Academic literature on the topic 'Acoustic Classification'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acoustic Classification.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acoustic Classification"
Zheng, Hong Bo, Pin Yan, and Jing Chen. "The Discussion of Acoustic Seabed Sediment Classification Methods." Applied Mechanics and Materials 226-228 (November 2012): 1811–16. http://dx.doi.org/10.4028/www.scientific.net/amm.226-228.1811.
Full textMa, Ling, Ben Milner, and Dan Smith. "Acoustic environment classification." ACM Transactions on Speech and Language Processing 3, no. 2 (July 2006): 1–22. http://dx.doi.org/10.1145/1149290.1149292.
Full textHichem, Hafdaoui, and Benatia Djamel. "Comparative between (LiNbO3) and (LiTaO3) in detecting acoustics microwaves using classification." IAES International Journal of Artificial Intelligence (IJ-AI) 8, no. 1 (March 1, 2019): 33. http://dx.doi.org/10.11591/ijai.v8.i1.pp33-43.
Full textChoi. "Acoustic Target of Interest Tracking Algorithm Using Classification Feedback." Journal Of The Acoustical Society Of Korea 33, no. 4 (2014): 225. http://dx.doi.org/10.7776/ask.2014.33.4.225.
Full textMartin, Linda V., Timothy K. Stanton, Peter H. Wiebe, and James F. Lynch. "Acoustic classification of zooplankton." Journal of the Acoustical Society of America 98, no. 5 (November 1995): 2881. http://dx.doi.org/10.1121/1.413130.
Full textWilson, Joshua D., and Nicholas C. Makris. "Ocean acoustic hurricane classification." Journal of the Acoustical Society of America 119, no. 1 (January 2006): 168–81. http://dx.doi.org/10.1121/1.2130961.
Full textMartin, L. "Acoustic classification of zooplankton." ICES Journal of Marine Science 53, no. 2 (April 1996): 217–24. http://dx.doi.org/10.1006/jmsc.1996.0025.
Full textNooralahiyan, A. Y., H. R. Kirby, and D. McKeown. "Vehicle classification by acoustic signature." Mathematical and Computer Modelling 27, no. 9-11 (May 1998): 205–14. http://dx.doi.org/10.1016/s0895-7177(98)00060-0.
Full textLeonetti, Marc C., and Edward A. Hand. "Acoustic classification using fuzzy sets." Journal of the Acoustical Society of America 92, no. 4 (October 1992): 2418–19. http://dx.doi.org/10.1121/1.404644.
Full textMalkin, R. A., and D. Alexandrou. "Acoustic classification of abyssopelagic animals." IEEE Journal of Oceanic Engineering 18, no. 1 (1993): 63–72. http://dx.doi.org/10.1109/48.211495.
Full textDissertations / Theses on the topic "Acoustic Classification"
Martin, Traykovski Linda V. (Linda Victoria) 1966. "Acoustic classification of zooplankton." Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/49620.
Full textTemko, Andriy. "Acoustic event detection and classification." Doctoral thesis, Universitat Politècnica de Catalunya, 2007. http://hdl.handle.net/10803/6880.
Full textsortides de diversos sistemes de classificació. Els sistemes de classificació d'events acústics
desenvolupats s'han testejat també mitjançant la participació en unes quantes avaluacions d'àmbit
internacional, entre els anys 2004 i 2006. La segona principal contribució d'aquest treball de tesi consisteix en el desenvolupament de sistemes de detecció d'events acústics. El problema de la detecció és més complex, ja que inclou tant la classificació dels sons com la determinació dels intervals temporals on tenen lloc. Es desenvolupen dues versions del sistema i es proven amb els conjunts de dades de les dues campanyes d'avaluació internacional CLEAR que van tenir lloc els anys 2006 i 2007, fent-se servir dos tipus de bases de dades: dues bases d'events acústics aïllats, i una base d'enregistraments de seminaris interactius, les quals contenen un nombre relativament elevat d'ocurrències dels events acústics especificats. Els sistemes desenvolupats, que consisteixen en l'ús de classificadors basats en SVM que operen dins
d'una finestra lliscant més un post-processament, van ser els únics presentats a les avaluacions
esmentades que no es basaven en models de Markov ocults (Hidden Markov Models) i cada un d'ells
va obtenir resultats competitius en la corresponent avaluació. La detecció d'activitat oral és un altre dels objectius d'aquest treball de tesi, pel fet de ser un cas particular de detecció d'events acústics especialment important. Es desenvolupa una tècnica de millora de l'entrenament dels SVM per fer front a la necessitat de reducció de l'enorme conjunt de dades existents. El sistema resultant, basat en SVM, és testejat amb uns quants conjunts de dades de l'avaluació NIST RT (Rich Transcription), on mostra puntuacions millors que les del sistema basat en GMM, malgrat que aquest darrer va quedar entre els primers en l'avaluació NIST RT de 2006.
Per acabar, val la pena esmentar alguns resultats col·laterals d'aquest treball de tesi. Com que s'ha dut a terme en l'entorn del projecte europeu CHIL, l'autor ha estat responsable de l'organització de les avaluacions internacionals de classificació i detecció d'events acústics abans esmentades, liderant l'especificació de les classes d'events, les bases de dades, els protocols d'avaluació i, especialment, proposant i implementant les diverses mètriques utilitzades. A més a més, els sistemes de detecció
s'han implementat en la sala intel·ligent de la UPC, on funcionen en temps real a efectes de test i demostració.
The human activity that takes place in meeting-rooms or class-rooms is reflected in a rich variety of acoustic events, either produced by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity.
Additionally, detection of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition. Automatic detection and classification of acoustic events is the objective of this thesis work. It aims at processing the acoustic signals collected by distant microphones in meeting-room or classroom environments to convert them into symbolic descriptions corresponding to a listener's perception of the different sound events that are present in the signals and their sources. First of all, the task of acoustic event classification is faced using Support Vector Machine (SVM) classifiers, which are motivated by the scarcity of training data. A confusion-matrix-based variable-feature-set clustering scheme is developed for the multiclass recognition problem, and tested on the gathered database. With it, a higher classification rate than the GMM-based technique is obtained, arriving to a large relative average error reduction with respect to the best result from the conventional binary tree scheme. Moreover, several ways to extend SVMs to sequence processing are compared, in an attempt to avoid the drawback of SVMs when dealing with audio data, i.e. their restriction to work with fixed-length vectors, observing that the dynamic time warping kernels work well for sounds that show a temporal structure. Furthermore, concepts and tools from the fuzzy theory are used to investigate, first, the importance of and degree of interaction among features, and second, ways to fuse the outputs of several classification systems. The developed AEC systems are tested also by participating in several international evaluations from 2004 to 2006, and the results
are reported. The second main contribution of this thesis work is the development of systems for detection of acoustic events. The detection problem is more complex since it includes both classification and determination of the time intervals where the sound takes place. Two system versions are developed and tested on the datasets of the two CLEAR international evaluation campaigns in 2006 and 2007. Two kinds of databases are used: two databases of isolated acoustic events, and a database of interactive seminars containing a significant number of acoustic events of interest. Our developed systems, which consist of SVM-based classification within a sliding window plus post-processing, were the only submissions not using HMMs, and each of them obtained competitive results in the corresponding evaluation. Speech activity detection was also pursued in this thesis since, in fact, it is a -especially important - particular case of acoustic event detection. An enhanced SVM training approach for the speech activity detection task is developed, mainly to cope with the problem of dataset reduction. The resulting SVM-based system is tested with several NIST Rich Transcription (RT) evaluation datasets, and it shows better scores than our GMM-based system, which ranked among the best systems in the RT06 evaluation. Finally, it is worth mentioning a few side outcomes from this thesis work. As it has been carried out in the framework of the CHIL EU project, the author has been responsible for the organization of the above mentioned international evaluations in acoustic event classification and detection, taking a leading role in the specification of acoustic event classes, databases, and evaluation protocols, and, especially, in the proposal and implementation of the various metrics that have been used. Moreover, the detection systems have been implemented in the UPC's smart-room and work in real time for purposes of testing and demonstration.
Brock, James L. "Acoustic classification using independent component analysis /." Link to online version, 2006. https://ritdml.rit.edu/dspace/handle/1850/2067.
Full textCaughey, David Arthur. "Seabed classification from acoustic echosounder returns." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ32738.pdf.
Full textHassan, Ali. "On automatic emotion classification using acoustic features." Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/340672/.
Full textYagci, Tayfun. "Target Classification And Recognition Using Underwater Acoustic Signals." Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606373/index.pdf.
Full textvisual&rdquo
target detection methods left the stage to the computerized acoustic signature detection and evaluation methods. Despite this, the research projects have not sufficiently addressed in the field of acoustic signature evaluation. This thesis work mainly investigates classification and recognition techniques with TRN / LOFAR signals, which are emitted from surface and subsurface platforms and proposes possible adaptations of existing methods that may give better results if they are used with these signals. Also a detailed comparison has been made about the experimental results with underwater acoustic signals.
Dunn, Shane C. "Acoustic classification of benthic habitats in Tampa Bay." [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002297.
Full textPhilips, Scott M. "Perceptually-driven signal analysis for acoustic event classification /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/5934.
Full textWichert, Terry S., and Daniel Joseph Collins. "Feature based neural network acoustic transient signal classification." Thesis, Monterey, California. Naval Postgraduate School, 1993. http://hdl.handle.net/10945/24169.
Full textBissinger, Brett Bose N. K. Culver R. Lee. "Minimum hellinger distance classification of underwater acoustic signals." [University Park, Pa.] : Pennsylvania State University, 2009. http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-4677/index.html.
Full textBooks on the topic "Acoustic Classification"
Traykovski, Linda V. Martin. Acoustic classification of zooplankton. Woods Hole, Mass: Massachusetts Institute of Technology, Woods Hole Oceanographic Institution, Joint Program in Oceanography/Applied Ocean Science and Engineering, 1998.
Find full textAcoustic emission, microseismic activity. Lisse: Balkema, 2003.
Find full textWichert, Terry S. Feature based neural network acoustic transient signal classification. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textFlowers, Nicholas. Remote classification of sea bed material using backscattered acoustic signals. Birmingham: University of Birmingham, 1987.
Find full textGabsdil, Malte. Automatic classification of speech recognition hypotheses using acoustic and pragmatic features. Saarbrücken: DFKI & Universität des Saarlandes, 2005.
Find full textHealey, Anthony J. Sonar signal acquisition and processing for identification and classification of ship hull fouling. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textTang, Xiaoou. Dominant run-length method for image classification. [Woods Hole, Mass: Woods Hole Oceanographic Institution, 1997.
Find full textTang, Xiaoou. Dominant run-length method for image classification. [Woods Hole, Mass: Woods Hole Oceanographic Institution, 1997.
Find full textTonn, Joerg-Christian, and Douglas Kondziolka. Tumours of the cranial nerves. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199651870.003.0010.
Full textBook chapters on the topic "Acoustic Classification"
Hashimoto, Sho. "Classification of Vestibular Schwannoma (Acoustic Neuroma)." In Acoustic Neuroma, 13–16. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_3.
Full textMoffat, David A. "Moffat Classification of Facial Nerve Function." In Acoustic Neuroma, 73–78. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_13.
Full textSekiya, Tetsuji, and Shigeharu Suzuki. "A Classification System for Vestibular Schwannomas." In Acoustic Neuroma, 45–48. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_9.
Full textMagnan, Jacques P. Y. "Surgical Classification and Predictive Factors in Acoustic Neuromas." In Acoustic Neuroma, 39–43. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_8.
Full textMurakami, Shingo, Nobuhiro Watanabe, and Sotaro Kamei. "New Classification of Postoperative Hearing Results Following Acoustic Neuroma Surgery." In Acoustic Neuroma, 117–20. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_20.
Full textTemko, Andrey, Climent Nadeu, Dušan Macho, Robert Malkin, Christian Zieger, and Maurizio Omologo. "Acoustic Event Detection and Classification." In Computers in the Human Interaction Loop, 61–73. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-054-8_7.
Full textPatole, Rashmika, and Priti Rege. "Acoustic Classification of Bird Species." In Lecture Notes in Electrical Engineering, 313–19. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-8391-9_23.
Full textLourens, J. G. "Classification of Ships Using Underwater Radiated Noise." In Underwater Acoustic Data Processing, 591–96. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-2289-1_66.
Full textIshikawa, Kazuo, Zhiwei Cao, Yan Wang, Katsumi Monoo, and Nobuyuki Yasui. "Classification of Tumor Size from the Point of View of Functional Preservation, Based Upon Our 53 Surgical Cases with Acoustic Neuroma." In Acoustic Neuroma, 29–34. Tokyo: Springer Japan, 2003. http://dx.doi.org/10.1007/978-4-431-53942-1_6.
Full textRen, Chunxia, and Shengchen Li. "Two-Stage Classification Learning for Open Set Acoustic Scene Classification." In Proceedings of the 8th Conference on Sound and Music Technology, 124–33. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1649-5_11.
Full textConference papers on the topic "Acoustic Classification"
Mayorga, Pedro, Julio Valdez, Vesna Zeljkovic, Christopher Druzgalski, and Monceni A. Perez. "Cardiopulmonary acoustic events classification." In 2016 International Conference on High Performance Computing & Simulation (HPCS). IEEE, 2016. http://dx.doi.org/10.1109/hpcsim.2016.7568381.
Full textSaki, Fatemeh, Yinyi Guo, Cheng-Yu Hung, Lae-hoon Kim, Manyu Deshpande, Sunkuk Moon, Eunjeong Koh, and Erik Visser. "Open-set Evolving Acoustic Scene Classification System." In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/en2t-9m14.
Full textRemaggi, Luca, Hansung Kim, Philip J. B. Jackson, Filippo Maria Fazi, and Adrian Hilton. "Acoustic Reflector Localization and Classification." In ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018. http://dx.doi.org/10.1109/icassp.2018.8462146.
Full textFelipe, Gustavo Zanoni, Yandre Maldonado, Gomes da Costa, and Lucas Georges Helal. "Acoustic scene classification using spectrograms." In 2017 36th International Conference of the Chilean Computer Science Society (SCCC). IEEE, 2017. http://dx.doi.org/10.1109/sccc.2017.8405119.
Full textSampath, D. Y. K., and G. D. S. P. Wimalarathne. "Obstacle classification through acoustic echolocation." In 2015 International Conference on Estimation, Detection and Information Fusion (ICEDIF). IEEE, 2015. http://dx.doi.org/10.1109/icedif.2015.7280147.
Full textAu-Yeung, Justin, Mahesh K. Banavar, and Vanitha M. "Room Classification using Acoustic Signals." In 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE). IEEE, 2020. http://dx.doi.org/10.1109/ic-etite47903.2020.91.
Full textNurzynski, Jacek. "New Acoustic Classification Scheme for Residential Buildings in Poland." In 2018 Joint Conference - Acoustics. IEEE, 2018. http://dx.doi.org/10.1109/acoustics.2018.8502338.
Full textWilkinghoff, Kevin, and Frank Kurth. "Open-Set Acoustic Scene Classification with Deep Convolutional Autoencoders." In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/340j-wd27.
Full textHuang, Jonathan, Hong Lu, Paulo Lopez Meyer, Hector Cordourier, and Juan Del Hoyo Ontiveros. "Acoustic Scene Classification Using Deep Learning-based Ensemble Averaging." In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/8rd2-g787.
Full textKoutini, Khaled, Hamid Eghbal-zadeh, and Gerhard Widmer. "Receptive-Field-Regularized CNN Variants for Acoustic Scene Classification." In 4th Workshop on Detection and Classification of Acoustic Scenes and Events (DCASE 2019). New York University, 2019. http://dx.doi.org/10.33682/cjd9-kc43.
Full textReports on the topic "Acoustic Classification"
Thammakhoune, Ned B., and Stephen W. Lang. Long Range Acoustic Classification. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada393792.
Full textEom, K., M. Wellman, N. Srour, D. Hillis, and R. Chellappa. Acoustic Target Classification Using Multiscale Methods. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada358579.
Full textStanton, Timothy K., and Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada609882.
Full textStanton, Timothy K., and Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, October 2003. http://dx.doi.org/10.21236/ada418128.
Full textStanton, Timothy K., and Dezhang Chu. Acoustic Resonance Classification of Swimbladder-Bearing Fish. Fort Belvoir, VA: Defense Technical Information Center, July 2010. http://dx.doi.org/10.21236/ada525356.
Full textStanton, Timothy K., Dezhang Chu, and J. M. Jech. Acoustic Resonance Classification of Swimbladder-Bearing Fish. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada573418.
Full textStanton, Timothy K., and Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada628843.
Full textStanton, Timothy K., and Peter H. Wiebe. Acoustic Scattering Classification of Zooplankton and Microstructure. Fort Belvoir, VA: Defense Technical Information Center, September 2001. http://dx.doi.org/10.21236/ada626242.
Full textGoldman, Geoffrey H., Ronald M. Holben, and Guy L. Williams. Performance Metrics for Acoustic Classification of Weapons Fire. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada570174.
Full textMcLaughlin, Jack, Scott Philips, and James Pitton. Perceptually-Driven Signal Analysis for Acoustic Event Classification. Fort Belvoir, VA: Defense Technical Information Center, September 2007. http://dx.doi.org/10.21236/ada476810.
Full text