To see the other types of publications on this topic, follow the link: Acoustic sensors.

Dissertations / Theses on the topic 'Acoustic sensors'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Acoustic sensors.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Fernandes, Hugo Manuel Espinho Lebre. "Acoustic smart sensors." Master's thesis, Universidade de Aveiro, 2016. http://hdl.handle.net/10773/22734.

Full text
Abstract:
Mestrado em Engenharia Eletrónica e Telecomunicações
Nowadays buildings are being progressively integrated with an increasing number of sensors . Most of the times this sensors have quite speci c functions, butane sensors, propane sensors, carbon monoxide sensors, pyroelectric motion sensors, and this is what limits their eld of action. Introducing a certain level of autonomy to a sensor, i.e., send, process and receiving information can increase the interactivity and market attractiveness of a building. Within this point of view, and over-viewing the building conjuncture, it can be concluded that smart sensors will be installed during the construction, in recently constructed buildings, but also in buildings with several years which commonly have an physical electric network. This implies that this type of units will need to have an option to be retro tted and, to a certain degree, a simple installation. In this thesis, it is proposed the creation of an integrated solution using the wall of a room as a human interface. This system can establish communication with the gateway of a smart home using a previous researched, e cient and safe wireless protocol. Once the connection is established the gateway can execute a large variety of functions that can be programmed in the home central unit (gateway). The thesis hereby presented consists in a study of wireless communication protocols with respect to reliability, safety and practicality and in the research of the fusion between sensors, processing ability and communication interfaces with the intent of producing a prototype.
As habitações actuais são incorporadas com uma variedade cada vez mais vasta de sensores e actuadores. Estes sensores, na maioria das situações, tem uma função bastante especifica, sensores de gás butano, sensores de gás propano, sensores de monóxido de carbono, sensores piroeletricos. Através da introdução de autonomia a cada um destes sensores, nomeadamente, enviar, processar e receber informação, e possível tornar uma habitação num centro de partilha de informações fulcrais, acessível a partir de qualquer ponto. Nesta perspectiva, analisando a conjuntura habitacional deduz-se rapidamente que a aplicação de sensores inteligentes nao poderá ser feita apenas em novas habitações mas também terá que ser implementada em habitações que já possuem uma rede eléctrica implementada. Isto implica desde logo, que este tipo de equipamentos possam ser adaptados a redes que estão em utilização (retrotting) e que sejam de fácil acesso durante a instalação e manutenção. Desta forma entram em cena os protocolos de comunicação sem fios. Estes permitem nao somente a interligação dos sensores inteligentes (sensor, processador, interface de comunicação), mas também a sua ligação a actuadores e a interfaces pessoa-máquina, sem se por a necessidade de alterações físicas das habitações. A criação de uma soluçao integradora, utilizando a parede de uma habitação como interface humana e apresentada ao longo deste documento. Este sistema comunica com o gateway de uma casa inteligente utilizando a tecnologia wireless que será estudada e definida como a mais eficiente e segura. Uma vez interligada com o gateway poderá efectuar um conjunto vasto de operações, que estarão definidas no processador da unidade central da casa. A dissertação aqui apresentada consiste na analise de protocolos de comunicação wireless, e na concepção de um sistema de interface humana embutido nas paredes de edifícios habitacionais.
APA, Harvard, Vancouver, ISO, and other styles
2

Evans, Carl Richard. "Layer guided acoustic wave sensors." Thesis, Nottingham Trent University, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Avila, Gomez Adrian Enrique. "Development MEMS Acoustic Emission Sensors." Scholar Commons, 2017. https://scholarcommons.usf.edu/etd/7392.

Full text
Abstract:
The purpose of this research is to develop MEMS based acoustic emission sensors for structural health monitoring. Acoustic emission (AE) is a well-established nondestructive testing technique that is typically used to monitor for fatigue cracks in structures, leaks in pressurized systems, damages in composite materials or impacts. This technology can offer a precise evaluation of structural conditions and allow identification of imminent failures or minor failures that can be addressed by planned maintenances routines. AE causes a burst of ultrasonic energy that is measured as high frequency surface vibrations (30 kHz to 1 MHz) generated by transient elastic waves that are typically emitted from growing cracks at the interior of the structure. The AE sensor marketplace is currently dominated by bulky and expensive piezoelectric transducers that are wired to massive multichannel data acquisition systems. These systems are complex to operate with the need of signal conditioning units and near proximity pre-amplifiers for each sensor that demands a fairly complicated wiring requirements. Furthermore, due to the high prices of conventional AE sensors and associated instrumentation, and the current requirements in sensor volumes for smart transportation infrastructure, it is undeniable that new AE technology is required for affordable structural health monitoring. The new AE technology must deliver comparable performance at one or two orders of magnitude lower cost, size and weight. MEMS acoustic emission (AE) sensors technology has the potential to resolve several of these traditional sensor’s shortcomings with the advantage of possible integration of on-chip preamplifier while allowing substantially cost reduction due to the batch processing nature of MEMS technology. This study will focus on filling some of the major existing gaps between current developments in MEMS acoustic emission sensors and commercial piezoelectric sensors, such as sensor size, signal-to-noise ratio (SNR), cost and the possibility to conform to sharply curved surfaces. Basically, it is proposed to develop a new class of micro-machined AE sensors or sensor arrays through strategic design of capacitive and piezoelectric MEMS sensors, which will focus on optimizing the following performance aspects: Creating geometric designs to manipulate the sensor resonant frequency and to optimize Q factor under atmospheric pressure and ambient environment. Developing a strategic selection of materials according to its acoustic impedance as insulator, structure and backing material. Developing strategies to improve the signal to noise ratio SNR with and without integrated amplification/signal processing. Performing a comparison between MEMS and commercial piezoelectric sensors.
APA, Harvard, Vancouver, ISO, and other styles
4

Fabrice, Martin. "Layer guided shear acoustic wave sensors." Thesis, Nottingham Trent University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kaplan, Emrah. "Surface acoustic wave enhanced electroanalytical sensors." Thesis, University of Glasgow, 2015. http://theses.gla.ac.uk/6557/.

Full text
Abstract:
In the last decade, miniaturised “lab-on-a-chip” (LOC) devices have attracted significant interest in academia and industry. LOC sensors for electrochemical analysis now commonly reach picomolar in sensitivities, using only microliter-sized samples. One of the major drawbacks of this platform is the diffusion layer that appears as a limiting factor for the sensitivity level. In this thesis, a new technique was developed to enhance the sensitivity of electroanalytical sensors by increasing the mass transfer in the medium. The final device design was to be used for early detection of cancer diseases which causes bleeding in the digestive system. The diagnostic device was proposed to give reliable and repeatable results by additional modifications on its design. The sensitivity enhanced-sensor model was achieved by combining the surface acoustic wave (SAW) technology with the electroanalytical sensing platform. The technique was practically tested on a diagnostic device model and a biosensing platform. A novel, substrate (TMB) based label-free Hb sensing method is developed and tested. Moreover, the technique was further developed by changing the sensing process. Instead of forming the sensitive layer on the electrodes it was localised on polystyrene wells by a rapid one-step process. Results showed that the use of acoustic streaming, generated by SAW, increases the current flow and improves the sensitivity of amperometric sensors by a factor of 6 while only requiring microliter scale sample volumes. The heating and streaming induced by the SAW removes the small random contributions made by the natural convection and temperature variation which complicate the measurements. Therefore, the method offers stabilised conditions for more reliable and repeatable measurements. The label-free detection technique proved to be giving relevant data, according to the hemoglobin concentration. It has fewer steps than ELISA and has only one antibody. Therefore, it is quick and the cross-reactivity of the second antibody is eliminated from the system. The additional modifications made on the technique decreased the time to prepare the sensing platform because the passivation steps (i.e., pegylation), prior to structuring a sensitive layer were ignored. This avoidance also increased the reliability and repeatability of the measurements.
APA, Harvard, Vancouver, ISO, and other styles
6

Fuller, Ryan Michael. "Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1355361066.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

O'Neill, Sean Francis. "Optical methods of acoustic detection." Thesis, University of Kent, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Messing, David P. (David Patrick) 1979. "Noise suppression with non-air-acoustic sensors." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/87444.

