Dissertations / Theses on the topic 'Acoustic Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Acoustic Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Martin, Traykovski Linda V. (Linda Victoria) 1966. "Acoustic classification of zooplankton." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49620.
Full textTemko, Andriy. "Acoustic event detection and classification." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6880.
Full textsortides de diversos sistemes de classificació. Els sistemes de classificació d'events acústics
desenvolupats s'han testejat també mitjançant la participació en unes quantes avaluacions d'àmbit
internacional, entre els anys 2004 i 2006. La segona principal contribució d'aquest treball de tesi consisteix en el desenvolupament de sistemes de detecció d'events acústics. El problema de la detecció és més complex, ja que inclou tant la classificació dels sons com la determinació dels intervals temporals on tenen lloc. Es desenvolupen dues versions del sistema i es proven amb els conjunts de dades de les dues campanyes d'avaluació internacional CLEAR que van tenir lloc els anys 2006 i 2007, fent-se servir dos tipus de bases de dades: dues bases d'events acústics aïllats, i una base d'enregistraments de seminaris interactius, les quals contenen un nombre relativament elevat d'ocurrències dels events acústics especificats. Els sistemes desenvolupats, que consisteixen en l'ús de classificadors basats en SVM que operen dins
d'una finestra lliscant més un post-processament, van ser els únics presentats a les avaluacions
esmentades que no es basaven en models de Markov ocults (Hidden Markov Models) i cada un d'ells
va obtenir resultats competitius en la corresponent avaluació. La detecció d'activitat oral és un altre dels objectius d'aquest treball de tesi, pel fet de ser un cas particular de detecció d'events acústics especialment important. Es desenvolupa una tècnica de millora de l'entrenament dels SVM per fer front a la necessitat de reducció de l'enorme conjunt de dades existents. El sistema resultant, basat en SVM, és testejat amb uns quants conjunts de dades de l'avaluació NIST RT (Rich Transcription), on mostra puntuacions millors que les del sistema basat en GMM, malgrat que aquest darrer va quedar entre els primers en l'avaluació NIST RT de 2006.
Per acabar, val la pena esmentar alguns resultats col·laterals d'aquest treball de tesi. Com que s'ha dut a terme en l'entorn del projecte europeu CHIL, l'autor ha estat responsable de l'organització de les avaluacions internacionals de classificació i detecció d'events acústics abans esmentades, liderant l'especificació de les classes d'events, les bases de dades, els protocols d'avaluació i, especialment, proposant i implementant les diverses mètriques utilitzades. A més a més, els sistemes de detecció
s'han implementat en la sala intel·ligent de la UPC, on funcionen en temps real a efectes de test i demostració.
The human activity that takes place in meeting-rooms or class-rooms is reflected in a rich variety of acoustic events, either produced by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity.
Additionally, detection of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition. Automatic detection and classification of acoustic events is the objective of this thesis work. It aims at processing the acoustic signals collected by distant microphones in meeting-room or classroom environments to convert them into symbolic descriptions corresponding to a listener's perception of the different sound events that are present in the signals and their sources. First of all, the task of acoustic event classification is faced using Support Vector Machine (SVM) classifiers, which are motivated by the scarcity of training data. A confusion-matrix-based variable-feature-set clustering scheme is developed for the multiclass recognition problem, and tested on the gathered database. With it, a higher classification rate than the GMM-based technique is obtained, arriving to a large relative average error reduction with respect to the best result from the conventional binary tree scheme. Moreover, several ways to extend SVMs to sequence processing are compared, in an attempt to avoid the drawback of SVMs when dealing with audio data, i.e. their restriction to work with fixed-length vectors, observing that the dynamic time warping kernels work well for sounds that show a temporal structure. Furthermore, concepts and tools from the fuzzy theory are used to investigate, first, the importance of and degree of interaction among features, and second, ways to fuse the outputs of several classification systems. The developed AEC systems are tested also by participating in several international evaluations from 2004 to 2006, and the results
are reported. The second main contribution of this thesis work is the development of systems for detection of acoustic events. The detection problem is more complex since it includes both classification and determination of the time intervals where the sound takes place. Two system versions are developed and tested on the datasets of the two CLEAR international evaluation campaigns in 2006 and 2007. Two kinds of databases are used: two databases of isolated acoustic events, and a database of interactive seminars containing a significant number of acoustic events of interest. Our developed systems, which consist of SVM-based classification within a sliding window plus post-processing, were the only submissions not using HMMs, and each of them obtained competitive results in the corresponding evaluation. Speech activity detection was also pursued in this thesis since, in fact, it is a -especially important - particular case of acoustic event detection. An enhanced SVM training approach for the speech activity detection task is developed, mainly to cope with the problem of dataset reduction. The resulting SVM-based system is tested with several NIST Rich Transcription (RT) evaluation datasets, and it shows better scores than our GMM-based system, which ranked among the best systems in the RT06 evaluation. Finally, it is worth mentioning a few side outcomes from this thesis work. As it has been carried out in the framework of the CHIL EU project, the author has been responsible for the organization of the above mentioned international evaluations in acoustic event classification and detection, taking a leading role in the specification of acoustic event classes, databases, and evaluation protocols, and, especially, in the proposal and implementation of the various metrics that have been used. Moreover, the detection systems have been implemented in the UPC's smart-room and work in real time for purposes of testing and demonstration.
