Journal articles on the topic 'Acidothermus cellulolyticus'

To see the other types of publications on this topic, follow the link: Acidothermus cellulolyticus.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 43 journal articles for your research on the topic 'Acidothermus cellulolyticus.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shiang, Ming, James C. Linden, Ali Mohagheghi, Karel Grohmann, and Michael E. Himmel. "Regulation of cellulase synthesis in Acidothermus cellulolyticus." Biotechnology Progress 7, no. 4 (July 1991): 315–22. http://dx.doi.org/10.1021/bp00010a005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Baker, John O., William S. Adney, Rafael A. Nleves, Steven R. Thomas, David B. Wilson, and Michael E. Himmel. "A new thermostable endoglucanase,Acidothermus cellulolyticus E1." Applied Biochemistry and Biotechnology 45-46, no. 1 (March 1994): 245–56. http://dx.doi.org/10.1007/bf02941803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Barabote, Ravi D., Juanito V. Parales, Ying-Yi Guo, John M. Labavitch, Rebecca E. Parales, and Alison M. Berry. "Xyn10A, a Thermostable Endoxylanase from Acidothermus cellulolyticus 11B." Applied and Environmental Microbiology 76, no. 21 (September 17, 2010): 7363–66. http://dx.doi.org/10.1128/aem.01326-10.

Full text
Abstract:
ABSTRACT We cloned and purified the major family 10 xylanase (Xyn10A) from Acidothermus cellulolyticus 11B. Xyn10A was active on oat spelt and birchwood xylans between 60°C and 100°C and between pH 4 and pH 8. The optimal activity was at 90°C and pH 6; specific activity and Km for oat spelt xylan were 350 μmol xylose produced min−1 mg of protein−1 and 0.53 mg ml−1, respectively. Based on xylan cleavage patterns, Xyn10A is an endoxylanase, and its half-life at 90°C was approximately 1.5 h in the presence of xylan.
APA, Harvard, Vancouver, ISO, and other styles
4

Joh, Lawrence D., Farzaneh Rezaei, Ravi D. Barabote, Juanito V. Parales, Rebecca E. Parales, Alison M. Berry, and Jean S. VanderGheynst. "Effects of phenolic monomers on growth of Acidothermus cellulolyticus." Biotechnology Progress 27, no. 1 (December 22, 2010): 23–31. http://dx.doi.org/10.1002/btpr.525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Adney, W. S., M. P. Tucker, R. A. Nieves, S. R. Thomas, and M. E. Himmel. "Low molecular weight thermostable ?-D-glucosidase from Acidothermus cellulolyticus." Biotechnology Letters 17, no. 1 (January 1995): 49–54. http://dx.doi.org/10.1007/bf00134195.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Baker, John O., James R. McCarley, Rebecca Lovett, Ching-Hsing Yu, William S. Adney, Tauna R. Rignall, Todd B. Vinzant, Stephen R. Decker, Joshua Sakon, and Michael E. Himmel. "Catalytically Enhanced Endocellulase Cel5A from Acidothermus cellulolyticus." Applied Biochemistry and Biotechnology 121, no. 1-3 (2005): 0129–48. http://dx.doi.org/10.1385/abab:121:1-3:0129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Lindenmuth, Benjamin E., and Karen A. McDonald. "Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris." Protein Expression and Purification 77, no. 2 (June 2011): 153–58. http://dx.doi.org/10.1016/j.pep.2011.01.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Qing, Wei Zhang, Chaoyang Lin, Xiaoli Xu, and Zhicheng Shen. "Expression of an Acidothermus cellulolyticus endoglucanase in transgenic rice seeds." Protein Expression and Purification 82, no. 2 (April 2012): 279–83. http://dx.doi.org/10.1016/j.pep.2012.01.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