Full text
Abstract:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
Includes bibliographical references (leaves [74]-[75]).
by David P. Messing.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
9

Atherton, S. "Semen quality detection using acoustic wave sensors." Thesis, Nottingham Trent University, 2011. http://irep.ntu.ac.uk/id/eprint/233/.

Full text
Abstract:
Artificial insemination (AI) is a widely used part of the modern agricultural industry, with the number of animals inseminated globally being measured in the millions per anum. Crucial to the success of AI is that the sperm sample used is of a high Quality. Two factors which determine the quality of the sample are the number of sperm present and their motility. There are numerous methods used to analyse the quality of a sperm sample, but these are generally laboratory based, expensive and in need of a skilled operator to perform the analysis. It would, therefore be useful to have a simple and inexpensive system which could be used outside the laboratory, immediately prior to the insemination of the animal. Presented in this thesis is work developing a time of flight (ToF) technique which makes use of a quartz crystal microbalance (QCM), operating at 5 MHz, as the sensing element. Data is shown developing a device where a 50 μl sample of boar sperm is added to a liquid filled swim channel, which the sperm are allowed to self-propel down and attach to the surface of a QCM at the end. The attachment of the sperm to the surface causes a measurable frequency decrease in the QCM, aproximately 50 Hz. An average effective mass measurement was made using a QCM and gave a value of 8 ± 5 pg per sperm, which was used in conjunction with the frequency change to determine the number rate of sperm reaching the QCM. Additional data is presented to investigate the effect of environmental temperature on the ToF of the sperm, showing a decrease in ToF between 23 0C to 37 0C. The system was also used to investigate increasing the swim speed of the sperm by chemical means. A range of 20 μmol to 100 μmol of progesterone was added to the swim medium and the ToF was shown to decrease as a result. To further develop the system, large commercial electronics were replaced by smaller circuits built in-house. An oscillator circuit based on a Pierce oscillator was used to drive the QCM and a frequency counter circuit making use of a universal frequency to digital converter (UFDC-1) was used to measure the frequency of the QCM. ToF experiments were performed which showed these pieces of equipment to be effective for performing the analysis of sperm samples. The swim cell itself was also refined, resulting in a compact, modular design. Work was performed developing layer-guided, single-port acoustic resonators to replace the QCM as the sensing element in the sperm analysis device. A maximum mass sensitivity of 1110 Hzμg-1cm-2 was found for devices on a LiTaO3 substrate with a 6 μm guiding layer. While viscosity-density sensing experiments found a maximum sensitivity of 488 KHz Pa-1/2 kg1/2 for a 4 μm guiding layer.
APA, Harvard, Vancouver, ISO, and other styles
10

Neelisetti, Raghu Kisore Lim Alvin S. "Improving reliability of wireless sensor networks for target tracking using wireless acoustic sensors." Auburn, Ala., 2009. http://hdl.handle.net/10415/1931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sielmann, Christoph. "Design and performance of all-polymer acoustic sensors." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43109.

Full text
Abstract:
All-polymer flexural plate wave (FPW) sensors based on piezoelectric polyvinylidene fluoride (PVDF) thin-film with interdigital transducer (IDT) electrodes composed of poly(3,4-ethylenedioxythiophene) poly-(styrenesulfonate) (PEDOT:PSS) are studied, optimized, and assessed for their potential in various sensing applications. PVDF offers unique opportunities as a substrate material due to its low stiffness, low cost, low density, and ease of preparation compared with many other piezoelectric materials commonly used in acoustic sensing applications. Substrates are prepared using a variety of material thicknesses of PVDF through a stretching and poling process, followed by conductive IDT patterning by inkjet printing using a PEDOT:PSS-based ink. Sensor behaviour is studied using electrical and optical measurement techniques. Material and gas loading tests are performed to demonstrate gas sensing and polymer characterization applications. The devices demonstrate good adherence to analytical and FEA models, and although the high attenuation and low coupling coefficients of the substrate material reduce signal to noise ratio and quality factor, vapour sensing and polymer/absorbent material characterization applications are realized experimentally. Other factors such as environmental influences are also considered, demonstrating a very high sensitivity to temperature and humidity changes. The sensors also demonstrate high sensitivity to variations in substrate and sensing layer stiffness, reducing their effective mass sensitivity, but also increasing their potential for simultaneous mass and stiffness measurements. Parameter sensitivity studies are generated to better optimize the design and improve performance of the sensor for specific applications, suggesting benefits from thinner substrates, lower in-plane stress, and more IDT fingers.
APA, Harvard, Vancouver, ISO, and other styles
12

Weckman, Nicole Elizabeth. "Microfabricated acoustic sensors for the detection of biomolecules." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/274899.

Full text
Abstract:
MEMS (Microelectromechanical Systems) acoustic sensors are a promising platform for Point-of-Care biosensing. In particular, piezoelectrically driven acoustic sensors can provide fast results with high sensitivity, can be miniaturized and mass produced, and have the potential to be fully integrated with sample handling and electronics in handheld devices. Furthermore, they can be designed as multiplexed arrays to detect multiple biomarkers of interest in parallel. In order to develop a microfabricated biosensing platform, a specific and high affinity biodetection platform must be optimized, and the microfabricated sensors must be designed to have high sensitivity and maintain good performance in a liquid environment. A biomolecular sensing system that uses high affinity peptide aptamers and a passivation layer has been optimized for the detection of proteins of interest using the quartz crystal microbalance with dissipation monitoring (QCM-D). The resulting system is highly specific to target proteins, differentiating between target IgG molecules and other closely related IgG subclasses, even in complex environments such as serum. Piezoelectrically actuated MEMS resonators are designed to operate in flexural microplate modes, with several modes shown to be ideally suited for fluid based biosensing due to improved performance in the liquid environment. The increase in quality factor of these MEMS microplate devices in liquid, as compared to air, is further investigated through the analytical and finite element modeling of MEMS fluid damping mechanisms, with a focus on acoustic radiation losses for circular microplate devices. It is found that the impedance mismatch at the air-water interface of a droplet is a key contributor to reduced acoustic radiation losses and thus improved device performance in water. Microplate acoustic sensors operating in flexural plate wave and microplate flexural modes are then integrated with a fluidic cell to facilitate protein sensing from fluid samples. Flexural plate wave devices are used to measure protein mass adsorbed to the sensor surface and initial results toward microplate flexural mode protein sensing are presented. Finally, challenges and areas of future research are discussed to outline the path towards finalization of a sensing platform taking advantage of the combination of the sensitive MEMS acoustic sensor capable of operating in a liquid environment and the specific and high affinity biomolecular detection system. Together, these form the potential basis of a novel Point-of-Care platform for simple and rapid monitoring of protein levels in complex samples.
APA, Harvard, Vancouver, ISO, and other styles
13

Hu, Ruifen. "Responsive polymer-coated magnetic acoustic resonator sensors (MARS)." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Friedlander, Jeffrey B. "Wireless Strain Measurement with Surface Acoustic Wave Sensors." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1306874020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Johansson, Malin. "Synchronization of Acoustic Sensors in a Wireless Network." Thesis, Linköpings universitet, Datorteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157765.

Full text
Abstract:
Geographically distributed networks of acoustic sensors can be used to identify and localize the origin of acoustic phenomena. One area of use is localization of snipers by detecting the bullet's shock wave and the muzzle blast. At FOI Linköping, this system is planned to be adapted from a wire bounded sensor network into a wireless sensor network (WSN). When changing from wire bounded communication to wireless, the issue of synchronization becomes present. Synchronization can be achieved in multiple ways with different benefits depending of the method of choice. This thesis studies the synchronization method of using the highly accurate clock in Global Navigation Satellite System (GNSS) modules. This synchronization method is developed into an independent time stamping device that can be connected to each sensor in the WSN. This ensure that all sensors are synchronized to Coordinated Universal Time (UTC). The thesis starts with a pre-study where different solutions are investigated and evaluated. After the pre-study, a development stage is begun where the best solution is developed into a model to be easily implemented in the future. The result is a model existing of a microcontroller, a timing module and an ADC with built in filter and amplification.
APA, Harvard, Vancouver, ISO, and other styles
16

Liu, Ting-Hung. "Testing and Packaging for MEMS Acoustic Emission Sensors." Scholar Commons, 2018. https://scholarcommons.usf.edu/etd/7692.

