veterinary Science Today, no. 3 (October 3, 2018): 26–29. http://dx.doi.org/10.29326/2304-196x-2018-3-26-26-29.
Full textSubashchandrabose, Sargurunathan, Rhiannon M. Leveque, Roy N. Kirkwood, Matti Kiupel, and Martha H. Mulks. "The RNA Chaperone Hfq Promotes Fitness of Actinobacillus pleuropneumoniae during Porcine Pleuropneumonia." Infection and Immunity 81, no. 8 (June 3, 2013): 2952–61. http://dx.doi.org/10.1128/iai.00392-13.
Full textTo, Ho, Kaho Teshima, Michiha Kon, Saori Yasuda, Yuta Akaike, Kazumoto Shibuya, Shinya Nagai, and Chihiro Sasakawa. "Characterization of nontypeable Actinobacillus pleuropneumoniae isolates." Journal of Veterinary Diagnostic Investigation 32, no. 4 (June 9, 2020): 581–84. http://dx.doi.org/10.1177/1040638720931469.
Full textFrank, Rodney K., M. M. Chengappa, Richard D. Oberst, Kristina J. Hennessy, Steven C. Henry, and Brad Fenwick. "Pleuropneumonia Caused by Actinobacillus Pleuropneumoniae Biotype 2 in Growing and Finishing Pigs." Journal of Veterinary Diagnostic Investigation 4, no. 3 (July 1992): 270–78. http://dx.doi.org/10.1177/104063879200400308.
Full textZhou, Yang, Lu Li, Zhaohui Chen, Hong Yuan, Huanchun Chen, and Rui Zhou. "Adhesion Protein ApfA of Actinobacillus pleuropneumoniae Is Required for Pathogenesis and Is a Potential Target for Vaccine Development." Clinical and Vaccine Immunology 20, no. 2 (December 26, 2012): 287–94. http://dx.doi.org/10.1128/cvi.00616-12.
Full textJeannotte, Marie-Eve, Maan Abul-Milh, J. Daniel Dubreuil, and Mario Jacques. "Binding of Actinobacillus pleuropneumoniae to Phosphatidylethanolamine." Infection and Immunity 71, no. 8 (August 2003): 4657–63. http://dx.doi.org/10.1128/iai.71.8.4657-4663.2003.
Full textLeiner, Gero, Burkart Franz, Katrin Strutzberg, and Gerald-F. Gerlach. "A Novel Enzyme-Linked Immunosorbent Assay Using the RecombinantActinobacillus pleuropneumoniae ApxII Antigen for Diagnosis of Pleuropneumonia in Pig Herds." Clinical Diagnostic Laboratory Immunology 6, no. 4 (July 1, 1999): 630–32. http://dx.doi.org/10.1128/cdli.6.4.630-632.1999.
Full textAltman, Eleonora, Douglas W. Griffith, and Malcolm B. Perry. "Structural studies of the O-chains of the lipopolysaccharides produced by strains of Actinobacillus (Haemophilus) pleuropneumoniae serotype 5." Biochemistry and Cell Biology 68, no. 11 (November 1, 1990): 1268–71. http://dx.doi.org/10.1139/o90-188.
Full textSárközi, Rita, László Makrai, and László Fodor. "Identification of a proposed new serovar of Actinobacillus Pleuropneumoniae: Serovar 16." Acta Veterinaria Hungarica 63, no. 4 (December 2015): 444–50. http://dx.doi.org/10.1556/004.2015.041.
Full textDissertations / Theses on the topic "Actinobacillus pleuropneumoniae"
D'Silva, Colin Gerard. "Iron acquisition by Actinobacillus pleuropneumoniae." Thesis, McGill University, 1995. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=28720.
Full textMaas, Alexander. "DIVA vaccine development against Actinobacillus pleuropneumoniae infection." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=983732574.
Full textMacKay, David Keith John. "Immunity to 'Actinobacillus (Haemophilus) pleuropneumoniae' in piglets." Thesis, Royal Veterinary College (University of London), 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.519530.
Full textAli, Tehmeena. "Characterisation of protein secretion systems of Actinobacillus pleuropneumoniae." Thesis, University of Nottingham, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440122.