VanderGheynst, Jean S., Farzaneh Rezaei, Todd M. Dooley, and Alison M. Berry. "Switchgrass leaching requirements for solid-state fermentation by Acidothermus cellulolyticus." Biotechnology Progress 26, no. 3 (December 28, 2009): 622–26. http://dx.doi.org/10.1002/btpr.366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brumm, Phillip, Phillip Brumm, Dan Xie, Dan Xie, Larry Allen, Larry Allen, David A. Mead, and David A. Mead. "Hydrolysis of Cellulose by Soluble Clostridium Thermocellum and Acidothermus Cellulolyticus Cellulases." Journal of Enzymes 1, no. 1 (April 26, 2018): 5–19. http://dx.doi.org/10.14302/issn.2690-4829.jen-18-2025.

Full text
Abstract:
The goal of this work was to clone, express, characterize and assemble a set of soluble thermostablecellulases capable of significantly degrading cellulose. We successfully cloned, expressed, and purified eleven Clostridium thermocellum (Cthe) cellulases and eight Acidothermuscellulolyticus(Acel) cellulases. The performance of the nineteen enzymes was evaluated on crystalline (filter paper) and amorphous (PASC) cellulose. Hydrolysis products generated from these two substrates were converted to glucose using beta-glucosidase and the glucose formed was determined enzymatically. Ten of the eleven Cthe enzymes were highly active on amorphous cellulose. The individual enzymes all produced <10% reducing sugar equivalents from filter paper. Combinations of Cthe cellulases gave higher conversions, with the combination of CelE, CelI, CelG, and CelK converting 34% of the crystalline cellulose. All eight Acel cellulases showed endo-cellulase activity and were highly active on PASC. Only Acel_0615 produced more than 10% reducing sugar equivalents from filter paper, and a combination of six Acel cellulases produced 32% conversion. Acel_0617, a GH48 exo-cellulase, and Acel_0619, a GH12 endo-cellulase, synergistically stimulated cellulose degradation by the combination of Cthe cellulases to almost 80%. Addition of both Acel enzymes to the Cthe enzyme mix did not further stimulate hydrolysis. Cthe CelG and CelI stimulated cellulose degradation by the combination of Acel cellulases to 66%.
APA, Harvard, Vancouver, ISO, and other styles
11

Biswas, Gadab C. Ghosh, Callista Ransom, and Mariam Sticklen. "Expression of biologically active Acidothermus cellulolyticus endoglucanase in transgenic maize plants." Plant Science 171, no. 5 (November 2006): 617–23. http://dx.doi.org/10.1016/j.plantsci.2006.06.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Jiang, Xiran, Xiaoya Zhou, Qi Liu, Lulu Zheng, Ning Yu, and Wenli Li. "Expression of Acidothermus cellulolyticus thermostable cellulases in tobacco and rice plants." Biotechnology & Biotechnological Equipment 31, no. 1 (September 30, 2016): 23–28. http://dx.doi.org/10.1080/13102818.2016.1236671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Li, Yuwei, Mingwei Bu, Peng Chen, Xiaohong Li, Changwu Chen, Gui Gao, Yan Feng, Weiwei Han, and Zuoming Zhang. "Characterization of a Thermophilic Monosaccharide Stimulated β-Glucosidase from Acidothermus cellulolyticus." Chemical Research in Chinese Universities 34, no. 2 (March 15, 2018): 212–20. http://dx.doi.org/10.1007/s40242-018-7408-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Barabote, R. D., G. Xie, D. H. Leu, P. Normand, A. Necsulea, V. Daubin, C. Medigue, et al. "Complete genome of the cellulolytic thermophile Acidothermus cellulolyticus 11B provides insights into its ecophysiological and evolutionary adaptations." Genome Research 19, no. 6 (March 6, 2009): 1033–43. http://dx.doi.org/10.1101/gr.084848.108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Wang, Junling, Gui Gao, Yuwei Li, Liangzhen Yang, Yanli Liang, Hanyong Jin, Weiwei Han, Yan Feng, and Zuoming Zhang. "Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B." International Journal of Molecular Sciences 16, no. 10 (October 22, 2015): 25080–95. http://dx.doi.org/10.3390/ijms161025080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Hand, Travis H., Anuska Das, Mitchell O. Roth, Chardasia L. Smith, Uriel L. Jean-Baptiste, and Hong Li. "Phosphate Lock Residues of Acidothermus cellulolyticus Cas9 Are Critical to Its Substrate Specificity." ACS Synthetic Biology 7, no. 12 (November 20, 2018): 2908–17. http://dx.doi.org/10.1021/acssynbio.8b00455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Rainey, Fred A., and Erko Stackebrandt. "Phylogenetic evidence for the classification of Acidothermus cellulolyticus into the subphylum of actinomycetes." FEMS Microbiology Letters 108, no. 1 (March 1993): 27–30. http://dx.doi.org/10.1111/j.1574-6968.1993.tb06068.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