Full text
Abstract:
The goal of this research is to improve the structure and dimension of the MEMS acoustic emission sensor. Acoustic emission sensor (AE sensor) based on the piezoelectric transducer is a well-developed technology in non-destructive testing that is widely used to determine permanent damage such as cracks and corrosions in buildings and structures. The AE sensor can be used to monitor cracks in structures and to check leakage in pressurized systems. The location of cracks in a structure or system leakage causes a high-frequency surface vibration while releasing ultrasonic energy. The frequency of this energy is typically between 30 kHz to 1MHz. The AE sensor can detect this high frequency transient acoustic wave. By using this AE sensor, the structure and pressurized system can be monitored to generate an evaluation report in order to facilitate maintenance and structure repair. Currently, the commercial AE sensor is bulky because it is made of a piezoelectric transducer. It also needs a lot of wires to connect with the pre-amplifier and signal conditioning systems. Because of the cost, brittleness and the volume of the commercial AE sensor, new affordable AE sensor technology is desired to replace the commercial AE sensor. The new AE sensor should be economical, small, and lightweight. The performance of the output signal should be comparable with the commercial AE sensor in terms of signal strength and signal to noise ratio. The MEMS AE sensors provide the potential solution to this problem. The MEMS AE sensors can overcome the problems of the commercial AE sensor. The MEMS AE sensor combines the pre- amplifier on the chip in a single package. Through the MEMS technology, the AE sensor can be manufactured in mass quantity and high quality. This study focuses on simulating and measuring the performance of the MEMS acoustic emission sensors. Through simulation, the capacitance value is influenced by the gap between the suspended membrane (top perforated metal plate), metal ground, and also influenced by the effective area of the perforated top layer. The perforation is introduced to reduce the squeeze film damping effect. Through measurement verification, the MEMS AE sensors have exhibited comparable performance before and after inclusion of the 3D printed package that serves as the housing for the completed sensor assembly. The C-V measurement is the key method to extract the capacitance value, which is the key parameter to determine the signal strength and signal to noise ratio for capacitive MEMS acoustic emission sensors. The damping coefficient is also the key factor to receive the time domain measurement data in a fashion that resemble the bulky commercial piezoelectric AE transducers.
APA, Harvard, Vancouver, ISO, and other styles
17

Ghosh, Sourav Kumar. "Anharmonic acoustic technique for detection of surface-bound particles." Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/243858.

Full text
Abstract:
Receptor-based biological detection techniques often suffer from the problem of non-specific interactions. This is largely due to the presence of weak electrostatic and Van der Waals forces between the receptor and the non-target substances in the analyte that are not easily dissociated in practice. Most existing detection techniques are unable to probe the interaction between the bound entity and the surface and differentiate between specific and non-specific interactions in terms of bond strength or activation energy. The resulting false positive responses lead to various issues, such as misdiagnosis and mistreatment in clinical diagnostics and false alarms in biosecurity. The problem is even more significant with direct direction techniques, such as the resonant frequency shift based detection using quartz crystal microbalance (QCM) or micro-cantilevers, which involve minimal sample processing and washing steps. The work presented in this thesis investigates, through modeling and experiments, the mechanical interactions of a resonator with microparticles attached via biomolecular linkers and analyses the resulting nonlinear acoustic modulation of the resonator from the transduced electrical signal. Physisorbed and specific interactions both in air and liquid medium are studied using thickness shear mode quartz crystal resonators and streptavidin-coated polystyrene microbeads (SCPM) of various sizes. It is found that the modification in the transduced electrical signal measured at the third harmonic (3f), or three times the driving frequency f, is significant in presence of the attached particles and approximately proportional to the number of particles. A detection limit of approximately 2 SCPM of 5.6 µm diameter in air and 6700 SCPM of 0.39 µm diameter in liquid is demonstrated, which corresponds to a mass detection limit of ~200 pg. Most interestingly, the deviation in the magnitude of the 3f signal as a function of the resonator oscillation amplitude is found to hold a distinct relationship with the type of particle-surface interaction. This provides a basis for selectivity in detection over and above the efficacy of the receptor. The function is also found to correlate well with the event of SCPM diffusion on the surface. This detection technique, based on the measurement of deviation in magnitude of the transduced electrical signal measured at a higher odd harmonic of the drive frequency due to the presence of surface-bound particles on a resonator, is termed as the anharmonic detection technique (ADT). A feasibility study with Bacillus subtilis spores in phosphate buffer saline (PBS) is carried out successfully where the modeling and experimental results with SCPM are successfully reproduced. A detection limit of 430 spores is demonstrated, which corresponds to a mass detection limit of ~650 pg. Capability for differentiation of the specifically-captured spores from unwashed physisorbed SCPM of similar dimensions is demonstrated using the shape of the ADT signal. These results indicate that the spore immobilization step may be directly followed by the detection step, which are 9 mins and 2 mins respectively in these experiments. ADT thus potentially enables a rapid, sensitive, reliable and direct detection without the need for any sample processing. Moreover, being an entirely electronic technique, ADT suitably lends itself to multiplexing, large scale fabrication and implementation on a miniaturized low-cost point-of-care detection platform that is of immense need in clinical diagnostics, food and environmental monitoring and biosecurity. Furthermore, fitting the experimental results with modeling estimates enables ADT to determine the force-extension characteristics of the binding biomolecular linker. The force-extension characteristics and the estimated unbinding force for a streptavidin-biotin complex estimated using ADT agrees well with those computed using molecular dynamics (MD) simulation at similar loading rates. Thus ADT contributes a unique force-spectroscopic method, which unlike conventional techniques such as the atomic force microscopy (AFM) provides statistically averaged data for multiple biomolecules in a relatively quicker and simpler experimental format. A method for determination of activation energy of the interaction is also proposed using ADT. This potentially enables a method for rapid and large scale biomolecular screening and studying of interaction networks, which have important applications in drug discovery and individualized therapy.
APA, Harvard, Vancouver, ISO, and other styles
18

Srinivasan, krishnan. "Nanomaterial sensing layer based surface acoustic wave hydrogen sensors." [Tampa, Fla.] : University of South Florida, 2005. http://purl.fcla.edu/fcla/etd/SFE0001325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pickwell, A. J. "Design and development of micro-electromechanical acoustic emission sensors." Thesis, Cranfield University, 2012. http://dspace.lib.cranfield.ac.uk/handle/1826/7343.

Full text
Abstract:
Non-Destructive Testing (NDT) is a vital technique in modern engi- neering, enabling the monitoring of the structural health of a com- ponent and therefore enabling the prediction of component failure. Once the structural health of a component is known, timely main- tenance can be carried out to prevent component failure which may have resulted in costly downtime or injury. One NDT technique which has been of increasing interest over recent years is Acoustic Emission (AE) monitoring. AE monitoring technology has been successfully combined with preventative maintenance, saving millions of pounds worldwide.
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Nan. "Novel chemical sensors based on acoustic gratings in hydrogels." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708220.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Srinivasan, Krishnan. "Nanomaterial Sensing Layer Based Surface Acoustic Wave Hydrogen Sensors." Scholar Commons, 2005. https://scholarcommons.usf.edu/etd/873.

Full text
Abstract:
This thesis addresses the design and use of suitable nanomaterials and surface acoustic wave sensors for hydrogen detection and sensing. Nanotechnology is aimed at design and synthesis of novel nanoscale materials. These materials could find uses in the design of optical, biomedical and electronic devices. One such example of a nanoscale biological system is a virus. Viruses have been given a lot of attention for assembly of nanoelectronic materials. The tobacco mosaic virus (TMV) used in this research represents an inexpensive and renewable biotemplate that can be easily functionalized for the synthesis of nanomaterials. Strains of this virus have been previously coated with metals, silica or semiconductor materials with potential applications in the assembly of nanostructures and nanoelectronic circuits. Carbon nanotubes are another set of well-characterized nanoscale materials which have been widely investigated to put their physical and chemical properties to use in design of transistors, gas sensors, hydrogen storage cells, etc. Palladium is a well-known material for detection of hydrogen. The processes of absorption and desorption are known to be reversible and are known to produce changes in density, elastic properties and conductivity of the film. Despite these advantages, palladium films are known to suffer from problems of peeling and cracking in hydrogen sensor applications. They are also required to be cycled for a few times with hydrogen before they give reproducible responses. The work presented in this thesis, takes concepts from previous hydrogen sensing techniques and applies them to two nanoengineered particles (Pd coated TMV and Pd coated SWNTs) as SAW resonator sensing materials. Possible sensing enhancements to be gained by using these nanomaterial sensing layers are investigated. SAW resonators were coated with these two different nano-structured sensing layers (Pd-TMV and Pd-SWNT) which produced differently useful hydrogen sensor responses. The Pd-TMV coated resonator responded to hydrogen with nearly constant increases in frequency as compared to the Pd-SWNT coated device, which responded with concentration-dependent decreases in frequency of greater magnitude upon hydrogen exposure. The former behavior is more associated with acousto-electric phenomena in SAW devices and the later with mass loading. The 99% response times were 30-40 seconds for the Pd-TMV sensing layer and approximately 150 seconds for the Pd-SWNT layer. Both the films showed high robustness and reversibility at room temperature. When the Pd film was exposed to hydrogen it was observed that it produced decreases in frequency to hydrogen challenges, conforming to mass loading effect. It was also observed that the Pd film started degrading with repeated exposure to hydrogen, with shifts after each exposure going smaller and smaller.
APA, Harvard, Vancouver, ISO, and other styles
22

Fisher, Brian. "Surface Acoustic Wave (SAW) Cryogenic Liquid and Hydrogen Gas Sensors." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5208.

