Academic literature on the topic 'Acoustic modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acoustic modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acoustic modelling"
Rindel, Jens Holger. "Room Acoustic Modelling Techniques: A Comparison of a Scale Model and a Computer Model for a New Opera Theatre." Building Acoustics 18, no. 3-4 (December 2011): 259–80. http://dx.doi.org/10.1260/1351-010x.18.3-4.259.
Full textBazaras, Jonas. "INTERNAL NOISE MODELLING PROBLEMS OF TRANSPORT POWER EQUIPMENT." TRANSPORT 21, no. 1 (March 31, 2006): 19–24. http://dx.doi.org/10.3846/16484142.2006.9638035.
Full textBrind, James, and Graham Pullan. "Modelling Turbine Acoustic Impedance." International Journal of Turbomachinery, Propulsion and Power 6, no. 2 (June 7, 2021): 18. http://dx.doi.org/10.3390/ijtpp6020018.
Full textHovem, Jens M., and Hefeng Dong. "Understanding Ocean Acoustics by Eigenray Analysis." Journal of Marine Science and Engineering 7, no. 4 (April 25, 2019): 118. http://dx.doi.org/10.3390/jmse7040118.
Full textBo, Elena, Louena Shtrepi, David Pelegrín Garcia, Giulio Barbato, Francesco Aletta, and Arianna Astolfi. "The Accuracy of Predicted Acoustical Parameters in Ancient Open-Air Theatres: A Case Study in Syracusae." Applied Sciences 8, no. 8 (August 17, 2018): 1393. http://dx.doi.org/10.3390/app8081393.
Full textGorska, Natalia, Egil Ona, and Rolf Korneliussen. "Acoustic backscattering by Atlantic mackerel as being representative of fish that lack a swimbladder. Backscattering by individual fish." ICES Journal of Marine Science 62, no. 5 (January 1, 2005): 984–95. http://dx.doi.org/10.1016/j.icesjms.2005.03.010.
Full textNurminen, Markku, Maija Hyt�nen, and Eeva Sala. "Modelling the reproducibility of acoustic rhinometry." Statistics in Medicine 19, no. 9 (May 15, 2000): 1179–89. http://dx.doi.org/10.1002/(sici)1097-0258(20000515)19:9<1179::aid-sim420>3.0.co;2-k.
Full textLayton, Martin, and Mark Gales. "Acoustic Modelling Using Continuous Rational Kernels." Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 48, no. 1-2 (May 5, 2007): 67–82. http://dx.doi.org/10.1007/s11265-006-0027-4.
Full textPapamoschou, Dimitri. "Modelling of noise reduction in complex multistream jets." Journal of Fluid Mechanics 834 (November 17, 2017): 555–99. http://dx.doi.org/10.1017/jfm.2017.730.
Full textKirkup. "The Boundary Element Method in Acoustics: A Survey." Applied Sciences 9, no. 8 (April 19, 2019): 1642. http://dx.doi.org/10.3390/app9081642.
Full textDissertations / Theses on the topic "Acoustic modelling"
Ribichini, Remo. "Modelling of electromagnetic acoustic transducers." Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/9010.
Full textRamanathan, Sathish Kumar. "Linear Acoustic Modelling and Testing of Exhaust Mufflers." Thesis, KTH, Aeronautical and Vehicle Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4340.
Full textIntake and Exhaust system noise makes a huge contribution to the interior and exterior noise of automobiles. There are a number of linear acoustic tools developed by institutions and industries to predict the acoustic properties of intake and exhaust systems. The present project discusses and validates, through measurements, the proper modelling of these systems using BOOST-SID and discusses the ideas to properly convert a geometrical model of an exhaust muffler to an acoustic model. The various elements and their properties are also discussed.
When it comes to Acoustic properties there are several parameters that describe the performance of a muffler, the Transmission Loss (TL) can be useful to check the validity of a mathematical model but when we want to predict the actual acoustic behavior of a component after it is installed in a system and subjected to operating conditions then we have to determine other properties like Attenuation, Insertion loss etc,.
Zero flow and Mean flow (M=0.12) measurements of these properties were carried out for mufflers ranging from simple expansion chambers to complex geometry using two approaches 1) Two Load technique 2) Two Source location technique. For both these cases, the measured transmission losses were compared to those obtained from BOOST-SID models.
The measured acoustic properties compared well with the simulated model for almost all the cases.
Hurrell, Andrew M. "Finite difference modelling of acoustic propagation and its applications in underwater acoustics." Thesis, University of Bath, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250842.
Full textAjaz, Mahnoor. "Finite Difference Time Domain Modelling of Ultrasonic Parametric Arrays in Two-Dimensional Spaces." The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1619109761801613.
Full textLaurinčiukaitė, Sigita. "Acoustic modelling of Lithuanian speech recognition." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2008. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2008~D_20080626_121551-77545.
Full textDarbas „Lietuvių šnekos atpažinimo akustinis modeliavimas“ yra skirtas lietuvių šnekos atpažinimo akustiniam modeliavimui. Darbe buvo tirtas žodžiais, skiemenimis, kontekstiniais skiemenimis, fonemomis ir kontekstinėmis fonemomis grįstas šnekos atpažinimas. Tyrimai atlikti izoliuotiems žodžiams ir ištisinei šnekai. Iki šiol lietuvių šnekos atpažinime populiariausi kalbos vienetai buvo fonema ir kontekstinė fonema, o kitų kalbos vienetų analizė nebuvo atliekama. Šiame darbe siekiama palyginti lingvistinio tipo kalbos vienetų gebėjimą modeliuoti šneką ir parodyti, kad kalbos vienetų analizė siūlo alternatyvius fonemai ir kontekstinei fonemai kalbos vienetus. Darbe pasiūlyta metodika mišriam skiemenų ir fonemų akustiniam modeliavimui, naujas kalbos vienetas – pseudo-skiemuo; technologijos atskirų kalbos vienetų akustiniam modeliavimui (schemos, įrankiai, rekomendacijos). Eksperimentiniams tyrimams atlikti paruoštas izoliuotų žodžių garsynas ir sukurtos dvi ištisinės šnekos garsyno LRN versijos. Ištyrus izoliuotų žodžių atpažinimą, akustinius modelius konstruojant žodžiams, nustatyta, kad modelių mokymo aibės dydis, akustinių modelių mokymo aibės turinys daro įtaką šnekos atpažinimo tikslumui. Pateikiamos rekomendacijos akustiniam modeliavimui žodžių pagrindu. Ištyrus izoliuotų žodžių atpažinimą, akustinius modelius konstruojant žodžiams, skiemenims ir fonemoms, gauti rezultatai 98 ±1,8 % tikslumu siejami su skiemens tipo kalbos vienetais. Dėl skiemenų akustinio modeliavimo... [toliau žr. visą tekstą]
Wong, Lawdy Siu Shan. "Auditorium acoustic modelling on chaotic realisation." Thesis, Oxford Brookes University, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394625.
Full textOxnard, Stephen. "Efficient hybrid virtual room acoustic modelling." Thesis, University of York, 2016. http://etheses.whiterose.ac.uk/17459/.
Full textHunter, Alan Joseph. "Underwater Acoustic Modelling for Synthetic Aperture Sonar." Thesis, University of Canterbury. Electrical and Computer Engineering, 2006. http://hdl.handle.net/10092/1117.
Full textShannon, Sean Matthew. "Probabilistic acoustic modelling for parametric speech synthesis." Thesis, University of Cambridge, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.708415.
Full textZhang, Ning. "The computational modelling of electromagnetic acoustic imaging." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:2c4c9946-b90c-43a3-9039-1c7df2dcd976.
Full textBooks on the topic "Acoustic modelling"
Etter, Paul C. Underwater Acoustic Modelling and Simulation. London: Taylor & Francis Group Plc, 2004.
Find full textRound, Carl Graham. Mathematical modelling of acoustic cavitation and sonoluminescence. Birmingham: University of Birmingham, 1997.
Find full textSimms, Michael. Transmission -Line MAtrix Modelling of Acoustic Devices. Dublin: University College Dublin, 1997.
Find full textWong, Lawdy Siu Shan. Auditorium acoustic modelling based on chaotic realisation. Oxford: Oxford Brookes University, 1999.
Find full textWillison, Peter A. Transmission line matrix modelling of underwater acoustic propagation. Norwich: University of East Anglia, 1992.
Find full textHashimoto, Ken-ya. Surface Acoustic Wave Devices in Telecommunications: Modelling and Simulation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000.
Find full textOwen, Raymond Harvey. Modelling of high frequency acoustic scattering from a moving rough surface. Birmingham: University of Birmingham, 1995.
Find full textXiang, Ning. A mobile universal measuring system for the binaural-acoustic modelling-technique. Dortmund: Bundesanstalt für Arbeitsschutz, 1991.
Find full textHellström, Björn. Noise design: Architectural modelling and the aesthetics of urban acoustic space. Göteborg: Bo Ejeby Förlag., 2003.
Find full textMeglio, Alberto Di. Finite element-boundary elements modelling of acoustic scattering from viscoelastic anechoic structures. Birmingham: University of Birmingham, 2000.
Find full textBook chapters on the topic "Acoustic modelling"
Pohjolainen, Seppo, and Antti Suutala. "Acoustic Modelling." In Mathematical Modelling, 185–205. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27836-0_11.
Full textEyben, Florian. "Acoustic Features and Modelling." In Springer Theses, 9–122. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27299-3_2.
Full textCoates, Rodney F. W. "Ray Trace Modelling of Sonar Propagation." In Underwater Acoustic Systems, 52–72. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-20508-0_4.
Full textWillison, P. A. "Normal Mode Modelling of Sonar Propagation." In Underwater Acoustic Systems, 73–89. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-20508-0_5.
Full textTacconi, Giorgio, and Antonio Tiano. "Applied Modelling to Underwater Vehicles Identification." In Underwater Acoustic Data Processing, 413–19. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_45.
Full textShadle, Christine H. "Articulatory-Acoustic Relationships in Fricative Consonants." In Speech Production and Speech Modelling, 187–209. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2037-8_8.
Full textPatsko, V. S., and V. L. Turova. "Numerical Solution to the Acoustic Homicidal Chauffeur Game." In System Modelling and Optimization, 227–49. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-0-387-35514-6_11.
Full textMitter, Sanjoy K. "Modelling and Estimation for Random Fields." In Acoustic Signal Processing for Ocean Exploration, 391–412. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1604-6_36.
Full textCarré, R., and M. Mrayati. "Articuiltory-Acoustic-Phonetic Relations and Modeling, Regions and Modes." In Speech Production and Speech Modelling, 211–40. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-2037-8_9.
Full textMeghraoui, D., B. Boudraa, T. Merazi-Meksen, and M. Boudraa. "Parkinson’s Disease Recognition by Speech Acoustic Parameters Classification." In Modelling and Implementation of Complex Systems, 165–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33410-3_12.
Full textConference papers on the topic "Acoustic modelling"
VENA, A., G. M. INSOLERA, R. GIULIANI, T. FIORE, and G. PERCHIAZZI. "COMPUTER ANALYSIS OF ACOUSTIC RESPIRATORY SIGNALS." In Modelling Biomedical Signals. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778055_0005.
Full textHazzard, J. F., S. C. Maxwell, and R. P. Young. "Micromechanical Modelling of Acoustic Emissions." In SPE/ISRM Rock Mechanics in Petroleum Engineering. Society of Petroleum Engineers, 1998. http://dx.doi.org/10.2118/47320-ms.
Full textGoyder, H. G. D. "Modelling Acoustic Sources in Pipework." In ASME 2011 Pressure Vessels and Piping Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/pvp2011-57515.
Full textA. Barsottelli Botelho, M., and V. Pinheiro. "Acoustic Modelling in Biot Media." In 57th EAEG Meeting. Netherlands: EAGE Publications BV, 1995. http://dx.doi.org/10.3997/2214-4609.201409569.
Full textKallman, M., and H. Wicklander. "Submarine Acoustic Target Strength Modelling." In Warship 99. RINA, 1999. http://dx.doi.org/10.3940/rina.ws.1999.16.
Full textRusovici, Razvan, and Daniel Mason. "Coupled Acoustic-Structural-Piezoelectric Modeling of Synthetic Jet." In Modelling, Identification and Control. Calgary,AB,Canada: ACTAPRESS, 2014. http://dx.doi.org/10.2316/p.2014.809-064.
Full textUhlig, Roland, Ingo Borchers, Roger Drobietz, and Michael Möser. "Analytical Modelling of Special Acoustic Absorbers." In 10th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-3012.
Full textChen, Xin, and Yunxin Zhao. "Data sampling based ensemble acoustic modelling." In ICASSP 2009 - 2009 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2009. http://dx.doi.org/10.1109/icassp.2009.4960456.
Full textBuckley, Leonie, Sam Caulfield, and David Moloney. "MvEcho - acoustic response modelling for auralisation." In 2016 IEEE Hot Chips 28 Symposium (HCS). IEEE, 2016. http://dx.doi.org/10.1109/hotchips.2016.7936238.
Full textDiehl, Frank, Asuncion Moreno, and Enric Monte. "Constraint Induction of Phonetic-Acoustic Decision Trees for Crosslingual Acoustic Modelling." In 2007 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.367024.
Full textReports on the topic "Acoustic modelling"
Marinovic, Nenad M., and Leonid Roytman. Modelling, Detection, and Classification of Random Underwater Acoustic Transients. Fort Belvoir, VA: Defense Technical Information Center, March 1992. http://dx.doi.org/10.21236/ada247797.
Full textPhillips, Michael, James Glass, and Victor Zue. Modelling Context Dependency in Acoustic-Phonetic and Lexical Representations. Fort Belvoir, VA: Defense Technical Information Center, January 1991. http://dx.doi.org/10.21236/ada460564.
Full textHirsekorn, M., P. P. Delsanto, N. K. Batra, and P. Matic. Modelling and Simulation of Acoustic Wave Propagation in Locally Resonant Sonic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2002. http://dx.doi.org/10.21236/ada525809.
Full textRatilal, Purnima. Characterizing Broadband Acoustic Propagation Scintillation and Modelling Scattering and Reverberation for Sensing in a Random Ocean Waveguide. Fort Belvoir, VA: Defense Technical Information Center, September 2014. http://dx.doi.org/10.21236/ada615928.
Full text