MOHAGHEGHI, A., K. GROHMANN, M. HIMMEL, L. LEIGHTON, and D. M. UPDEGRAFF. "Isolation and Characterization of Acidothermus cellulolyticus gen. nov., sp. nov., a New Genus of Thermophilic, Acidophilic, Cellulolytic Bacteria." International Journal of Systematic Bacteriology 36, no. 3 (July 1, 1986): 435–43. http://dx.doi.org/10.1099/00207713-36-3-435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Summers, Samantha R., K. G. Sprenger, Jim Pfaendtner, Jan Marchant, Michael F. Summers, and Joel L. Kaar. "Mechanism of Competitive Inhibition and Destabilization of Acidothermus cellulolyticus Endoglucanase 1 by Ionic Liquids." Journal of Physical Chemistry B 121, no. 48 (November 21, 2017): 10793–803. http://dx.doi.org/10.1021/acs.jpcb.7b08435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Tucker, Melvin P., Ali Mohagheghi, Karel Grohmann, and Michael E. Himmel. "Ultra-Thermostable Cellulases From Acidothermus cellulolyticus: Comparison of Temperature Optima with Previously Reported Cellulases." Nature Biotechnology 7, no. 8 (August 1989): 817–20. http://dx.doi.org/10.1038/nbt0889-817.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

McCarter, Suzanne L., William S. Adney, Todd B. Vinzant, Edward Jennings, Fannie Posey Eddy, Stephen R. Decker, John O. Baker, Joshua Sakon, and Michael E. Himmel. "Exploration of Cellulose Surface-Binding Properties of Acidothermus cellulolyticus Cel5A by Site-Specific Mutagenesis." Applied Biochemistry and Biotechnology 98-100, no. 1-9 (2002): 273–88. http://dx.doi.org/10.1385/abab:98-100:1-9:273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Sun, Ye, Jay J. Cheng, Michael E. Himmel, Christopher D. Skory, William S. Adney, Steven R. Thomas, Brent Tisserat, Yufuko Nishimura, and Yuri T. Yamamoto. "Expression and characterization of Acidothermus cellulolyticus E1 endoglucanase in transgenic duckweed Lemna minor 8627." Bioresource Technology 98, no. 15 (November 2007): 2866–72. http://dx.doi.org/10.1016/j.biortech.2006.09.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rezaei, Farzaneh, Lawrence D. Joh, Hiroyuki Kashima, Amitha P. Reddy, and Jean S. VanderGheynst. "Selection of Conditions for Cellulase and Xylanase Extraction from Switchgrass Colonized by Acidothermus cellulolyticus." Applied Biochemistry and Biotechnology 164, no. 6 (February 12, 2011): 793–803. http://dx.doi.org/10.1007/s12010-011-9174-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Mu, Wanmeng, Xiaole Wang, Qinghai Xue, Bo Jiang, Tao Zhang, and Ming Miao. "Characterization of a thermostable glucose isomerase with an acidic pH optimum from Acidothermus cellulolyticus." Food Research International 47, no. 2 (July 2012): 364–67. http://dx.doi.org/10.1016/j.foodres.2011.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Winter, Remko T., Dominic P. H. M. Heuts, Egon M. A. Rijpkema, Edwin van Bloois, Hein J. Wijma, and Marco W. Fraaije. "Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B." Applied Microbiology and Biotechnology 95, no. 2 (January 11, 2012): 389–403. http://dx.doi.org/10.1007/s00253-011-3750-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Linger, Jeffrey G., William S. Adney, and Al Darzins. "Heterologous Expression and Extracellular Secretion of Cellulolytic Enzymes by Zymomonas mobilis." Applied and Environmental Microbiology 76, no. 19 (August 6, 2010): 6360–69. http://dx.doi.org/10.1128/aem.00230-10.