Full text
Abstract:
This research was born from NASA Kennedy Space Center's (KSC) need for passive, wireless and individually distinguishable cryogenic liquid and H2 gas sensors in various facilities. The risks of catastrophic accidents, associated with the storage and use of cryogenic fluids may be minimized by constant monitoring. Accidents involving the release of H2 gas or LH2 were responsible for 81% of total accidents in the aerospace industry. These problems may be mitigated by the implementation of a passive (or low-power), wireless, gas detection system, which continuously monitors multiple nodes and reports temperature and H2 gas presence. Passive, wireless, cryogenic liquid level and hydrogen (H2) gas sensors were developed on a platform technology called Orthogonal Frequency Coded (OFC) surface acoustic wave (SAW) radio frequency identification (RFID) tag sensors. The OFC-SAW was shown to be mechanically resistant to failure due to thermal shock from repeated cycles between room to liquid nitrogen temperature. This suggests that these tags are ideal for integration into cryogenic Dewar environments for the purposes of cryogenic liquid level detection. Three OFC-SAW H2 gas sensors were simultaneously wirelessly interrogated while being exposed to various flow rates of H2 gas. Rapid H2 detection was achieved for flow rates as low as 1ccm of a 2% H2, 98% N2 mixture. A novel method and theory to extract the electrical and mechanical properties of a semiconducting and high conductivity thin-film using SAW amplitude and velocity dispersion measurements were also developed. The SAW device was shown to be a useful tool in analysis and characterization of ultrathin and thin films and physical phenomena such as gas adsorption and desorption mechanisms.?
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
APA, Harvard, Vancouver, ISO, and other styles
23

Lewis, Matthew Robert S. M. Massachusetts Institute of Technology. "Evaluation of vector sensors for adaptive equalization in underwater acoustic communication." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93793.

Full text
Abstract:
Thesis: S.M., Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Department of Mechanical Engineering; and the Woods Hole Oceanographic Institution), 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 123-125).
Underwater acoustic communication is an extremely complex field that faces many challenges due to the time-varying nature of the ocean environment. Vector sensors are a proven technology that when utilizing their directional sensing capabilities allows us to minimize the effect of interfering noise sources. A traditional pressure sensor array has been the standard for years but suffers at degraded signal to noise ratios (SNR) and requires maneuvers or a lengthly array aperture to direction find. This thesis explores the effect of utilizing a vector sensor array to steer to the direction of signal arrival and the effect it has on equalization of the signal at degraded SNRs. It was demonstrated that utilizing a single vector sensor we were able steer to the direction of arrival and improve the ability of an equalizer to determine the transmitted signal. This improvement was most prominent when the SNR was degraded to levels of 0 and 10 dB where the performance of the vector sensor outperformed that of the pressure sensor in nearly 100% of cases. Finally, this performance improvement occurred with a savings in computational expense.
by Matthew Robert Lewis.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
24

He, Jiaji. "Acoustic Waveguides and Sensors for High Temperature and Gamma Radiation Environment." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/101870.

Full text
Abstract:
Sensing in harsh environments is always in great need. Although many sensors and sensing systems are reported, such as optical fiber sensors and acoustic sensors, they all have drawbacks. In this dissertation, fused quartz and sapphire acoustic waveguides and sensors are developed for high temperature and heavy gamma radiation. The periodic structure, acoustic fiber Bragg grating (AFBG), is the core sensor structure in this dissertation. To better analyze the propagation of acoustic waves, the acoustic coupled more analysis is proposed. It could solve for the reflection spectrum of the AFBG with at most 2.1% error. For the waveguide, the fused quartz "suspended core" waveguide is designed. It achieved strong acoustic energy confinement so surface perturbations no longer affected the wave propagation. Single crystal sapphire fiber features low acoustic loss, and survivability under high temperature. It is also chosen as an acoustic waveguide. AFBGs are fabricated in both waveguides. The fused quartz suspended core AFBG is shown to sense temperature up to 1000 C and to have stable reading at 700 C for 14 days. The sapphire AFBG as a temperature sensor works up to 1500 C and also provides continuous stable reading at 1100 C for 12 days. Both waveguides with AFBGs are then tested under long-term gamma radiation. Despite some fluctuations from radiation-related causes, the readings of both sensors generally remain stable. Given the experimental observations, the fused quartz AFBG waveguide and the sapphire AFBG waveguide are shown to work well in high temperature and gamma radiations.
Doctor of Philosophy
Sensing in harsh environments, like high temperature, high pressure, and corrosive environment, is always in great need. Efficient and safe operation of instruments like nuclear reactors could be better secured. Although many sensors and sensing systems are reported, such as optical fiber sensors and acoustic sensors, they all have drawbacks so new designs are constantly in need.newline In this dissertation, silica (a glass commonly acquired by melting sand) and sapphire (used in iphone screens due to its transparency and hardness) acoustic waveguides and sensors are developed. A periodic structure known as acoustic fiber Bragg grating (AFBG) is the core sensor structure in this dissertation. A calculation method is proposed first. Acoustic wave needs a waveguide to propagate somewhere further, and a new waveguide structure is made to keep the acoustic energy within the very center of the waveguide, so any change on the outer surface does not affect the wave inside. Also, sapphire has good acoustic property and is used. The AFBGs are fabricated in both waveguides. These sensing waveguides are shown to work at >1000 C temperature and provide stable reading for more than 10 days. Long term exposure to gamma radiation for weeks or months resulted in stable performances. Therefore, it is concluded that silica and sapphire waveguide sensors are successfully developed for high temperature and nuclear radiation applications.
APA, Harvard, Vancouver, ISO, and other styles
25

Sabkha, Aimen. "Implantable Wireless Surface Acoustic Wave Sensors for Blood Pressure Measurement." Thesis, Oxford Brookes University, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.491086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Yuan, Yun Xiang. "Passive localization of an underwater acoustic source using directional sensors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1995. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23926.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Deng, Zhiping. "Acoustic wave sensors for aroma components using conducting polymer films." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0017/NQ27632.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Wenger, Matthew Paul. "Ferroelectric ceramic/polymer composite sensors for insitu acoustic emission detection." Thesis, Bangor University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Marin-Franch, Pablo. "Evaluation of PTCa/PEKK composite sensors for acoustic emission detection." Thesis, Bangor University, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.247954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Turton, Andrew Charles. "Microfabricated liquid density sensors using polyimide-guided surface acoustic waves." Thesis, Durham University, 2006. http://etheses.dur.ac.uk/2605/.