Brock, James L. "Acoustic classification using independent component analysis /." Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2067.
Full textCaughey, David Arthur. "Seabed classification from acoustic echosounder returns." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32738.pdf.
Full textHassan, Ali. "On automatic emotion classification using acoustic features." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/340672/.
Full textYagci, Tayfun. "Target Classification And Recognition Using Underwater Acoustic Signals." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606373/index.pdf.
Full textvisual&rdquo
target detection methods left the stage to the computerized acoustic signature detection and evaluation methods. Despite this, the research projects have not sufficiently addressed in the field of acoustic signature evaluation. This thesis work mainly investigates classification and recognition techniques with TRN / LOFAR signals, which are emitted from surface and subsurface platforms and proposes possible adaptations of existing methods that may give better results if they are used with these signals. Also a detailed comparison has been made about the experimental results with underwater acoustic signals.
Dunn, Shane C. "Acoustic classification of benthic habitats in Tampa Bay." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002297.
Full textPhilips, Scott M. "Perceptually-driven signal analysis for acoustic event classification /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5934.
Full textWichert, Terry S., and Daniel Joseph Collins. "Feature based neural network acoustic transient signal classification." Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/24169.
Full textBissinger, Brett Bose N. K. Culver R. Lee. "Minimum hellinger distance classification of underwater acoustic signals." [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4677/index.html.
Full textRoberts, Paul L. D. "Multi-view, broadband, acoustic classification of marine animals." Diss., [La Jolla] : University of California, San Diego, 2009. http://nsgl.gso.uri.edu/casg/casgy09003.pdf.
Full textTitle from first page of PDF file (viewed June 16, 2009). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 141-155).
Hammond, Tim R. "Classification of fish schools from acoustic survey data /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/5351.
Full textSampan, Somkiat. "Neural Fuzzy Techniques in Vehicle Acoustic Signal Classification." Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30612.
Full textPh. D.
Lazaridès, Ariane. "Classification trees for acoustic models : variations on a theme." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape16/PQDD_0016/MQ37139.pdf.
Full textHadden, Scott Duncan. "Remote geotechnical classification of seabed sediments using acoustic techniques." Thesis, University of St Andrews, 2002. http://hdl.handle.net/10023/13953.
Full textEdwards, Joseph Richard 1971. "Acoustic classification of buried objects with mobile sonar platforms." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37568.
Full textIncludes bibliographical references (p. 229-237).
In this thesis, the use of highly mobile sonar platforms is investigated for the purpose of acoustically classifying compact objects on or below the seabed. The extension of existing strategies, including synthetic aperture sonar and conventional imaging, are explored within the context of the buried object problem. In particular, the need to employ low frequencies for seabed penetration is shown to have a significant impact both due to the relative length of the characteristic scattering mechanisms and due to the interface effects on the target scattering. New sonar strategies are also shown that exploit incoherent wide apertures that are created by multiple sonar platforms. For example, target shape can be inverted by mapping the scattered field from the target with a team of receiver vehicles. A single sonar-adaptive sonar platform is shown to have the ability to perform hunting and classification tasks more efficiently than its pre-programmed counterpart. While the monostatic sonar platform is often dominated by the source component, the bistatic or passive receiver platform behavior is controlled by the target response. The sonar-adaptive platform trajectory, however, can result in the platform finishing its classification effort out of position to complete further tasks.
(cont.) Within the context of a larger mission, the use of predetermined adaptive behaviors is shown to provide improved detection and classification performance while minimizing the risk to the overall mission. Finally, it is shown that multiple sonar-adaptive platforms can be used to create new sonar strategies for hunting and classifying objects by shape and content. The ability to sample the scattered field from the target across a wide variety of positions allows an analysis of the aspect-dependent behavior of the target. The aspect-dependence of the specular returns indicate the shape of the target, while the secondary returns from an elastic target are also strongly aspect-dependent. These features are exploited for improved classification performance in the buried object hunting mission.
by Joseph R. Edwards.
Ph.D.in Ocean Engineering
Vemula, Hari Charan. "Multiple Drone Detection and Acoustic Scene Classification with Deep Learning." Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1547384408540764.
Full textEvans, Naoko. "Automated vehicle detection and classification using acoustic and seismic signals." Thesis, University of York, 2010. http://etheses.whiterose.ac.uk/1151/.
Full textBrecht, B. M., A. Raabe, and A. Ziemann. "Acoustic anemometry and thermometry." Universität Leipzig, 2010. https://ul.qucosa.de/id/qucosa%3A16371.
Full textTAKEDA, Kazuya, Norihide KITAOKA, and Makoto SAKAI. "Acoustic Feature Transformation Combining Average and Maximum Classification Error Minimization Criteria." Institute of Electronics, Information and Communication Engineers, 2010. http://hdl.handle.net/2237/14970.
Full textBekiroglu, Yasemi. "Nonstationary feature extraction techniques for automatic classification of impact acoustic signals." Thesis, Högskolan Dalarna, Datateknik, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:du-3592.
Full textEshetu, Tefera Zegeye. "Impact Acoustic Testing for Classification of CGI Mechanical and Material properties." Thesis, KTH, Industriell produktion, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-140320.