Full text
Abstract:
ABSTRACT Development of the strategy known as consolidated bioprocessing (CBP) involves the use of a single microorganism to convert pretreated lignocellulosic biomass to ethanol through the simultaneous production of saccharolytic enzymes and fermentation of the liberated monomeric sugars. In this report, the initial steps toward achieving this goal in the fermentation host Zymomonas mobilis were investigated by expressing heterologous cellulases and subsequently examining the potential to secrete these cellulases extracellularly. Numerous strains of Z. mobilis were found to possess endogenous extracellular activities against carboxymethyl cellulose, suggesting that this microorganism may harbor a favorable environment for the production of additional cellulolytic enzymes. The heterologous expression of two cellulolytic enzymes, E1 and GH12 from Acidothermus cellulolyticus, was examined. Both proteins were successfully expressed as soluble, active enzymes in Z. mobilis although to different levels. While the E1 enzyme was less abundantly expressed, the GH12 enzyme comprised as much as 4.6% of the total cell protein. Additionally, fusing predicted secretion signals native to Z. mobilis to the N termini of E1 and GH12 was found to direct the extracellular secretion of significant levels of active E1 and GH12 enzymes. The subcellular localization of the intracellular pools of cellulases revealed that a significant portion of both the E1 and GH12 secretion constructs resided in the periplasmic space. Our results strongly suggest that Z. mobilis is capable of supporting the expression and secretion of high levels of cellulases relevant to biofuel production, thereby serving as a foundation for developing Z. mobilis into a CBP platform organism.
APA, Harvard, Vancouver, ISO, and other styles
27