Full textStäger, Martin. "Zur Seroprävalenz Actinobacillus pleuropneumoniae (APP) in Schweizer Schweinezuchtbeständen /." Bern, 1991. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Full textSilva, Thyara Ferreira da. "Caracterização e expressão da chaperona Hfq em Actinobacillus pleuropneumoniae, o agente causal da pleuropneumonia suína." Universidade Federal de Viçosa, 2016. http://www.locus.ufv.br/handle/123456789/10060.
Full textMade available in DSpace on 2017-04-12T18:26:46Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1477435 bytes, checksum: 54c26ccf8c22f331c25e937b81f9b585 (MD5) Previous issue date: 2016-02-29
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Infecções que acometem o trato respiratório de suínos levam a significativas perdas econômicas na suinocultura mundial. Um dos principais patógenos respiratórios em suínos é a bactéria Actinobacillus pleuropneumoniae, o principal agente causal da pleuropneumonia. Atualmente podem ser encontrados 16 sorotipos de A. pleuropneumoniae com virulência distinta e complexa, sendo os principais fatores de virulência: exotoxinas Apx, lipopolissacarídeo (LPS), cápsula e a capacidade de formação de biofilme. O controle da doença é baseado no uso de antibióticos e cuidados no manejo da granja. A profilaxia pela imunização passiva ainda é ineficiente devido à dificuldade na obtenção de uma vacina contra todos os sorotipos encontrados. Assim, novas abordagens experimentais na elaboração de uma vacina eficiente associada a uma resposta imune protetora são essenciais porque podem representar novas alternativas na estratégia de controle da doença. A proteína Hfq é um componente central de regulação global pós-transcricional e participa diretamente na regulação da expressão de genes por facilitar a interação de RNAs pequenos com mRNAs alvos, sendo esta uma abordagem atual e relacionada ao controle da virulência em diversas bactérias patogênicas. Neste sentido, o estudo da chaperona de RNA Hfq é de extrema importância, uma vez que já foi demonstrado seu efeito pleiotrópico e impacto na virulência, na resposta a diferentes tipos de estresse e no crescimento celular de vários patógenos, incluindo A. pleuropneumoniae. Portanto, esse trabalho teve como objetivos: caracterizar in silico a proteína Hfq em A. pleuropneumoniae e analisar a expressão e a fase de maior abundância desta proteína ao longo do crescimento de A. pleuropneumoniae. As análises filogenéticas realizadas foram baseadas em análises de comparação de sequências de aminoácidos da proteína Hfq de diferentes membros da classe Gammaproteobacteria, na qual A. pleuropneumoniae está inserida. As demais análises foram conduzidas utilizando os sorotipos 1, 8 e 15 de A. pleuropneumoniae, sendo utilizadas as linhagens do tipo selvagem (WT) e hfq::3XFLAG. O alinhamento de sequências da proteína Hfq revelou uma identidade de 98% entre as proteínas Hfq de A. pleuropneumoniae de diferentes sorotipos, além de demonstar que Hfq de espécies de uma mesma família possuem maior relação filogenética. A análise da estrutura tridimensional da proteína em A. pleuropneumoniae demonstrou a presença de estruturas características da proteína presente em outos patógenos Gram-negativos, como uma α-hélice e folhas β. A análise da velocidade específica de crescimento por ANOVA entre as linhagens WT e hfq::3XFLAG do mesmo sorotipo revelou que não há diferença de crescimento entre essas linhagens do mesmo sorotipo. Quanto à expressão de Hfq, foi detectado um maior acúmulo da proteína na fase estacionária de crescimento, no período de 6-8 horas, dependendo do sorotipo investigado, e que a expressão de Hfq foi diferencial entre os sorotipos analisados. Esses resultados revelaram que a proteína Hfq é conservada entre os sorotipos de A. pleuropneumoniae e possui estrutura tridimensional característica. Além disso, a inserção da etiqueta FLAG em Hfq não alterou o perfil de crescimento celular e hà um maior acúmulo da proteína na fase estacionária de crescimento, sendo que os sorotipos apresentaram distribuição das formas diferencial entre os sorotipos e dinâmica de acordo com a fase de crescimento. Essa diferença pode estar relacionada aos diferentes perfis de virulência e de resposta a diferentes condições investigadas previamente, uma vez que a abundância nestes sorotipos apresentou distribuição temporal distinta.
Infections that affect the respiratory tract of pigs lead to significant economic losses in the swine industry worldwide. One of the major respiratory pathogen in pigs is the bacterium Actinobacillus pleuropneumoniae, the main causal agent of the pleuropneumonia. Currently, 16 serotypes can be found of A. pleuropneumoniae with distinct and complex virulence, with the main factors of virulence: exotoxin Apx, lipopolysaccharide (LPS), capsule and the biofilm formation capacity. Control of the disease is based on the use of antibiotics and care in the management of the farm. Prophylaxis by passive immunization is still inefficient because of the difficulty in getting a vaccine against all serotypes found. Thus, new experimental approaches in the development of an effective vaccine associated with a protective immune response are essential because they can represent new alternatives in the disease control strategy. The Hfq protein is a key component of the global post-transcriptional regulation and directly participates in the regulation of gene expression to facilitate the interaction of small RNAs with target mRNAs, which is a current approach and it relates to the control of virulence in many pathogenic bacteria. In this sense, the study of Hfq RNA chaperone is of extreme importance, since it has already demonstrated its pleiotropic effect and impact on virulence in response to different types of stress and cellular growth of various pathogens, including A. pleuropneumoniae. Therefore, this study aimed: to characterize in silico the Hfq protein in A. pleuropneumoniae and to analyze the expression and phase greater abundance of this protein throughout the growth of A. pleuropneumoniae. The phylogenetic analyzes were based on comparative analysis of amino acid sequences of protein Hfq of different members of the class Gammaproteobacteria, which A. pleuropneumoniae is inserted. The other analyzes were conducted using the serotypes 1, 8 and 15 of A. pleuropneumoniae, being used strains of wild-type (WT) and hfq::3XFLAG. The sequence alignment of Hfq protein sequences showed an identity of 98% between Hfq proteins of A. pleuropneumoniae of different serotypes, also demonstrating that Hfq species of the same family have a greater phylogenetic relationship. The analysis of the three-dimensional structure of the protein in A. pleuropneumoniae demonstrated the presence of specific structures of protein present in other Gram-negative pathogens, how one α-helix and β-strands. The analysis of the specific growth rate by ANOVA between strains WT and hfq::3XFLAG of the same serotype showed that there is no difference in growth between the strains. As the expression of Hfq, a greater accumulation of protein in the stationary growth phase was detected in the period of 6-8 hours, depending on the serotype investigated, and the expression of Hfq was differential between serotypes analyzed. These results demonstrate that Hfq is conserved among serotypes of A. pleuropneumoniae and has a three-dimensional structure conserved. Moreover, the insertion of the FLAG tag on Hfq did not affect the cell growth profile and there is a greater accumulation of the protein in the stationary phase of growth, whereas serotypes showed the distribution of forms differential between serotypes and dynamically according to the growth stage. This difference may be related to different profiles of virulence and response to different conditions previously investigated, since these abundant serotypes showed distinct temporal distribution.
Ma, Jianneng. "Purification, serology and pathogenic role of the 110 kilodalton rtx hemolysins of Actinobacillus pleuropneumoniae." Diss., Virginia Tech, 1991. http://hdl.handle.net/10919/39935.
Full textPh. D.
Carufel, Karine de. "Mutagenèse par la technologie du transposome chez Actinobacillus pleuropneumoniae /." Thèse, Trois-Rivières : Université du Québec à Trois-Rivières, 2008. http://www.uqtr.ca/biblio/notice/resume/30037972R.pdf.
Full textCarufel, Karine de. "Mutagenèse par la technologie du transposome chez Actinobacillus pleuropneumoniae." Thèse, Université du Québec à Trois-Rivières, 2008. http://depot-e.uqtr.ca/1839/1/030037972.pdf.
Full textCosta, Bárbara Letícia Pereira. "Caracterização fenotípica e genotípica de isolados de Actinobacillus pleuropneumoniae provenientes de diferentes estados brasileiros." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/10/10134/tde-27072017-151034/.
Full textInfection by Actinobacillus pleuropneumoniae, a disease known as swine pleuropneumonia, has gained greater relevance to modern pig farming due to the high recurrence rate observed in herds. The impact of the disease relates to the capacity of the agent to cause severe pneumonia, leading to animal death or chronic conditions, thus resulting in severe zootechnical losses. In view thereof, the control and monitoring of the agent is key, being performed through the identification of different serotypes, genetic analysis and determination of antimicrobial resistance profiles. The objective of this study was to characterize phenotypically and genotypically Actinobacillus pleuropneumoniae strains isolated from swine with clinical presentation of pneumonia. A total of 85 strains of A. pleuropneumoniae were subject to polymerase chain reaction (PCR) for identification and serotyping, determination of the minimal inhibitory concentration, amplified fragment length polymorphism (AFLP) and pulsed field gel electrophoresis typing techniques (PFGE). Most recurring serotypes were: 5 (38.8%), 10 (29.4%), 7 (5.9%), 8 (5.9%) and 6 (3.5%), of which 14 (16.5%) strains were nontypeable. High genetic heterogeneity was observed for both AFLP and PFGE, and the discriminatory index for each technique was 0.97 and 0.84, respectively. All 85 strains were susceptible to ceftiofur, gentamicin, tulatromicin and tilmicosin, 84 of which were resistant to tylosin, and high resistance rates were also observed for clindamycin, tetracyclines and sulfadimethoxine.
Book chapters on the topic "Actinobacillus pleuropneumoniae"
Frey, J. "Exotoxins of Actinobacillus Pleuropneumoniae." In Haemophilus, Actinobacillus, and Pasteurella, 101–13. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-0978-7_9.
Full textFrey, Joachim. "RTX-toxins in Actinobacillus pleuropneumoniae and their potential role in virulence." In Developments in Plant Pathology, 325–40. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-0746-4_23.
Full textNahar, Nusrat, Conny Turni, Greg Tram, Patrick J. Blackall, and John M. Atack. "Actinobacillus pleuropneumoniae: The molecular determinants of virulence and pathogenesis." In Advances in Microbial Physiology, 179–216. Elsevier, 2021. http://dx.doi.org/10.1016/bs.ampbs.2020.12.001.
Full textConference papers on the topic "Actinobacillus pleuropneumoniae"
Mul, Monique, P. Becker, C. van der Peet-Schwering, and N. Stockhofe-Zurwieden. "Garlic reduces effect of Actinobacillus pleuropneumoniae infection in pigs." In Fifth International Symposium on the Epidemiology and Control of Foodborn Pathogens in Pork. Iowa State University, Digital Press, 2011. http://dx.doi.org/10.31274/safepork-180809-600.
Full textLi, Ying, Sanjie Cao, Yiping Wen, and Xintian Wen. "Complete nucleotide sequence analysis of tolC gene from actinobacillus pleuropneumoniae." In 2014 7th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2014. http://dx.doi.org/10.1109/bmei.2014.7002882.
Full textLi, Ren-Feng, Xue-Bin Li, Kun Zhao, and San-Hu Wang. "Web-Based Genomic-Scale Metabolic Pathways Comparative of Two Actinobacillus pleuropneumoniae Strains." In 2010 2nd International Workshop on Database Technology and Applications (DBTA). IEEE, 2010. http://dx.doi.org/10.1109/dbta.2010.5659079.
Full textLi, Ren-Feng, Xiang-Qin Tian, Jin-Qing Jiang, Xue-Bin Li, and San-Hu Wang. "Notice of Retraction: Genomic Islands Analysis of Three Actinobacillus pleuropneumoniae Strains by Comparative Genomic Methods." In 2011 5th International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2011. http://dx.doi.org/10.1109/icbbe.2011.5779990.
Full textKruse, A. B., L. R. Nielsen, and L. Alban. "Vaccination against Actinobacillus pleuropneumoniae as an alternative strategy to antimicrobial use in Danish pig herds." In Safe Pork 2015: Epidemiology and control of hazards in pork production chain. Iowa State University, Digital Press, 2015. http://dx.doi.org/10.31274/safepork-180809-331.
Full textCişmileanu, Ana, Cornelia Sima, and Constantin Grigoriu. "Quantum dot-based western blot for sensitive detection of pig serum antibody to actinobacillus pleuropneumoniae." In SPIE Proceedings, edited by Valentin I. Vlad. SPIE, 2007. http://dx.doi.org/10.1117/12.756829.
Full textDreyfus, A., P. Kuhnert, and J. Frey. "Use of recombinant ApxIV in serodiagnosis of Actinobacillus pleuropneumoniae infections and development of an ApxIV ELISA." In Fifth International Symposium on the Epidemiology and Control of Foodborn Pathogens in Pork. Iowa State University, Digital Press, 2003. http://dx.doi.org/10.31274/safepork-180809-532.
Full text