Full text
Abstract:
The simultaneous measurements of liquid density and refractive index on the same liquid sample are desirable. This thesis investigates the development of a micro- fabricated liquid density sensor that can be integrated into existing refractometers. A discussion of density sensing techniques and review of suitable sensors is given, leading to the choice of a Love mode surface acoustic wave (SAW) device. Love modes are formed by focussing the acoustic energy in a thin waveguide layer on a surface acoustic wave device. The horizontal-shear wave motion reduces attenuation in liquid environments, and the high surface energy density theoretically gives the highest sensitivity of all SAW devices. This study follows the development of a Love mode liquid density sensor using a polyimide waveguide layer. The novel use of polyimide offers simple and cheap fabrication, and theoretically gives a very high sensitivity to surface loading due to its low acoustic velocity. Love mode devices were fabricated with different polyimide waveguide thicknesses. The optimum thickness for a compromise between low loss and high sensitivity was 0.90 - 1.0 μm. These devices exhibited a linear shift in frequency with the liquid density-viscosity product for low viscosities. The response was smaller for high viscosities due to non-Newtonian liquid behaviour. Dual delay-line structures with a smooth 'reference' and corrugated 'sense' delay- lines were used to trap the liquid and separate the density from the density-viscosity product. A sensitivity up to 0.13 μgcm(^-3)Hz(^-1) was obtained. This is the highest density sensitivity obtained from an acoustic mode sensor. Experimental results show a zero temperature coefficient of frequency is possible using polyimide waveguides. These are the first Love mode devices that demonstrate temperature independence, highlighting the importance of polyimide as a new waveguide material.
APA, Harvard, Vancouver, ISO, and other styles
31

Pappu, Raja. "Acoustic emission detection using optical fibre sensors for aerospace applications." Thesis, Aston University, 2012. http://publications.aston.ac.uk/19136/.

Full text
Abstract:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
APA, Harvard, Vancouver, ISO, and other styles
32

Psaras, Skevos T. "Comparison of linear and nonlinear processing with acoustic vector sensors." Thesis, Monterey, Calif. : Naval Postgraduate School, 2008. http://edocs.nps.edu/npspubs/scholarly/theses/2008/Sept/08Sept%5FPsaras.pdf.

Full text
Abstract:
Thesis (M.S. in Applied Physics)--Naval Postgraduate School, September 2008.
Thesis Advisor(s): Smith, Kevin B. ; DiBiase, Joseph. "September 2008." Description based on title screen as viewed on March 9, 2009. Includes bibliographical references (p. 75-76). Also available in print.
APA, Harvard, Vancouver, ISO, and other styles
33

Westafer, Ryan S. "Investigation of phononic crystals for dispersive surface acoustic wave ozone sensors." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/41165.

Full text
Abstract:
The object of this research was to investigate dispersion in surface phononic crystals (PnCs) for application to a newly developed passive surface acoustic wave (SAW) ozone sensor. Frequency band gaps and slow sound already have been reported for PnC lattice structures. Such engineered structures are often advertised to reduce loss, increase sensitivity, and reduce device size. However, these advances have not yet been realized in the context of surface acoustic wave sensors. In early work, we computed SAW dispersion in patterned surface structures and we confirmed that our finite element computations of SAW dispersion in thin films and in one dimensional surface PnC structures agree with experimental results obtained by laser probe techniques. We analyzed the computations to guide device design in terms of sensitivity and joint spectral operating point. Next we conducted simulations and experiments to determine sensitivity and limit of detection for more conventional dispersive SAW devices and PnC sensors. Finally, we conducted extensive ozone detection trials on passive reflection mode SAW devices, using distinct components of the time dispersed response to compensate for the effect of temperature. The experimental work revealed that the devices may be used for dosimetry applications over periods of several days.
APA, Harvard, Vancouver, ISO, and other styles
34

Thiele, Jeremy Allan. "High Temperature LGX Acoustic Wave Devices and Application for Gas Sensors." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/ThieleJA2005.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Bowie, Jeanne M. "Development of a weigh-in-motion system using acoustic emission sensors." Doctoral diss., University of Central Florida, 2011. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4851.

Full text
Abstract:
Statistical models for weight using the laboratory data and using the field data were developed. Dimensional analysis variables as well as other relevant measurable parameters were used in the development of the statistical models. The model created for the April 2009 dataset was validated, with only 27 lbs average error in the weight calculation as compared with the weight measurement made with the weigh station weigh-in-motion scale. The maximum percent error for the weight calculation was 204%, with about 65% of the data falling within 30% error. Additional research will be needed to develop an acoustic emission weigh-in-motion system with adequate accuracy for a commercial product. Nevertheless, this dissertation presents a valuable contribution to the effort of developing a low-cost acoustic emission weigh-in-motion scale. Future research needs that were identified as part of this dissertation include: bullet] Examination of the effects of pavement type (flexible or rigid), vehicle speeds greater than 50 mph, and temperature bullet] Determination of the best acoustic emission sensor for this system bullet] Exploration of the best method to separate the data from axles which pass over the equipment close together in time (such as tandem axles) bullet] Exploration of the effect of repeated measures on improving the accuracy of the system.; The acoustic emission response in the metal test strip to the motorcycle tire rolling over it was detected by the acoustic emission sensors and analyzed by the computer. Initial examinations of the data showed a correlation between the force of the tire against the cylinder and the energy and count of the acoustic emissions. Subsequent field experiments were performed at a weigh station on I-95 in Flagler County, Florida. The proposed weigh-in-motion system (the metal test bar with attached acoustic emission sensors) was installed just downstream of the existing weigh-in-motion scale at the weigh station. Commercial vehicles were weighed on the weigh station weigh-in-motion scale and acoustic emission data was collected by the experimental system. Test data was collected over several hours on two different days, one in July 2008 and the other in April 2009. Initial examination of the data did not show direct correlation between any acoustic emission parameter and vehicle weight. As a result, a more sophisticated model was developed. Dimensional analysis was used to examine possible relationships between the acoustic emission parameters and the vehicle weight. In dimensional analysis, a dimensionally correct equation is formed using measurable parameters of a system. The dimensionally correct equation can then be tested using experimental data. Dimensional analysis revealed the possible relationships between the acoustic emission parameters and the vehicle weight: w=f (gE/v??, YA, rE/Dsquare root of A], cE/square root of A], csubscript p]E/square root of A], E??/square root of A]multiplication dot]AbsE, aE/square root of A]) The defintions of these variables can be found in Appendix A.; This dissertation proposes a system for weighing commercial vehicles in motion using acoustic emission sensors attached to a metal bar placed across the roadway. The signal from the sensors is analyzed by a computer and the vehicle weight is determined by a statistical model which correlates the acoustic emission parameters to the vehicle weight. Such a system would be portable and low-cost, allowing for the measurement of vehicle weights in much the same way commercial tube and radar counters routinely collect vehicle speed and count. The system could be used to collect vehicle speed and count data as well as weight information. Acoustic emissions are naturally occurring elastic waves produced by the rapid release of energy within a material. They are caused by deformation or fracturing of a solid due to thermal or mechanical stress. Acoustic emission sensors have been developed to detect these waves and computer software and hardware have been developed to analyze and provide information about the waveforms. Acoustic emission testing is a common form of nondestructive testing and is used for pressure vessel testing, leak detection, machinery monitoring, structural integrity monitoring, and weld monitoring, among other things (Miller, 1987). For this dissertation, acoustic emission parameters were correlated to the load placed on the metal test bar to determine the feasibility of using a metal test bar to measure the weight of a vehicle in motion. Several experiments were done. First, the concept was tested in a laboratory setting using an experimental apparatus. A concrete cylinder was mounted on a frame and rotated using a motor. The metal test bar was applied directly to the surface of the cylinder and acoustic emission sensors were attached to each end of the bar. As the cylinder rotated, a motorcycle tire was pushed up against the cylinder using a scissor jack to simulate different loads.
ID: 029809680; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Thesis (Ph.D.)--University of Central Florida, 2011.; Includes bibliographical references (p. 130-133).
Ph.D.
Doctorate
Civil, Environmental and Construction Engineering
Engineering and Computer Science
APA, Harvard, Vancouver, ISO, and other styles
36

Hu, Di. "Fully Distributed Multi-parameter Sensors Based on Acoustic Fiber Bragg Gratings." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/85112.

Full text
Abstract:
A fully distributed multi-parameter acoustic sensing technology is proposed. Current fully distributed sensing techniques are exclusively based on intrinsic scatterings in optical fibers. They demonstrate long sensing span, but their limited applicable parameters (temperature and strain) and costly interrogation systems have prevented their widespread applications. A novel concept of acoustic fiber Bragg grating (AFBG) is conceived with inspiration from optical fiber Bragg grating (FBG). This AFBG structure exploits periodic spatial perturbations on an elongated waveguide to sense variations in the spectrum of an acoustic wave. It achieves ten times higher sensitivity than the traditional time-of-flight measurement system using acoustic pulses. A fast interrogation method is developed to avoid frequency scan, reducing both the system response time (from 3min to <1ms) and total cost. Since acoustic wave propagates with low attenuation along varieties of solid materials (metal, silica, sapphire, etc.), AFBG can be fabricated on a number of waveguides and to sense multiple parameters. Sub-millimeter metal wire and optical fiber based AFBGs have been demonstrated experimentally for effective temperature (25~700 degC) and corrosion sensing. A hollow borosilicate tube is demonstrated for simultaneous temperature (25~200 degC) and pressure (15~75 psi) sensing using two types of acoustic modes. Furthermore, a continuous 0.6 m AFBG is employed for distributed temperature sensing up to 500 degC and to accurately locate the 0.18 m long heated section. Sensing parameters, sensitivity and range of an AFBG can be tuned to fit a specific application by selecting acoustic waveguides with different materials and/or geometries. Therefore, AFBG is a fully distributed sensing technology with tremendous potentiality.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
37

Leonard-Pugh, Eurion. "Acoustic anemometry on the surface of Mars." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:5179c757-3ec9-44a1-97ca-41b46b6d4873.

Full text
Abstract:
There is a need for wind sensors with high accuracy and measurement frequency for deployment on the surface of Mars. The wind data obtained to date have been adversely affected by thermal contamination and calibration issues. Improved data would not only help to constrain and validate theoretical models, but also increase safety and longevity of lander operations. The mechanical and thermal wind sensing techniques used on previous missions, whilst sufficient for basic meteorology, are wholly inadequate for measuring fundamental phenomena such as dust and volatile transport. Two promising technologies, optical and acoustic anemometry, could permit precise and high-frequency measurement of three-dimensional wind speeds on the Martian surface. Ultrasonic acoustic anemometry, which relies on time-of-flight measurements, was ultimately chosen for its lower processing requirements and ability to measure the speed of sound; and therefore temperature. Capacitive transducers were selected for their low impedance and high sensitivity, to maximise signal transmission through the rarefied Martian atmosphere. These transducers, which consist of a metallised polymer film oscillating on top of a contoured metal backplane, were evaluated for their suitability as anemometers on the Martian surface. A theoretical framework was assembled to model transducer performance and determine which factors are the most important in determining received signal amplitude. A pair of transducers were designed and manufactured to allow for testing of a wide range of parameters including thickness of the oscillating membrane and diameter. Tests were carried out on the assembled transducers to investigate the dependence on these parameters, and their behaviour was generally found to fit the assembled theoretical framework well. Transducer performance was highly dependent on roughness depth of the backplanes, as expected. The frequency response of the transducers was dominated by the backplane roughness at atmospheric pressure but by film thickness at low pressures. Cross-correlation of the sent and received signals was confirmed as the most reliable signal detection method at low signal amplitudes. The transducers were tested under simulated Martian conditions (a low-pressure carbon dioxide atmosphere with airborne dust), and found to be capable of accurately and reliably measuring the incident wind speed. The cumulative deposition of airborne dust noticeably reduced received signal amplitude, but further testing is required to determine the effect of significant amounts of dust on transducer performance. The impact of the transducer heads impeding the incident fluid flow was found to be very significant in wind tunnel testing. Preliminary computational models were found to accurately predict these effects, but a more comprehensive modelling campaign and experimental validation would be required to ensure accurate instrument calibration.
APA, Harvard, Vancouver, ISO, and other styles
38

Cosgrave, Joseph Anthony. "Acoustic-optic monitoring of electrical power equipment using chromatic signal processing." Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263845.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Serrano, Diego Emilio. "Integrated inertial measurement units using silicon bulk-acoustic wave gyroscopes." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54283.

Full text
Abstract:
This dissertation discusses the design, simulation and characterization of process-compatible accelerometers and gyroscopes for the implementation of multi-degree-of-freedom (multi-DOF) systems. All components presented herein were designed to operate under the same vacuum-sealed environment to facilitate batch fabrication and wafer-level packaging (WLP), enabling the development of small form-factor single-die inertial measurement units (IMUs). The high-aspect-ratio poly and single-crystal silicon (HARPSS) process flow was used to co-fabricate the devices that compose the system, enabling the implementation ultra-narrow capacitive gaps (< 300 nm) in thick device-layer substrates (40 um). The presented gyroscopes were implemented as high-frequency BAW disk resonators operating in a mode-matched condition. A new technique to reduced dependencies on environmental stimuli such as temperature, vibration and shock was introduced. Novel decoupling springs were utilized to effectively isolate the gyros from their substrate, minimizing the effect that external sources of error have on offset and scale-factor. The substrate-decoupled (SD) BAW gyros were interfaced with a customized IC to achieve supreme random-vibration immunity (0.012 (deg/s)/g) and excellent rejection to shock (0.075 (deg/s)/g). With a scale factor of 800 uV/(deg/s), the complete SD-BAW gyro system attains a large full-scale range (2500 deg/s) with excellent linearity. The measured angle-random walk (ARW) of 0.36 deg/rthr and bias-instability of 10.5 deg/hr are dominated by the thermal and flicker noise of the IC, respectively. Additional measurements using external electronics show bias-instability values as low as 3.5 deg/hr. To implement the final monolithic multi-DOF IMU, accelerometers were carefully designed to operate in the same vacuum environment required for the gyroscopes. Narrow capacitive gaps were used to adjust the accelerometer squeeze-film damping (SFD) levels, preventing an under-damped response. Robust simulation techniques were developed using finite-element analysis (FEA) tools to extract accurate values of SFD, which were then match with measured results. Ultra-small single proof-mass tri-axial accelerometers with Brownian-noise as low as 30 ug/rtHz were interfaced with front-end electronics exhibiting scale-factor values in the order of 5 to 10 mV/g and cross-axis sensitivities of less than 3% before any electronic compensation.
APA, Harvard, Vancouver, ISO, and other styles
40

Wang, Tao. "Optimization and Characterization of Integrated Microfluidic Surface Acoustic Wave Sensors and Transducers." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6153.

Full text
Abstract:
Surface acoustic waves (SAWs) have a large number of applications and the majority of them are in the sensor and actuator fields targeted to satisfy market needs. Recently, researchers have focused on optimizing and improving device functions, sensitivity, power consumption, etc. However, SAW actuators and sensors still cannot replace their conventional counterparts in some mechanical and biomedical areas, such as actuators for liquid pumping under microfluidic channels and sensors for real-time cell culture monitoring. The two objectives of this dissertation are to explore the potential of piezoelectric materials and surface acoustic waves for research on actuators and sensors in the mechanical pump and biosensor areas. Manipulation of liquids in microfluidic channels is important for many mechanical, chemical and biomedical applications. In this dissertation, we first introduced a novel integrated surface acoustic wave based pump for liquid delivery and precise manipulation within a microchannel. The device employed a hydrophobic surface coating (Cytop) in the device design to decrease the friction force and increase the bonding. Contrary to previous surface acoustic wave based pumps which were mostly based on the filling and sucking process, we demonstrated long distance media delivery (up to 8mm) and a high pumping velocity, which increased the device’s application space and mass production potential. Additionally, the device design didn’t need precise layers of water and glass between substrate and channel, which simplified the design significantly. In this study, we conducted extensive parametric studies to quantify the effects of the liquid volume pumped, microchannel size, and input applied power as well as the existence of hydrophobic surface coating on the pumping velocity and pump performance. Our results indicated that the pumping velocity for a constant liquid volume with the same applied input power could be increased by over 130% (2.31 mm/min vs 0.99 mm/min) by employing a hydrophobic surface coating (Cytop) in a thinner microchannel (250 µm vs 500 µm) design. This device could be used in circulation, dosing, metering and drug delivery applications which necessitated small-scale precise liquid control and delivery. This dissertation also introduced a novel SAW-based sensor designed and employed for detecting changes in cell concentration. Before conducting cell concentration experiments, preliminary experiments were conducted on weight concentration differentiation of microfluidic particles based on a polydimethylsiloxane (PDMS) channel and surface acoustic wave resonator design. The results confirmed that our device exerted an ultra-stable status to detect liquid properties by monitoring continuous fluids. An improved design was carried out by depositing a 200 nm ZnO layer on top of the lithium tantalate substrate surface increased the sensitivity and enabled cell concentration detection in a microfluidic system. Comprehensive studies on cell viability were carried out to investigate the effect of shear horizontal (SH) SAWs on both a cancerous (A549 lung adenocarcinoma) and a non-cancerous (RAW264.7 macrophage) cell line. Two pairs of resonators consisting of interdigital transducers (IDTs) and reflecting fingers were used to quantify mass loading by the cells in suspension media as well as within a 3-dimensional cell culture model. In order to predict the characteristics and optimize the design of the SH-SAW biosensor, a 3D COMSOL model was built to simulate the mass loading response of the cell suspensions. These results were compared to experimental data generated by pipetting cell concentrations of 3.125K, 6.25K 12.5K, 25K and 50K cells per 100µL into the PDMS well and measuring to obtain the relative frequency shift from the two oscillatory circuit systems (one of which functioned as a control). Frequency shift measurements were also collected from A549 cells cultured on a 3D nanofiber scaffold produced by electrospinning to evaluate the device’s ability to detect changes in cell density as the cells proliferated in culture over the course of eight days. The device’s ability to detect changes in cell density over time in a 3D model along with its biocompatibility reveal great potential for this device to be incorporated into 3D in vitro cancer research applications.
APA, Harvard, Vancouver, ISO, and other styles
41

Man, Gabriel. "Towards all-polymer surface acoustic wave chemical sensors for air quality monitoring." Thesis, University of British Columbia, 2009. http://hdl.handle.net/2429/17469.

Full text
Abstract:
Volatile organic compounds (VOCs) are a precursor to the formation of ground-level ozone and airborne particulate matter, both of which are hazardous to human health. Currently in Canada, other air pollutants such as ozone and nitrous oxides are measured by an air quality monitoring network in real-time, while VOCs are collected in canisters and sent to a central laboratory for analysis. This is a time-consuming and non real-time method, and due to the spatial variability of air pollution, many points of measurement are needed. A distributed point sensor network could address the resolution and real-time challenges, but would impose an added operating expenditure burden on air quality monitoring agencies. Low-cost, yet sensitive chemical sensors could contribute to lowering operating expenditures of a network’s sensing units over the installed lifetime of the units. The objective of this work was to lay the groundwork for a sensing platform from which low-cost yet sensitive chemical sensors can be developed. The sensing platform is an all-polymer surface acoustic wave (SAW) device, and the materials selected for its fabrication are Polyvinylidene Fluoride (PVDF) for the sensor substrate and Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) for the interdigital transducer electrodes. In this work, an apparatus and a process for preparing piezoelectric PVDF film was developed. PVDF-based resonators were successfully demonstrated. In addition, repeatable processes for inkjet micropatterning highly electrically conductive PEDOT:PSS electrode tracks on PVDF were developed for three inkjet nozzle orifice sizes (20, 30, 40 µm). For tracks micropatterned using the same process, the electrical resistances have a standard deviation of 8.5% of the average. The electrical conductivity of micropatterned tracks is approximately 150 S/cm, or one-sixth of the manufacturer’s claimed bulk film conductivity. Using the 30 µm nozzle, the smallest electrode track width that can be micropatterned repeatably is 75 µm. A track width of 55 µm was achieved using the 20 µm nozzle.
APA, Harvard, Vancouver, ISO, and other styles
42

Fisher, Karl Albert. "Structural and acoustic response of motion sensors mounted on a compliant coating." Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/16637.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Alagirisamy, Pasupathy Sangareddy. "Vibro-Acoustic and Fluid Flow Response Behaviour of Airflow Sensors of Crickets." Thesis, University of Reading, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.533779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Chaudhari, Amol V. "Development of Surface Acoustic Wave Sensors Using Nanostructured Palladium for Hydrogen Detection." Scholar Commons, 2004. https://scholarcommons.usf.edu/etd/989.

Full text
Abstract:
This thesis addresses the development of new gas sensor using surface acoustic wave (SAW) technology. SAW sensors detect the change in mass, modulus, and conductivity of a sensing layer material via absorption or adsorption of an analyte. The advantage of SAW sensor includes low cost, small size, high sensitivity. We investigated the use of nano-crystalline palladium film for sensing hydrogen gas. We also investigated SAW fabrication for radio frequency (RF) range operation where high signal-to-noise ratios can be achieved. A test-bed consisting of a gas dilution system, a temperature-controlled test cell, a network analyzer, and computer-based measurement system was used for evaluating the performance of SAW gas sensors at very low concentrations. Both single and dual delay line SAW devices were fabricated by means of photolithography on a lithium niobate substrate. Tests are carried to determine response speed, resolution, reproducibility, and linear characteristics, over a range of analyte concentrations.
APA, Harvard, Vancouver, ISO, and other styles
45

Fechete, Alexandru Constantin, and e54372@ems rmit edu au. "Layered Surface Acoustic Wave Based Gas Sensors Utilising Nanostructured Indium Oxide Thin Layer." RMIT University. Electrical and Computer Engineering, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091105.141111.

Full text
Abstract:
Planar two-dimensional (2-D) nanostructured indium oxide (InOx) and one-dimensional (1-D) tin oxide (SnO2) semiconductor metal-oxide layers have been utilised for gas sensing applications. Novel layered Surface Acoustic Wave (SAW) based sensors were developed consisting of InOx/SiOxNy/36°YXLiTaO3, InOx/SiNx/SiO2/36°YXLiTaO3 and InOx/SiNx/36°YXLiTaO3 The 1 µm intermediate layers of silicon oxynitride (SiOxNy), silicon nitride (SiNx) and SiO2/SiNx matrix were deposited on lithium tantalate (36°YXLiTaO3) substrates by r.f. magnetron sputtering, electron-beam evaporation and plasma enhanced chemical vapour deposition (PECVD) techniques, respectively. As a gas sensitive layer, a 100 nm thin layer of InOx was deposited on the intermediate layers by r.f. magnetron sputtering. The targeted gases were ozone (O3) and hydrogen (H2). An intermediate layer has multiple functions: protective role for the interdigital transducers' electrodes as well as an isolating effect from InOx sensing layer, thereby improving the sensor performance. The developed SAW sensors' exhibited high response magnitudes with repeatable, reversible and stable responses towards O3 and H2. They are capable of sensing concentrations as low as 20 parts-per-billion for O3 and 600 parts-per-million for H2. Additionally a conductometric type novel sensing structure of SnO2/36°YX LiTaO3 was also developed by depositing a thin layer of SnO2 nanorods by PECVD. The gas sensing performance exhibited repeatable, reversible, stable responses towards NO2 and CO. The surface morphology, crystalline structure and preferred orientation of the deposited layers were investigated by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). A polycrystalline, oxygen deficient non-stoichiometric InOx with grain sizes of 20-40 nm was revealed. The 1-D nanostructures were characterised by Transmission Electron Microscopy (TEM) showing nanorods with needle-like shape , diameters of 10-20 nm a t the top and 30-40 nm at the base as well as a preferential growth orientation of [ ] on the LiTaO3 substrate. The developed sensors are promising for O3, H2 and CO sensing.
APA, Harvard, Vancouver, ISO, and other styles
46

Gray, Michael Dean. "An experimental investigation of the anomalous behavior of underwater acoustic volume displacement sensors." Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/16796.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Onen, Onursal. "Analytical Modeling, Perturbation Analysis and Experimental Characterization of Guided Surface Acoustic Wave Sensors." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4555.

Full text
Abstract:
In this dissertation, guided surface acoustic wave sensors were investigated theoretically and experimentally in detail for immunosensing applications. Shear horizontal polarized guided surface acoustic wave propagation for mass loading sensing applications was modeled using analytical modeling and characterized by perturbation analysis. The model verification was performed experimentally and a surface acoustic wave immunosensor case study was presented. The results of the immunosensing were also investigated using the perturbation analysis. Guided surface acoustic wave propagation problem was investigated in detail for gravimetric (or mass loading) guided wave sensors, more specifically for immunosensors. The analytical model was developed for multilayer systems taking viscoelasticity into account. The closed form algebraic solutions were obtained by applying appropriate boundary conditions. A numerical approach was used to solve dispersion equation. Detailed parametric investigation of dispersion curves was conducted using typical substrate materials and guiding layers. Substrate types of ST-cut quartz, 41° YX lithium Niobate and 36° YX lithium tantalate with guiding layers of silicon dioxide, metals (chromium and gold), and polymers (Parylene-C and SU-8) were investigated. The effects of frequency and degree of viscoelasticity were also studied. The results showed that frequency only has effect on thickness with same shaped dispersion curves. Dispersion curves were found to be unaffected by the degree of viscoelasticity. It was also observed that when there was a large shear velocity difference between substrate and guiding layer, a transition region with a gradual decrease in phase velocity was obtained. However, when shear velocities were close, a smooth transition was observed. Furthermore, it was observed that, large density differences between substrate and guiding layer resulted in sharp and with nearly constant slope transition. Smooth transition was observed for the cases of minimal density differences. Experimental verification of the model was done using multi-layer photoresists. It was shown that with modifications, the model was able to represent the cases studied. Perturbation equations were developed with first order approximations by relating the slope of the dispersion curves with sensitivity. The equations were used to investigate the sensitivity for material selection (substrate, guiding layer, and mass perturbing layer) and degree of viscoelasticity. The investigations showed that the sensitivity was increased by using guiding layers with lower shear velocities and densities. Among the guiding layers investigated, Parylene C showed the highest sensitivity followed by gold and chrome. The perturbation investigations were also extended to viscoelasticity and to protein layers for immunosensing applications. It was observed that, viscous behavior resulted in slightly higher sensitivity; and sensitivity to protein layers was very close to sensitivity for polymers. The optimum case is found to be ST-cut quartz with Parylene-C guiding layer for protein layer sensing. Finally, an immunosensing case study was presented for selective capture of protein B-cell lymphoma 2 (Bcl-2), which is elevated in many cancer types including ovarian cancer. The immunosensor was designed, fabricated, and experimentally characterized. An application-specific surface functionalization scheme with monoclonal antibodies, ODMS, Protein A/G and Pluronic F127 was developed and applied. Characterization was done using the oscillation frequency shift of with sensor used as the feedback element of an oscillator circuit. Detection of Bcl-2 with target sensitivity of 0.5 ng/ml from buffer solutions was presented. A linear relation between frequency shift and Bcl-2 concentration was observed. The selectivity was shown with experiments by introducing another protein, in addition to Bcl-2, to the buffer. It was seen that similar detection performance of Bcl-2 was obtained even with presence of control protein in very high concentrations. The results were also analyzed with perturbation equations.
APA, Harvard, Vancouver, ISO, and other styles
48

Raykar, Vikas Chandrakant. "Position calibration of acoustic sensors and actuators on distributed general purpose computing platforms." College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/39.

Full text
Abstract:
Thesis (M.S.) -- University of Maryland, College Park, 2003.
Thesis research directed by: Dept. of Electrical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
49

Sutherland, Duncan Robert John. "Assessment of mid-depth arrays of single beam acoustic Doppler velocity sensors to characterise tidal energy sites." Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/19559.

Full text
Abstract:
Accurate characterisation of fluid flow at tidal energy sites is critical for cost effective Tidal Energy Converter (TEC) design in terms of efficiency and survivability. The standard instrumentation in tidal site characterisation has been Diverging acoustic-Beam Doppler Profilers (DBDPs) which remotely measure the flow over a range of scales, resolving up to three velocity vectors. However, they are understood to have several drawbacks particularly in terms of characterising turbulent aspects of the flow. This characterisation is generally based upon a small number of key transient metrics, the accuracy of which directly impacts TEC designs. This work presents an optimisation and performance assessment of newly available Single Beam Doppler Profilers (SBDPs) mounted on a commercial-scale tidal turbine at mid-channel depth in a real operating environment. It was hypothesised that SBDPs would have advantages over DBDPs for site characterisation, in terms of reduced random error, reduced uncertainty in turbulence intensities and the ability to quantify the structure of the turbulent flow. The relationship between random error, sensor orientation and flow speed is quantified for both single and diverging beam sensor types. Random error was found to increase with increasing flow velocity as a power law, the slope of which varies for different sensor orientations. Quantification of noise offers a practical method to correct turbulence metrics. To enable the use of multiple acoustic sensors mounted in close proximity, interference was quantified and mitigation techniques examined. Cross-talk between sensors of the same type were generally shown to bias measurements towards zero. In the presence of alternate types of acoustic sensors, interference caused an increase in standard deviation of velocity results. Implementing a timing offset control mechanism was able to mitigate this effect. This work has achieved a greater understanding of the drivers (spatial separation, inclination angle, pulse power) and effects on measurements of interference along with ambient-noise for users of acoustic instruments. Lessons learned of value to the industry, as site characterisation work intensifies ahead of next generation commercial scale devices, are presented. Mid-channel depth mounted SBDPs were found to have advantages over seabed mounted DBDPs in resolving the key turbulent flow metrics. SBDPs were able to resolve integral length-scales of turbulence that show an anisotropic ratio of scales as predicted from theory and in work at similar sites, while the DBDPs results were similar for all directions. Turbulence intensity measurements were found to be similar after noise correction, with the SBDPs more able to accurately capture the turbulence dissipation rate. This evidence suggests that SBDP arrays present a significant improvement over bottom mounted DBDPs in discerning information about the nature of the turbulent flow, and thus future site characterisation work should consider the use of SBDPs alongside bottom mounted DBDPs for this purpose.
APA, Harvard, Vancouver, ISO, and other styles
50

Sayginer, Osman. "Modelling and simulation of novel optoacoustic sensors for monitoring crack growth in pressure vessel steels." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/304021.

Full text
Abstract:
The acoustic emission technique is an effective way to acquire crack information from material bodies at the microscopic level. Monitoring of the acoustic emission events provides a deeper understanding regarding the structural health status of critical constructions such as bridges, railways, pipelines, pressure vessels, etc. Thanks to the acoustic emission monitoring systems, it is possible to avoid catastrophic events and save lives, time, and money. For this reason, efforts to develop new acoustic emission sensor technologies, as well as the use of current acoustic emission sensors in new research fields, will contribute to the limited literature sources. Optical sensing systems provide good alternatives to the existing sensing technologies because of their wide range of detection bandwidths, adaptation to harsh environments, and low sensitivity to electromagnetic interference. For this reason, the first part of this thesis demonstrates an optoacoustic sensing methodology that enables the detection of acoustic emissions by optics. This sensing system consists of thin-film optical filters (TFOF) and an elastic microcavity layer. The sensing mechanism is similar to the Fabry Perot structures and it relies on resonance shifts of the cavity when there is a change in the cavity thickness similar to the Fabry Perot structures. Thus, the design, fabrication, and demonstration steps of a Fabry Perot elastic microcavity have been presented. Throughout the fabrication efforts, a new deposition protocol was developed. This deposition technique has enabled the deposition of TFOF on flexible substrates via the RF-sputtering technique. Thus, a new sensing configuration has been developed using flexible optical components. In the second chapter, an optical sensing methodology based on tunable spectral filters and flexible optical components is introduced. The design, fabrication, realization, and characterization of a proof-of-concept optomechanical sensor have been presented. The design step includes optical, mechanical, and optoacoustic correlation simulations using the Transfer Matrix Method, finite element analysis, and analytical models. Moreover, the fabrication part includes multilayer deposition on silica and flexible substrates using the RF-Sputtering technique and integration of these optical components into a 3D-printed housing together with electronic components. Eventually, the performance evaluation of the optomechanical sensor has been carried out and the experimental results showed that the sensor resonance frequency is around 515 Hz and the sensor is capable of detecting static loadings from 50 Pa to 235 Pa values. In the fourth chapter, seismic vulnerability analysis of a coupled Tank-Piping System has been performed using traditional acoustic emission sensors. Real-time performance evaluation of the pipeline as well as the structural health status of the critical parts were monitored. As a result, deformation levels of each critical part were investigated, and the processing of acoustic emission signals provided a more in-depth view of damage level of the analyzed components. Throughout the thesis, TFOFs are an integral part of this thesis. Therefore, both the design and simulation of TFOFs play a crucial role throughout this research work. The Transfer Matrix Method is used to simulate the optical performance of TFOFs. Moreover, in the final chapter, an automated design framework is presented for the design of TFOFs using a nature-inspired machine learning approach called Genetic algorithm. This design approach enables the design of sophisticated geometric configurations with unique optical capabilities. Therefore, not only the improvement of sensor response but also the new ways in the development of novel optical systems are demonstrated in this final chapter.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography