Contents
Academic literature on the topic 'Acier austénitique – Détérioration'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acier austénitique – Détérioration.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Acier austénitique – Détérioration"
Maccarinelli, Didier. "Adhésion et durabilité de matériaux sandwich acier inoxydable-polymère-acier inoxydable." Lyon 1, 1991. http://www.theses.fr/1991LYO19013.
Full textVaugoude, Adrien. "Contribution au développement d’aciers austénitiques avancés résistants au gonflement sous irradiation." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1R054.
Full textIn the framework on 4th generation reactors, the CEA is developing new grades of austenitic steels that will be usable, for example, for the cladding of fuels for sodium-cooling fast neutron reactors (RNR-Na). Thanks to their excellent mechanical properties and good corrosion resistance, they can be used up to 100 dpa, although their service life may be limited by the phenomenon of swelling under irradiation. Swelling is due to the formation of cavities in the material following irradiation and can cause geometric deformations and weaken the fuel claddings. The reference alloy, developed thanks to previous R&D on French RNRs, is an austenitic 15Cr/15Ni titanium stabilized steel called AIM1. This work focuses on studying and understanding the mechanisms leading to the formation of cavities under irradiation to contribute to the development of a more swell-resistant AIM2 grade. Different chemical and microstructural optimizations were investigated using an analytical approach. Three model alloys were used to study the double stabilization of titanium and niobium and several model microstructures were defined to highlight the role of microstructural parameters influencing swelling (dislocations, solutes, nanoprecipitates). Characterizations by SEM, DRX and DNPA have allowed a better understanding of the microstructural evolutions of the three grades, model microstructures and also to study their ability to form a fine network of nanoprecipitates. Very high-dose irradiations with Fe3+ ions (2MeV and 10MeV) to induce the formation of cavities have highlighted the major role of microstructure on swelling resistance. A new methodology for the study of swelling induced by ion irradiation has been proposed. It allows a statistical study of cavity formation and is based on the use of scanning microscopy. Indeed, the new detectors can acquire high definition images that can contain several thousand cavities on the same micrograph. These images are then analyzed using a supervised learning artificial intelligence algorithm to automatically recognize the cavities but as well as different objects present in the microstructure (precipitates, grain joints, etc.). An example of a study of the effect on the swelling of the irradiation damage gradient, characteristic of heavy ion irradiation, is presented as an illustration of this methodology called MEBIA. Cluster dynamic calculations simulated the impact of nanoprecipitates and the initial density of dislocations on swelling. These results inspired the creation of new microstructures that were irradiated and began to be characterized. This work will have to be continued to validate the relevance of optimized microstructures. Results presented in this manuscript illustrate the difficulties encountered in studying the microstructures of austenitic steels irradiated at very high doses, but it shows that new approaches can also be put in place to facilitate this work
Hédin, Marc. "Sensibilité aux conditions initiales de l'évolution microstructurale de la ferrite d'aciers austéno-ferritiques vieillis dans le domaine 300-400°C." Rouen, 1998. http://www.theses.fr/1998ROUES080.
Full textParrens, Coralie. "Cyclage thermomécanique d'un acier inoxydable austénitique à haute température : influence sur le vieillissement et le comportement mécanique. Caractérisations expérimentales et modélisations." Thesis, Toulouse, INPT, 2017. http://www.theses.fr/2017INPT0015/document.
Full textAustenitic stainless steels are widely used in industrial applications. 310S stainless steel has high chromium and nickel contents, providing a competitive mechanical behavior for high temperature utilizations. Nevertheless, lifetime prediction is difficult to assess under coupled mechanical and thermal solicitations. Many data are available on aging and isothermal creep of austenitic stainless steels, but few consider the coupled effect of multiple solicitations. These data are insufficient to explain industrial macroscopic observations. The aim of this study was thus to explore the involved mechanisms in such a case. 310S stainless steel aging was investigated under various thermal cycling solicitations at 870°C. The obtained microstructures were characterized by numerous experimental means. The effect of thermal cycling on nucleation and growth of sigma phase precipitates was quantified. The results of the present work revealed enhanced sigma phase nucleation in these non-isothermal conditions. In addition, mechanical tests were carried out at 20, 650, 780 and 870°C under a large range of stresses. The results highlight a noticeable influence of microstructural evolution on elastic and creep properties of this alloy. Simultaneous increases of Young modulus, rupture stress and creep rates were evidenced. It was thus evidenced that lifetime prediction of components under thermomechanical cycling must take into account the microstructure change during lifetime. Finally, two models were proposed in order to assess microstructural changes and creep behavior that apply to isothermal and thermomechanical cycling conditions mimicking in service conditions of industrial components
Peng, Ziling. "Fatigue d’un acier inoxydable austénitique 304L : étude des effets de l’environnement (air/eau primaire rep) à 300°c, de la contrainte moyenne et de l’état de surface." Thesis, Chasseneuil-du-Poitou, Ecole nationale supérieure de mécanique et d'aérotechnique, 2021. http://www.theses.fr/2021ESMA0005.
Full textThe fatigue life estimation of nuclear components is an important subject for the operation license extension of nuclear power plants. In the current codifications, the influence of several factors (surface finish, mean stress, etc.) is taken into account to estimate the fatigue life. However, the effect of pressurized water reactor (PWR) primary water, as well as its interaction with other as-mentioned factors, have not been unambiguously demonstrated.Thus, this work aims to develop further knowledge of the impact of these different parameters on the kinetics and fatigue damage mechanisms of austenitic stainless steel 304L which are widely used for the cooling pipes of the primary circuit in PWR. Three parameters are investigated: the environment (air at 300 ° C/PWR primary water), the mean stress (0 MPa/20MPa/50 MPa), and the surface finish (as-received state/degraded state).Strain amplitude-controlled fatigue tests were carried out. To investigate the kinetics of crack initiation and propagation, two approaches are considered: the establishment of phenomenological macroscopic cracking laws, based on crack depth measurements in until failure fatigue tests and in stopped fatigue tests; the establishment of microscopic laws, based on measurement of the fatigue striation spaces of specimens tested to failure. To understand themodification of the cracking kinetics observed under different conditions, micro cracking mechanisms were discussed, based on the SEM, EBSD and TEM characterization.The fatigue tests reveal a decrease of fatigue life in PWR primary water, independent of the surface finish and the applied mean stress. This is attributed to the acceleration of the initiation phase of crack propagation. Compared to the cracking in air, the cracking in PWR water presents an aspect more "fragile", in terms of plasticity localization and reduction around the crack, as well as a more crystallographic cracking path. Applying a mean stress under a given strain amplitude reduces fatigue life in air, due to accelerated crack initiation and crack propagation. This detrimental effect is related to ductile and rapid cracking in the presence of mean stress. However, in PWR water, the application of the mean stress shows a minor influence on the fatigue crack propagation rate. The reduction of fatigue life due to the presence of mean stress in PWR water is mainly caused by the accelerated crack initiation.The harmful influence of the surface finish on fatigue life is observed, independent of the environment and mean stress. The crack propagation rate in PWR water again shows little sensitivity to the surface finish
Soro, Jean-Michel. "Étude du vieillissement et de la fragilisation d'aciers inoxydables austénoferritiques : mise en œuvre de l'essai de microindentation instrumentée." Vandoeuvre-les-Nancy, INPL, 1997. http://www.theses.fr/1997INPL122N.
Full textRenaux, Jeoffrey. "Ιnfluence de l'austénite et des impuretés sur le vieillissement thermique de la ferrite des aciers inοxydables austénο-ferritiques." Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR026.
Full textAusteno-ferritic steels used in the design of various cast components (valves, pump bodies, etc.) in the primary circuit of second-generation nuclear power plants exhibit changes in their mechanical properties at service temperatures between 285°C and 325°C. These two-phase alloys, which combine ferrite and austenite, exhibit a microstructural hardening that occurs within the ferrite. This hardening is associated with two phase transformations, including, firstly, spinodal decomposition into an α phase rich in Fe and an α' phase rich in Cr, and secondly, the formation of a G phase rich in alloying elements Ni, Si, Mn, Mo. While austeno-ferritic steels containing Mo present a greater hardening than steels without Mo, the observation of a purely ferritic steel containing Mo, on the contrary, showed less hardening due to the absence of G phase precipitation. The aim of this study was to understand the influence of austenite on the aging of ferrite, which was the main hypothesis put forward to explain the reason for the lesser hardening of purely ferritic steel. To confront this hypothesis, the use of an electrochemical method allowed for the selective dissolution of austenite to obtain austenite-free ferrite, with the same composition, morphology, and thermo-mechanical history as the ferrite with austenite. The study by atom probe tomography of the microstructural evolution of these two ferrites, as well as that of a purely ferritic steel under aging conditions of 1,000 hours at 400°C, allowed for the investigation and understanding of the following points:- The results showed that the presence of austenite induces residual compressive stresses on the ferrite, which are not the cause of the enhanced aging of austeno-ferritic steels, as no significant difference in microstructure was observable between ferrites with and without austenite.- The characterization of the effect of the Cr/Ni composition gradient near the α/γ interfaces on the microstructural evolution of ferrite was conducted. The evolution of Cr and Ni concentrations towards the α/γ interfaces does not impact the spinodal decomposition but affects the formation of the G phase, with the main effect being a significant decrease in nanoparticle density towards the α/γ interfaces.- As residual stresses are not the cause of the difference in aging between purely ferritic and austeno-ferritic steels, the hypothesis of a chemical composition effect was considered. The results showed that the number density of G phase particles is strongly correlated with the impurity concentration in the ferrite. The absence of impurities in the ferritic alloy appears to explain the absence of G phase nanoparticles at the α/α’ interdomains and thus the lesser aging of the ferritic alloy
Novy, Stéphane. "Mécanismes de vieillissement à très longue échéance des aciers inoxydables austénoferritiques." Rouen, 2009. http://www.theses.fr/2009ROUES039.
Full textEmbrittlement study of duplex stainless steels is a very important in order to predict the lifetime of primary circuits of nuclear power plant. Ferrite steels aged over 20 years, on-site, in laboratory and at different temperatures was analyzed by tomographic probe atom to assess the trend of aging of these materials with very long times. A more prospective work was also carried out, the aim was to model the decomposition of ferrite from austenitic-ferritic steels. The simulation of the decomposition of these steels are very complex, we initiated preliminary work in modelling the Fe-Cr alloys, because the decomposition of Fe and Cr in these steels is the main cause of their fragility. To validate the parameters used in simulation, an experimental study of the decomposition of an alloy Fe-20% at. Cr aged at 500 ° C was performed. This experimental study has shown that a non-classical germination (NCG) is involved in this alloy. The performed simulations on the same alloy at the same temperature, did not reproduce the progressive enrichment of precipitated phase α' (characteristic of NCG). The study of steels, aged over 20 years, has confirmed that the steel aged in laboratory are representative to steel aged in site ( T <350 ° C). Moreover, it has been shown that the Gphase (intermetallic precipitation at the interface α/α' phases) does not influence the embrittlement of the ferrite and the difference of thermo-mechanical treatment is not determinant of the variance decomposition observed in these steels
Kpodekon, Crescent. "Effet du pré-écrouissage sur la durée de vie d'aciers austénitiques de type 304L." Phd thesis, INSA de Rouen, 2010. http://tel.archives-ouvertes.fr/tel-00581715.
Full textBelattar, Adel. "Analyses multi-échelles du comportement et la durée de vie d’aciers inoxydables 304L sous sollicitations cycliques avec pré-écrouissage." Thesis, Rouen, INSA, 2013. http://www.theses.fr/2013ISAM0004/document.
Full textThis study investigates the effects of loading history on the cyclic stress-strain curve and fatigue behavior of 304L stainless steel at room temperature. Tension-compression tests were performed ont the same specimen under controlled strain, using several loading sequences of increasing or decreasing amplitude. The results showed that fatigue life is significantly reduced by the previous loading history. A previously developed method for determining the effect of prehardening was evaluated. Microstructural analyses were also performed; the microstructures after preloading and their evolution during the fatigue cycles were characterized by TEM. The results of these analyses improve our understanding of the macroscopic properties of 304L stainless steel and can help us identify the causes of failure and lifetime reduction