Liu, Jingli, Xuemei Wang, and Dingguo Xu. "QM/MM Study on the Catalytic Mechanism of Cellulose Hydrolysis Catalyzed by Cellulase Cel5A from Acidothermus cellulolyticus." Journal of Physical Chemistry B 114, no. 3 (January 28, 2010): 1462–70. http://dx.doi.org/10.1021/jp909177e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Ransom, Callista, Venkatesh Balan, Gadab Biswas, Bruce Dale, Elaine Crockett, and Mariam Sticklen. "Heterologous Acidothermus cellulolyticus 1,4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose." Applied Biochemistry and Biotechnology 137-140, no. 1-12 (April 2007): 207–19. http://dx.doi.org/10.1007/s12010-007-9053-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Makenova, Aiganym T., Herman B. Scholthof, Erlan M. Ramankulov, and Shuga A. Manabayeva. "Transient expression of Acidothermus cellulolyticus endoglucanase E1 by a Tomato bushy stunt virus-based plant expression vector." Journal of Biotechnology 208 (August 2015): S29—S30. http://dx.doi.org/10.1016/j.jbiotec.2015.06.080.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Teymouri, Farzaneh, Hasan Alizadeh, Lizbeth Laureano-Pérez, Bruce Dale, and Mariam Sticklen. "Effects of Ammonia Fiber Explosion Treatment on Activity of Endoglucanase from Acidothermus cellulolyticus in Transgenic Plant." Applied Biochemistry and Biotechnology 116, no. 1-3 (2004): 1183–92. http://dx.doi.org/10.1385/abab:116:1-3:1183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Shahid, Saher, Razia Tajwar, and Muhammad Waheed Akhtar. "A novel trifunctional, family GH10 enzyme from Acidothermus cellulolyticus 11B, exhibiting endo-xylanase, arabinofuranosidase and acetyl xylan esterase activities." Extremophiles 22, no. 1 (November 23, 2017): 109–19. http://dx.doi.org/10.1007/s00792-017-0981-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Dai, Ziyu, Brian S. Hooker, Ryan D. Quesenberry, and Steven R. Thomas. "Optimization of Acidothermus cellulolyticus Endoglucanase (E1) Production in Transgenic Tobacco Plants by Transcriptional, Post-transcription and Post-translational Modification." Transgenic Research 14, no. 5 (October 2005): 627–43. http://dx.doi.org/10.1007/s11248-005-5695-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Skopec, C. E., M. E. Himmel, J. F. Matthews, and J. W. Brady. "Energetics for displacing a single chain from the surface of microcrystalline cellulose into the active site of Acidothermus cellulolyticus Cel5A." Protein Engineering Design and Selection 16, no. 12 (December 1, 2003): 1005–15. http://dx.doi.org/10.1093/protein/gzg115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Summers, Samantha, Casey Kraft, Sarah Alamdari, Jim Pfaendtner, and Joel L. Kaar. "Enhanced Activity and Stability of Acidothermus cellulolyticus Endoglucanase 1 in Ionic Liquids via Engineering Active Site Residues and Non-Native Disulfide Bridges." ACS Sustainable Chemistry & Engineering 8, no. 30 (July 10, 2020): 11299–307. http://dx.doi.org/10.1021/acssuschemeng.0c03242.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chou, Hong, Ziyu Dai, Chia Hsieh, and Maurice SB Ku. "High level expression of Acidothermus cellulolyticus β-1, 4-endoglucanase in transgenic rice enhances the hydrolysis of its straw by cultured cow gastric fluid." Biotechnology for Biofuels 4, no. 1 (2011): 58. http://dx.doi.org/10.1186/1754-6834-4-58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Hwang, Min, Benjamin E. Lindenmuth, Karen A. McDonald, and Bryce W. Falk. "Bipartite and tripartite Cucumber mosaic virus-based vectors for producing the Acidothermus cellulolyticus endo-1,4-β-glucanase and other proteins in non-transgenic plants." BMC Biotechnology 12, no. 1 (2012): 66. http://dx.doi.org/10.1186/1472-6750-12-66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

CHENG, L., W. MU, and B. JIANG. "EFFICIENT BIOTRANSFORMATION OF D-GALACTOSE TO D-TAGATOSE BY ACIDOTHERMUS CELLULOLYTICS ATCC 43068." Journal of Food Biochemistry 35, no. 4 (August 2011): 1298–310. http://dx.doi.org/10.1111/j.1745-4514.2010.00452.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Cheng, Lifang, Wanmeng Mu, Tao Zhang, and Bo Jiang. "An L-arabinose isomerase from Acidothermus cellulolytics ATCC 43068: cloning, expression, purification, and characterization." Applied Microbiology and Biotechnology 86, no. 4 (November 17, 2009): 1089–97. http://dx.doi.org/10.1007/s00253-009-2322-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Evdokimova, Elizaveta V., Grigory V. Gladkov, Natalya I. Kuzina, Ekaterina A. Ivanova, Anastasiia K. Kimeklis, Aleksei O. Zverev, Arina A. Kichko, Tatyana S. Aksenova, Alexander G. Pinaev, and Evgeny E. Andronov. "The difference between cellulolytic ‘culturomes’ and microbiomes inhabiting two contrasting soil types." PLOS ONE 15, no. 11 (November 20, 2020): e0242060. http://dx.doi.org/10.1371/journal.pone.0242060.