Full textBrink, Stefan. "Development of an acoustic classification system for predicting rock structural stability." Thesis, Stellenbosch : Stellenbosch University, 2015. http://hdl.handle.net/10019.1/96985.
Full textENGLISH ABSTRACT: Rock falls are the cause of the majority of mining-related injuries and fatalities in deep tabular South African mines. The standard process of entry examination is performed before working shifts and after blasting to detect structurally loose rocks. This process is performed by a miner using a pinch bar to ‘sound’ a rock by striking it and making a judgement based on the frequency response of the resultant sound. The Electronic Sounding Device (ESD) developed by the CSIR aims to assist in this process by performing a concurrent prediction of the structural state of the rock based on the acoustic waveform generated in the sounding process. This project aimed to identify, develop and deploy an effective classification model to be used on the ESD to perform this assessment. The project was undertaken in three main stages: the collection of labelled acoustic samples from working areas; the extraction of descriptive features from the waveforms; and the competitive evaluation of suitable classification models. Acoustic samples of the sounding process were recorded at the Driefontein mine operation by teams of Gold Fields employees. The samples were recorded in working areas on each of the four reefs that were covered by the shafts of the mine complex. Samples were labelled as ‘safe’ or ‘unsafe’ to indicate an expert’s judgement of the rock’s structural state. A laboratory-controlled environment was also created to provide a platform from which to collect acoustic samples with objective labelling. Three sets of features were extracted from the acoustic waveforms to form a descriptive feature dataset: four statistical moments of the frequency distribution of the waveform formed; the average energy contained in 16 discrete frequency bands in the data; and 12 Mel Frequency Cepstral Coefficients (MFCCs). Classification models from four model families were competitively evaluated for best accuracy in predicting structural states. The models evaluated were k-nearest neighbours, self-organising maps, decision trees, random forests, logistic regression, neural networks, and support vector machines with radial basis function and polynomial kernels. The sensitivity of the models, i.e. their ability to avoid predicting a ‘safe’ status when the rock mass was actually loose, was used as the critical performance measure. A single-hidden-layer feed-forward neural network with 15 nodes in the hidden layer and a sigmoid activation function was found to best suited for acoustic classification on the ESD. Additional feature selection was performed to identify the optimised form of the model. The final model was successfully implemented on the ESD platform.
AFRIKAANSE OPSOMMING: Rotsstortings is die oorsaak van die meerderheid van mynbouverwante ongelukke en ongevalle in diep tabulêre Suid-Afrikaanse myne. Die standaard proses van pretoegang ondersoeke om strukturele los rotse te erken, word uitgevoer voor enige werkskof en na skietwerk. Dit word gedoen deur ‘n myner wat ‘n breekyster teen die rots kap en ‘n oordeel vel op die frekwensie weergawe van die gevolglike klank. Die ‘Elektroniese Klinking Toestel’ (Electronic Sounding Device, ESD) is ontwikkel deur die WNNR met die doel om die proses te ondersteun. Dit word gedoen deur ‘n gelyktydige voorspelling van die strukturele toestand gebaseer op die akoestiese golfvorm gegenereer in die proses van klinking. Die projek stel ten doel om ’n effektiewe klassifikasie-model te identifiseer, te ontwikkel en toe te pas in die ESD om hierdie assessering uit te voer. Die projek vind in drie stadiums plaas: die insameling van geëtiketteerde akoestiese monsters van die werkareas; die ekstraksie van beskrywende kenmerke van die golfvorms en die mededingende evaluering van geskikte klassifiseringsmodelle. Klinking akoestiese monsters is opgeneem by Driefontein mynbouoperasie deur spanne van Gold Fields se werknemers. Die akoestiese monsters is opgeneem in werkareas van elk van die vier goudriwwe wat deur die skagte van die mynkompleks gedek word. Monsters is as ‘veilig’ of ‘onveilig’ geëtiketteer as aanduiding van die ekspert se oordeel van die rots se strukturele toestand. ‘n Laboratorium gekontroleerde omgewing is ook geskep om ’n platform te skep vanwaar akoestiese monsters met objektiewe etikettering waargeneem word. Drie stelle van kenmerke is onttrek van die akoestiese golfvorms om ‘n beskrywende datastel van kenmerke te vorm: vier statistiese momente van die frekwensie verspreiding van die gevormde golfvorm; gemiddelde energie ingesluit in sestien diskrete frekwensiebande in die data; en twaalf ‘Mel Frequency Cepstrum Coefficients’ (MFCCs). Klassifikasie modelle van die vier modelsamestellings was kompeterend geëvalueer vir die beste akkuraatheid in voorspellings van strukturele toestande. Klassifikasie modelle het k-naaste bure, selforganiserende kaarte, besluitnemingsbome, lukrake woude, logistieke regressie, neurale netwerke en steun-vektor masjiene met radiale basisfunksie en polinominale kerne. Die meting van die sensitiwiteit van die modelle, met betrekking tot die vermoë van die modelle om veilige voorspellings te beperk wanneer die rotsmassa los is, was gebruik as ’n kritiese werksverrigtingsmeting. ‘n Enkel-verskuilde-laag neurale netwerk met 15 nodes in die verskuilde laag en ’n sigmoïde aktiveringsfunksie is gevind as die mees geskikte vir die ESD. Addisionele keuse van kenmerke is uitgevoer deur die geoptimiseerde vorm van die model te identifiseer. Die model was suksesvol geïmplementeer op die ESD platform.
LeBien, John. "Automated Species Classification Methods for Passive Acoustic Monitoring of Beaked Whales." ScholarWorks@UNO, 2017. https://scholarworks.uno.edu/td/2417.
Full textHjelmervik, Karl Thomas. "Sonar false alarm rate suppression using classification methods based on acoustic modelling." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14912.
Full textMennitt, Daniel James. "Multiarray Passive Acoustic Localization and Tracking." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/29583.
Full textPh. D.
Wood, JD, B. McCowan, R. Langbauer, J. Viljoen, and L. Hart. "Classification of African elephant Loxodonta Africana rumbles using acoustic parameters and cluster analysis." Bioacoustics, The International Journal of Animal Sound and its Recording, 2005. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1001005.
Full textSelander, Christopher. "Development of embedded devices for automated acoustic resonance analysis in material quality classification." Thesis, Uppsala universitet, Signaler och System, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-234401.
Full textI denna rapport undersöker vi hurvida ett inbyggt system kan användas för att bestämma materialkvalité genom analys av akustiska resonansfrekvenser. Genom experiment fastställs de specifikationer systemet måste ha, varefter lämpliga kretsar konstrueras. Med hjälp av en FFT-baserad algoritm utförs viss signalanalys. Vi har verifierat att systemet framgångsrikt kan detektera de fem starkaste resonansfrekvenserna och lista dessa efter amplitud. Genom användandet av inbyggda system kan energiförbrukningen och inköpskostnaden bli mycket lägre än alternativa lösningar.
Barbu, Madalina. "Acoustic Seabed and Target Classification using Fractional Fourier Transform and Time-Frequency Transform Techniques." ScholarWorks@UNO, 2006. http://scholarworks.uno.edu/td/480.
Full textButt, Abdul Haleem. "Speech Assessment for the Classification of Hypokinetic Dysthria in Parkinson Disease." Thesis, Högskolan Dalarna, Datateknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:du-10041.
Full textTiago, Marcelo Moreira [UNESP]. "Classificação de sinais acústicos utilizando a transformada wavelet discreta e a decomposição de modo empírico: aplicações na área de alimentos." Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/87064.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Um dos setores de grande importância na indústria frigorífica é o responsável pelo esquarte- jamento de aves, no qual peças inteiras são separadas em partes menores para comercialização. O processo de esquartejamento pode ser feito de forma automática, através de máquinas de corte, ou por trabalhadores, que cortam as aves utilizando uma serra circular. Por ser um tra- balho manual e envolver uma lâmina de corte, a periculosidade desse tipo de trabalho é alta, de maneira que mesmo com o uso de uma luva de aço inox como equipamento de proteção, costumam ocorrer acidentes que podem variar desde pequenos cortes até amputação de parte da mão do trabalhador atingido. Neste trabalho, é apresentado um método de análise de sinais para evitar que esse tipo de acidente ocorra. Esse sistema baseia-se na análise dos sinais acústicos envolvidos gerados durante esse processo e são utilizados para desligar o motor que impulsiona a serra e acionar um sistema de frenagem em casos quando houver a ocorrência de acidentes. O problema é abordado utilizando inicialmente um filtro digital e, posteriormente, com as técni- cas de análise multirresolução apresentadas pelas wavelets. Além disso, empregou-se também a decomposição de modo empírico, que também realiza uma análise multirresolução dos sinais decompondo os mesmos em funções de modo intrínseco. Visando detectar o maior número possível de toques suaves de luva na serra sem que cortes de ossos de frango fossem confundi- dos com toques de luva, o sistema apresentou um índice de acertos de aproximadamente 70%, havendo a ocorrência de apenas 2% de falsos positivos. Além desse problema, abordou-se o caso de detecção de trinca em ovos, no qual o objetivo era separar ovos trincados de ovos in- teiros utilizando um sistema barato e eficiente...
One of the most important sectors in the meatpacking industry is chicken quartering, where whole pieces are cut into smaller ones. The quartering process can be done by automatic ma- chines or by manually cutting the chickens using a circular saw. The manual technique imposes physical risks for the workers, which wear protective stainless steel gloves. Small injuries or, in the worst case, amputation of part of the hand can occur in the event of an accident. In this work, we propose a methodology to prevent this type of accident, which is based on the anal- ysis of the acoustic signals generated during this process. In the event of an accident, the saw touches the metal glove, the acoustic signals are processed and used to turn off the engine that drives the saw and trigger a braking system. The problem is firstly analyzed using a digital filter and then with multiresolution techniques by wavelet analysis. In addition, the empirical mode decomposition technique is also employed, which also performs multiresolution analysis of sig- nals. These three techniques are implemented and compared. The method presented a 70% of successful detection of light touches of saw/glove and 2% of false positives, when a normal cut operation is detected as a saw/glove touch, in general occurring when cutting specific parts of bone. Besides this problem, the case of eggshell crack detection is studied, where the goal was to separate cracked eggs from intact eggs using an inexpensive and efficient system. A solenoid was used as a source of mechanical excitation and the resulting acoustic signals were acquired and processed. The same signal processing techniques were employed and compared, with small changes in parameters. As a result, it was possible to detect 80% of cracked eggs and 100% of intact eggs. The multiresolution technique... (Complete abstract click electronic access below)
Ziemann, Astrid, Klaus Arnold, and Armin Raabe. "Acoustic tomography in the atmospheric surface layer." Universität Leipzig, 1998. https://ul.qucosa.de/id/qucosa%3A15081.
Full textThe presented method of acoustic tomography (Simultaneous Iterative Reconstruction Technique) and a special algorithm of analysis can directly provide area averaged values of meteorological quantities. As a result rather consistent data will be delivered for validation of numerical atmospheric rnicro-scale models. The procedure uses the horizontal propagation of sound waves in the atmospheric surface layer. To obtain a general overview of the sound propagation under various atmospheric conditions a two-dimensional ray-tracing model is used. The state of the crossed atmosphere can be estimated from measurements of acoustic travel time between sources and receivers on different points in an tomographic array. Derivation of area averaged values of the sound speed and furthermore of air temperature results from the inversion of travel time values for all possible acoustic paths. Thereby, the applied straight-ray two-dimensional tomographic model is characterised as a method with small computational requirements and simple handling, especially, during online working.
Nouri, Arash. "Correlation-Based Detection and Classification of Rail Wheel Defects using Air-coupled Ultrasonic Acoustic Emissions." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/78139.
Full textMaster of Science
Ferreira, Anthony Paul Couto. "Acústica de edifícios: estudo de impacto económico associado ao método de classificação acústica." Master's thesis, Universidade de Évora, 2016. http://hdl.handle.net/10174/18205.
Full textTiago, Marcelo Moreira. "Classificação de sinais acústicos utilizando a transformada wavelet discreta e a decomposição de modo empírico : aplicações na área de alimentos /." Ilha Solteira: [s.n.], 2011. http://hdl.handle.net/11449/87064.
Full textBanca: Francisco Villarreal Alvarado
Banca: Washington Luiz de Barros Melo
Resumo: Um dos setores de grande importância na indústria frigorífica é o responsável pelo esquarte- jamento de aves, no qual peças inteiras são separadas em partes menores para comercialização. O processo de esquartejamento pode ser feito de forma automática, através de máquinas de corte, ou por trabalhadores, que cortam as aves utilizando uma serra circular. Por ser um tra- balho manual e envolver uma lâmina de corte, a periculosidade desse tipo de trabalho é alta, de maneira que mesmo com o uso de uma luva de aço inox como equipamento de proteção, costumam ocorrer acidentes que podem variar desde pequenos cortes até amputação de parte da mão do trabalhador atingido. Neste trabalho, é apresentado um método de análise de sinais para evitar que esse tipo de acidente ocorra. Esse sistema baseia-se na análise dos sinais acústicos envolvidos gerados durante esse processo e são utilizados para desligar o motor que impulsiona a serra e acionar um sistema de frenagem em casos quando houver a ocorrência de acidentes. O problema é abordado utilizando inicialmente um filtro digital e, posteriormente, com as técni- cas de análise multirresolução apresentadas pelas wavelets. Além disso, empregou-se também a decomposição de modo empírico, que também realiza uma análise multirresolução dos sinais decompondo os mesmos em funções de modo intrínseco. Visando detectar o maior número possível de toques suaves de luva na serra sem que cortes de ossos de frango fossem confundi- dos com toques de luva, o sistema apresentou um índice de acertos de aproximadamente 70%, havendo a ocorrência de apenas 2% de falsos positivos. Além desse problema, abordou-se o caso de detecção de trinca em ovos, no qual o objetivo era separar ovos trincados de ovos in- teiros utilizando um sistema barato e eficiente... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: One of the most important sectors in the meatpacking industry is chicken quartering, where whole pieces are cut into smaller ones. The quartering process can be done by automatic ma- chines or by manually cutting the chickens using a circular saw. The manual technique imposes physical risks for the workers, which wear protective stainless steel gloves. Small injuries or, in the worst case, amputation of part of the hand can occur in the event of an accident. In this work, we propose a methodology to prevent this type of accident, which is based on the anal- ysis of the acoustic signals generated during this process. In the event of an accident, the saw touches the metal glove, the acoustic signals are processed and used to turn off the engine that drives the saw and trigger a braking system. The problem is firstly analyzed using a digital filter and then with multiresolution techniques by wavelet analysis. In addition, the empirical mode decomposition technique is also employed, which also performs multiresolution analysis of sig- nals. These three techniques are implemented and compared. The method presented a 70% of successful detection of light touches of saw/glove and 2% of false positives, when a normal cut operation is detected as a saw/glove touch, in general occurring when cutting specific parts of bone. Besides this problem, the case of eggshell crack detection is studied, where the goal was to separate cracked eggs from intact eggs using an inexpensive and efficient system. A solenoid was used as a source of mechanical excitation and the resulting acoustic signals were acquired and processed. The same signal processing techniques were employed and compared, with small changes in parameters. As a result, it was possible to detect 80% of cracked eggs and 100% of intact eggs. The multiresolution technique... (Complete abstract click electronic access below)
Mestre
Tucker, Simon. "An ecological approach to the classification of transient underwater acoustic events : perceptual experiments and auditory models." Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401126.
Full textKirchner, William Thomas. "Ultrasonic acoustic health monitoring of ball bearings using neural network pattern classification of power spectral density." Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/36130.
Full textMaster of Science
Hemminger, Thomas Lee. "A real-time neural-net computing approach to the detection and classification of underwater acoustic transients." Case Western Reserve University School of Graduate Studies / OhioLINK, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=case1056044506.
Full textArnold, Klaus, Astrid Ziemann, and Armin Raabe. "Acoustic Tomography inside a small surface layer." Universität Leipzig, 2002. https://ul.qucosa.de/id/qucosa%3A15219.
Full textDie Akustische Laufzeittomographie wird als ein Verfahren zur Fernerkundung räumlich gemittelter Größen, wie der virtuellen Temperatur und der horizontalen Windgeschwindigkeit, vorgestellt. Dieses bodengebundene Fernerkundungsverfahren beruht auf der annährend horizontalen Schallausbreitung in der atmosphärischen Grenzschicht. Das hier angewendete Verfahren der Laufzeittomographie beruht auf der Bestimmung der Ausbreitungszeit von Schallwellen zwischen mehreren Schallsendern und -empfängern. Die daraus abgeleitete Schallgeschwindigkeit liefert eine Information über die interessierenden meteorologischen Parameter. Eine Reihe von Feldexperimenten wurde durchgeführt mit dem Ziel, die akustisch bestimmten Größen mit denen konventioneller Verfahren zu vergleichen. Hier werden die Ergebnisse eines Vergleiches im Herbst 2000 präsentiert, bei dem die Schallempfänger in unterschiedlichen Höhen über dem Boden angebracht wurden.
Butko, Taras. "Feature selection for multimodal: acoustic event detection." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/32176.
Full textLa detecció d'esdeveniments acústics (Acoustic Events -AEs-) que es produeixen naturalment en una sala de reunions pot ajudar a descriure l'activitat humana i social. La descripció automàtica de les interaccions entre els éssers humans i l'entorn pot ser útil per a proporcionar: ajuda implícita a la gent dins de la sala, informació sensible al context i al contingut sense requerir gaire atenció humana ni interrupcions, suport per a l'anàlisi d'alt nivell de l'escena acústica, etc. La detecció i la descripció d'activitat és una funcionalitat clau de les interfícies perceptives que treballen en entorns de comunicació humana com sales de reunions. D'altra banda, el recent creixement ràpid del contingut audiovisual disponible requereix l'existència d'eines per a l'anàlisi, indexació, cerca i recuperació dels documents existents. Donat un document d'àudio, el primer pas de processament acostuma a ser la seva segmentació (Audio Segmentation (AS)), és a dir, la partició de la seqüència d'entrada d'àudio en regions acústiques homogènies que s'etiqueten d'acord amb un conjunt predefinit de classes com parla, música, soroll, etc. De fet, l'AS pot ser vist com un cas particular de la detecció d’esdeveniments acústics, i així es fa en aquesta tesi. La detecció d’esdeveniments acústics (Acoustic Event Detection (AED)) és un dels objectius d'aquesta tesi. Es proposa tot una varietat de característiques que provenen no només de l'àudio, sinó també de la modalitat de vídeo, per fer front al problema de la detecció en dominis de sala de reunions i de difusió de notícies. En aquest treball s'investiguen dos enfocaments bàsics de detecció: 1) la realització conjunta de segmentació i classificació utilitzant models de Markov ocults (Hidden Markov Models (HMMs)) amb models de barreges de gaussianes (Gaussian Mixture Models (GMMs)), i 2) la detecció per classificació utilitzant màquines de vectors suport (Support Vector Machines (SVM)) discriminatives. Per al primer cas, en aquesta tesi es desenvolupa un algorisme de selecció de característiques ràpid d'un sol pas per tal de seleccionar, per a cada AE, el subconjunt de característiques multimodals que aconsegueix la millor taxa de detecció. L'AED en entorns de sales de reunió té com a objectiu processar els senyals recollits per micròfons distants i càmeres de vídeo per tal d'obtenir la seqüència temporal dels (possiblement superposats) esdeveniments acústics que s'han produït a la sala. Quan s'aplica als seminaris interactius amb un cert grau d'espontaneïtat, la detecció d'esdeveniments acústics a partir de només la modalitat d'àudio mostra una gran quantitat d'errors, que és sobretot a causa de la superposició temporal dels sons. Aquesta tesi inclou diverses contribucions pel que fa a la tasca d'AED multimodal. En primer lloc, l'ús de característiques de vídeo. Ja que en la modalitat de vídeo les fonts acústiques no se superposen (exceptuant les oclusions), les característiques proposades Resum iv milloren la detecció en els enregistraments en escenaris de caire espontani. En segon lloc, la inclusió de característiques de localització acústica, que, en combinació amb les característiques habituals d'àudio espectrotemporals, signifiquen nova millora en la taxa de reconeixement. En tercer lloc, la comparació d'estratègies de fusió a nivell de característiques i a nivell de decisions, per a la utilització combinada de les modalitats d'àudio i vídeo. En el darrer cas, les puntuacions de sortida del sistema es combinen fent ús de dos mètodes estadístics: la mitjana aritmètica ponderada i la integral difusa. D'altra banda, a causa de l'escassetat de dades multimodals anotades, i, en particular, de dades amb superposició temporal de sons, s'ha gravat i anotat manualment una nova base de dades multimodal amb una rica varietat d'AEs de sala de reunions, i s'ha posat a disposició pública per a finalitats d'investigació. Per a la segmentació d'àudio en el domini de difusió de notícies, es proposa una arquitectura jeràrquica de sistema, que agrupa apropiadament un conjunt de detectors, cada un dels quals correspon a una de les classes acústiques d'interès. S'han desenvolupat dos sistemes diferents de SA per a dues bases de dades de difusió de notícies: la primera correspon a gravacions d'àudio del programa de debat Àgora del canal de televisió català TV3, i el segon inclou diversos segments d'àudio del canal de televisió català 3/24 de difusió de notícies. La sortida del primer sistema es va utilitzar com a primera etapa dels sistemes de traducció automàtica i de subtitulat del projecte Tecnoparla, un projecte finançat pel govern de la Generalitat en el que es desenvoluparen diverses tecnologies de la parla per extreure tota la informació possible del senyal d'àudio. El segon sistema d'AS, que és un sistema de detecció jeràrquica basat en HMM-GMM amb selecció de característiques, ha obtingut resultats competitius en l'avaluació de segmentació d'àudio Albayzín2010. Per acabar, val la pena esmentar alguns resultats col·laterals d’aquesta tesi. L’autor ha sigut responsable de l'organització de l'avaluació de sistemes de segmentació d'àudio dins de la campanya Albayzín-2010 abans esmentada. S'han especificat les classes d’esdeveniments, les bases de dades, la mètrica i els protocols d'avaluació utilitzats, i s'ha realitzat una anàlisi posterior dels sistemes i els resultats presentats pels vuit grups de recerca participants, provinents d'universitats espanyoles i portugueses. A més a més, s'ha implementat en la sala multimodal de la UPC un sistema de detecció d'esdeveniments acústics per a dues fonts simultànies, basat en HMM-GMM, i funcionant en temps real, per finalitats de test i demostració.
Yapanel, Umit. "Acoustic modeling and speaker normalization strategies with application to robust in-vehicle speech recognition and dialect classification." Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p3190395.
Full textSkarke, Adam D. "Application of chirp sonar acoustic reflection coefficient for sea floor sediment classification results from the Delaware Estuary /." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 109 p, 2008. http://proquest.umi.com/pqdweb?did=1459905621&sid=2&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Full textZiemann, Astrid, Klaus Arnold, and Armin Raabe. "Acoustic tomography as a method to characterize measuring sites." Wissenschaftliche Mitteilungen des Leipziger Instituts für Meteorologie ; 22 = Meteorologische Arbeiten aus Leipzig ; 6 (2001), S. 50-59, 2001. https://ul.qucosa.de/id/qucosa%3A15199.
Full textDie auf der Aussendung von Schallenergie basierende Methode der akustischen Tomographie wird in der atmosphärischen Bodenschicht angewendet, um bodennahe Temperaturfelder zu beobachten. Bedeutende Vorteile dieses Verfahrens im Vergleich zu anderen Meßmethoden sind die Fernerkundungskapazität und die Möglichkeit, flächengemittelte Werte meteorologischer Größen direkt abzuleiten. Die für den tomographischen Invertierungsalgorithmus benötigten Eingangsdaten werden durch die Wechselwirkung von Schallwellen mit der durchstrahlten Luftschicht bereitgestellt. Die resultierenden horizontalen Schnittbilder führen zu Darstellungen der Inhomogenität der Oberfläche. Letztere können beachtliche Schwierigkeiten während der Analyse von Messkampagnen mit konventionellen Methoden hervorrufen.
Nieuwoudt, Christoph. "Cross-language acoustic adaptation for automatic speech recognition." Thesis, Pretoria : [s.n.], 2000. http://upetd.up.ac.za/thesis/available/etd-01062005-071829.
Full textSpäth, Bastian, Matthias Philipp, and Thomas Bartnitzki. "Machine performance and acoustic fingerprints of cutting and drilling." TU Bergakademie Freiberg, 2017. https://tubaf.qucosa.de/id/qucosa%3A23182.
Full textFlocon-Cholet, Joachim. "Classification audio sous contrainte de faible latence." Thesis, Rennes 1, 2016. http://www.theses.fr/2016REN1S030/document.
Full textThis thesis focuses on audio classification under low-latency constraints. Audio classification has been widely studied for the past few years, however, a large majority of the existing work presents classification systems that are not subject to temporal constraints : the audio signal can be scanned freely in order to gather the needed information to perform the decision (in that case, we may refer to an offline classification). Here, we consider audio classification in the telecommunication domain. The working conditions are now more severe : algorithms work in real time and the analysis and processing steps are now operated on the fly, as long as the signal is transmitted. Hence, the audio classification step has to meet the real time constraints, which can modify its behaviour in different ways : only the current and the past observations of the signal are available, and, despite this fact the classification system has to remain reliable and reactive. Thus, the first question that occurs is : what strategy for the classification can we adopt in order to tackle the real time constraints ? In the literature, we can find two main approaches : the frame-level classification and the segment-level classification. In the frame-level classification, the decision is performed using only the information extracted from the current audio frame. In the segment-level classification, we exploit a short-term information using data computed from the current and few past frames. The data fusion here is obtained using the process of temporal feature integration which consists of deriving relevant information based on the temporal evolution of the audio features. Based on that, there are several questions that need to be answered. What are the limits of these two classification framework ? Can an frame-level classification and a segment-level be used efficiently for any classification task ? Is it possible to obtain good performance with these approaches ? Which classification framework may lead to the best trade-off between accuracy and reactivity ? Furthermore, for the segment-level classification framework, the temporal feature integration process is mainly based on statistical models, but would it be possible to propose other methods ? Throughout this thesis, we investigate this subject by working on several concrete case studies. First, we contribute to the development of a novel audio algorithm dedicated to audio protection. The purpose of this algorithm is to detect and suppress very quickly potentially dangerous sounds for the listener. Our method, which relies on the proposition of three features, shows high detection rate and low false alarm rate in many use cases. Then, we focus on the temporal feature integration in a low-latency framework. To that end, we propose and evaluate several methodologies for the use temporal integration that lead to a good compromise between performance and reactivity. Finally, we propose a novel approach that exploits the temporal evolution of the features. This approach is based on the use of symbolic representation that can capture the temporal structure of the features. The idea is thus to find temporal patterns that are specific to each audio classes. The experiments performed with this approach show promising results
Caillat, Marjolaine. "Assessing and correcting for the effects of species misclassification during passive acoustic surveys of cetaceans." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/4209.
Full textArnold, Klaus, Astrid Ziemann, and Armin Raabe. "Acoustic tomography in comparision to in-situ temperature and wind measurements." Wissenschaftliche Mitteilungen des Leipziger Instituts für Meteorologie ; 22 = Meteorologische Arbeiten aus Leipzig ; 6 (2001), S. 60-68, 2001. https://ul.qucosa.de/id/qucosa%3A15201.
Full textDie Akustische Laufzeittomographie wird als ein experimentelles Verfahren zur Sondierung meteorologischer Parameter, wie z.B. der Lufttemperatur und der horizontalen Windgeschwindigkeit, vorgestellt. Dieses bodengebundene Fernerkundungsverfahren nutzt die horizontale Ausbreitung von Schallwellen in der atmosphärischen Grenzschicht. Hier wird das Verfahren der Laufzeittomographie angewendet, d.h. bei bekannter Weglänge wird die Ausbreitungszeit von ausgesendeten Schallsignalen zwischen mehreren Schallquellen und Empfängern gemessen. Die resultierenden Schallgeschwindigkeitsinformationen werden genutzt, um daraus die entsprechenden meteorologischen Parameter abzuleiten. Auf dem Gelände des Meteorologischen Observatoriums Lindenberg (DWD) wurde eine Messkampagne durchgeführt, um die akustischen Sondierungen mit konventionellen Systemen zu vergleichen. Die Auswertungen zeigen, dass einerseits die Genauigkeit der Akustischen Tomographie vergleichbar mit den konventionellen in-situ Messungen ist und andererseits, dass die Lufttemperatur aufgrund des Strahlungseinflusses bei Messungen mit den üblichen Sensoren zum Teil erheblich überschätzt wird.
Kahl, Stefan. "Identifying Birds by Sound: Large-scale Acoustic Event Recognition for Avian Activity Monitoring." Universitätsverlag Chemnitz, 2019. https://monarch.qucosa.de/id/qucosa%3A36986.
Full textDie automatisierte Überwachung der Vogelstimmenaktivität und der Artenvielfalt kann ein revolutionäres Werkzeug für Ornithologen, Naturschützer und Vogelbeobachter sein, um bei der langfristigen Überwachung kritischer Umweltnischen zu helfen. Tiefe künstliche neuronale Netzwerke haben die traditionellen Klassifikatoren im Bereich der visuellen Erkennung und akustische Ereignisklassifizierung übertroffen. Dennoch erfordern tiefe neuronale Netze Expertenwissen, um leistungsstarke Modelle zu entwickeln, trainieren und testen. Mit dieser Einschränkung und unter Berücksichtigung der Anforderungen zukünftiger Anwendungen wurde eine umfangreiche Forschungsplattform zur automatisierten Überwachung der Vogelaktivität entwickelt: BirdNET. Das daraus resultierende Benchmark-System liefert state-of-the-art Ergebnisse in verschiedenen akustischen Bereichen und wurde verwendet, um Expertenwerkzeuge und öffentliche Demonstratoren zu entwickeln, die dazu beitragen können, die Demokratisierung des wissenschaftlichen Fortschritts und zukünftige Naturschutzbemühungen voranzutreiben.
Havel, Miriam, Gert Hofmann, Dirk Mürbe, and Johan Sundberg. "Contribution of Paranasal Sinuses to the Acoustic Properties of the Nasal Tract." Karger, 2014. https://tud.qucosa.de/id/qucosa%3A71619.
Full text