Full text
Abstract:
High-throughput 16S rRNA sequencing was performed to compare the microbiomes inhabiting two contrasting soil types—sod-podzolic soil and chernozem—and the corresponding culturome communities of potentially cellulolytic bacteria cultured on standard Hutchinson media. For each soil type, soil-specific microorganisms have been identified: for sod-podzolic soil—Acidothermus, Devosia, Phenylobacterium and Tumebacillus, and for chernozem soil—Sphingomonas, Bacillus and Blastococcus. The dynamics of differences between soil types for bulk soil samples and culturomes varied depending on the taxonomic level of the corresponding phylotypes. At high taxonomic levels, the number of common taxa between soil types increased more slowly for bulk soil than for culturome. Differences between soil-specific phylotypes were detected in bulk soil at a low taxonomic level (genus, species). A total of 13 phylotypes were represented both in soil and in culturome. No relationship was shown between the abundance of these phylotypes in soil and culturome.
APA, Harvard, Vancouver, ISO, and other styles
40

Chung, Daehwan, Jenna Young, Minseok Cha, Roman Brunecky, Yannick J. Bomble, Michael E. Himmel, and Janet Westpheling. "Expression of the Acidothermus cellulolyticus E1 endoglucanase in Caldicellulosiruptor bescii enhances its ability to deconstruct crystalline cellulose." Biotechnology for Biofuels 8, no. 1 (August 13, 2015). http://dx.doi.org/10.1186/s13068-015-0296-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Das, Anuska, Travis H. Hand, Chardasia L. Smith, Ethan Wickline, Michael Zawrotny, and Hong Li. "The molecular basis for recognition of 5′-NNNCC-3′ PAM and its methylation state by Acidothermus cellulolyticus Cas9." Nature Communications 11, no. 1 (December 2020). http://dx.doi.org/10.1038/s41467-020-20204-1.

Full text
Abstract:
AbstractAcidothermus cellulolyticus CRISPR-Cas9 (AceCas9) is a thermophilic Type II-C enzyme that has potential genome editing applications in extreme environments. It cleaves DNA with a 5′-NNNCC-3′ Protospacer Adjacent Motif (PAM) and is sensitive to its methylation status. To understand the molecular basis for the high specificity of AceCas9 for its PAM, we determined two crystal structures of AceCas9 lacking its HNH domain (AceCas9-ΔHNH) bound with a single guide RNA and DNA substrates, one with the correct and the other with an incorrect PAM. Three residues, Glu1044, Arg1088, Arg1091, form an intricate hydrogen bond network with the first cytosine and the two opposing guanine nucleotides to confer specificity. Methylation of the first but not the second cytosine base abolishes AceCas9 activity, consistent with the observed PAM recognition pattern. The high sensitivity of AceCas9 to the modified cytosine makes it a potential device for detecting epigenomic changes in genomes.
APA, Harvard, Vancouver, ISO, and other styles
42

Kim, Sun-Ki, Daehwan Chung, Michael E. Himmel, Yannick J. Bomble, and Janet Westpheling. "Heterologous expression of family 10 xylanases from Acidothermus cellulolyticus enhances the exoproteome of Caldicellulosiruptor bescii and growth on xylan substrates." Biotechnology for Biofuels 9, no. 1 (August 22, 2016). http://dx.doi.org/10.1186/s13068-016-0588-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Kim, Sun-Ki, Jordan Russell, Minseok Cha, Michael E. Himmel, Yannick J. Bomble, and Janet Westpheling. "Coexpression of a β- d -Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome." Applied and Environmental Microbiology 87, no. 14 (June 25, 2021). http://dx.doi.org/10.1128/aem.00524-21.

Full text
Abstract:
Caldicellulosiruptor species are bacteria that grow at extremely high temperature, more than 75°C, and are the most thermophilic bacteria so far described that are capable of growth on plant biomass. This native ability allows the use of unpretreated biomass as a growth substrate, eliminating the prohibitive cost of preprocessing/pretreatment of the biomass.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography