Academic literature on the topic 'Acidophilic heterotrophs'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acidophilic heterotrophs.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Acidophilic heterotrophs"

1

Berthelot, Deborah, L. G. Leduc, and G. D. Ferroni. "The absence of psychrophilic Thiobacillus ferrooxidans and acidophilic heterotrophic bacteria in cold, tailings effluents from a uranium mine." Canadian Journal of Microbiology 40, no. 1 (January 1, 1994): 60–63. http://dx.doi.org/10.1139/m94-009.

Full text
Abstract:
Iron-oxidizing autotrophs (mainly Thiobacillus ferrooxidans) and acidophilic heterotrophs were recovered and quantified at an incubation temperature of 18 °C, in four tailings-effluent samples obtained from the environment of a uranium mine in Ontario, Canada. The samples were collected during winter when the temperatures of the effluents were in the range 0.5–5.0 °C. Iron-oxidizing autotrophs were recovered in the four samples and their numbers ranged from 3 ± 2 to 185 ± 18 colony-forming units/mL; acidophilic heterotrophs were recovered in three of the four samples and their numbers ranged from 13 ± 3 to 2517 ± 859 colony-forming units/mL. Forty-six of the iron-oxidizer isolates and 63 of the acidophilic heterotrophic isolates were examined for their ability to grow at temperatures of 4, 18, 21, and 37 °C. None of the isolates was psychrophilic, although 96% of the iron oxidizers and 54% of the acidophilic heterotrophs were psychrotrophs; less that 5% of the isolates for both nutritional types were capable of growth at 37 °C. In addition, the isolates were categorized as 'broader temperature range psychrotrophs,' 'narrower temperature range psychrotrophs,' 'intermediates,' or mesophiles, and the narrower temperature range psychrotrophs were found to be numerically predominant.Key words: psychrotrophs, psychrophiles, Thiobacillus ferrooxidans, acidophilic heterotrophic bacteria.
APA, Harvard, Vancouver, ISO, and other styles
2

Berthelot, Deborah, L. G. Leduc, and G. D. Ferroni. "Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines." Canadian Journal of Microbiology 39, no. 4 (April 1, 1993): 384–88. http://dx.doi.org/10.1139/m93-056.

Full text
Abstract:
Iron-oxidizing autotrophs and acidophilic heterotrophs were quantified at an incubation temperature of 18 °C in several samples obtained from the bioleaching areas of two uranium mines in Ontario, Canada. All samples were mine-water samples with temperatures in the range 13–18 °C. Iron-oxidizing autotrophs ranged from 2683 ± 377 to 245 000 ± 20 205 colony-forming units∙mL−1 and were always numerically superior to acidophilic heterotrophs, which ranged from 40 ± 8 to 9650 ± 161 colony-forming units∙mL−1. For each sample, approximately 20 isolates of each nutritional group were examined for the ability to grow at temperatures of 4, 18, 21, and 37 °C, respectively; overall, 559 isolates of iron-oxidizing bacteria (predominantly Thiobacillus ferrooxidans) and 252 acidophilic heterotrophic isolates were examined and categorized as 'broader temperature range psychrotrophs,' 'narrower temperature range psychrotrophs,' 'intermediates,' or mesophiles. Although psychrotrophic representatives of both groups were abundant, no psychrophiles were recovered from any of the samples. For the iron oxidizers, the temperature growth profiles of the isolates were similar from sample to sample. For the acidophilic heterotrophs, the temperature growth profiles varied considerably among samples.Key words: psychrotrophs; Thiobacillus ferrooxidans; uranium mines.
APA, Harvard, Vancouver, ISO, and other styles
3

Lehman, R. Michael, Francisco F. Roberto, Drummond Earley, Debby F. Bruhn, Susan E. Brink, Sean P. O'Connell, Mark E. Delwiche, and Frederick S. Colwell. "Attached and Unattached Bacterial Communities in a 120-Meter Corehole in an Acidic, Crystalline Rock Aquifer." Applied and Environmental Microbiology 67, no. 5 (May 1, 2001): 2095–106. http://dx.doi.org/10.1128/aem.67.5.2095-2106.2001.

Full text
Abstract:
ABSTRACT The bacteria colonizing geologic core sections (attached) were contrasted with those found suspended in the groundwater (unattached) by examining the microbiology of 16 depth-paired core and groundwater samples using a suite of culture-independent and culture-dependent analyses. One hundred twenty-two meters was continuously cored from a buried chalcopyrite ore hosted in a biotite-quartz-monzonite porphyry at the Mineral Park Mine near Kingman, Ariz. Every fourth 1.5-m core was acquired using microbiologically defensible methods, and these core sections were aseptically processed for characterization of the attached bacteria. Groundwater samples containing unattached bacteria were collected from the uncased corehole at depth intervals corresponding to the individual cores using an inflatable straddle packer sampler. The groundwater was acidic (pH 2.8 to 5.0), with low levels of dissolved oxygen and high concentrations of sulfate and metals, including ferrous iron. Total numbers of attached cells were less than 105 cells g of core material−1 while unattached cells numbered about 105 cells ml of groundwater−1. Attached and unattached acidophilic heterotrophs were observed throughout the depth profile. In contrast, acidophilic chemolithotrophs were not found attached to the rock but were commonly observed in the groundwater. Attached communities were composed of low numbers (<40 CFU g−1) of neutrophilic heterotrophs that exhibited a high degree of morphologic diversity, while unattached communities contained higher numbers (ca. 103 CFU ml−1) of neutrophilic heterotrophs of limited diversity. Sulfate-reducing bacteria were restricted to the deepest samples of both core and groundwater. 16S ribosomal DNA sequence analysis of attached, acidophilic isolates indicated that organisms closely related to heterotrophic, acidophilic mesophiles such as Acidiphilium organovorum and, surprisingly, to the moderately thermophilic Alicyclobacillus acidocaldariuswere present. The results indicate that viable (but possibly inactive) microorganisms were present in the buried ore and that there was substantial distinction in biomass and physiological capabilities between attached and unattached populations.
APA, Harvard, Vancouver, ISO, and other styles
4

Bacelar-Nicolau, Paula, and D. Barrie Johnson. "Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures." Applied and Environmental Microbiology 65, no. 2 (February 1, 1999): 585–90. http://dx.doi.org/10.1128/aem.65.2.585-590.1999.

Full text
Abstract:
ABSTRACT Seven strains of heterotrophic iron-oxidizing acidophilic bacteria were examined to determine their abilities to promote oxidative dissolution of pyrite (FeS2) when they were grown in pure cultures and in mixed cultures with sulfur-oxidizingThiobacillus spp. Only one of the isolates (strain T-24) oxidized pyrite when it was grown in pyrite-basal salts medium. However, when pyrite-containing cultures were supplemented with 0.02% (wt/vol) yeast extract, most of the isolates oxidized pyrite, and one (strain T-24) promoted rates of mineral dissolution similar to the rates observed with the iron-oxidizing autotroph Thiobacillus ferrooxidans. Pyrite oxidation by another isolate (strain T-21) occurred in cultures containing between 0.005 and 0.05% (wt/vol) yeast extract but was completely inhibited in cultures containing 0.5% yeast extract. Ferrous iron was also needed for mineral dissolution by the iron-oxidizing heterotrophs, indicating that these organisms oxidize pyrite via the “indirect” mechanism. Mixed cultures of three isolates (strains T-21, T-23, and T-24) and the sulfur-oxidizing autotroph Thiobacillus thiooxidans promoted pyrite dissolution; since neither strains T-21 and T-23 nor T. thiooxidans could oxidize this mineral in yeast extract-free media, this was a novel example of bacterial synergism. Mixed cultures of strains T-21 and T-23 and the sulfur-oxidizing mixotrophThiobacillus acidophilus also oxidized pyrite but to a lesser extent than did mixed cultures containing T. thiooxidans. Pyrite leaching by strain T-23 grown in an organic compound-rich medium and incubated either shaken or unshaken was also assessed. The potential environmental significance of iron-oxidizing heterotrophs in accelerating pyrite oxidation is discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

Berthelot, Deborah, L. G. Leduc, and G. D. Ferroni. "Iron‐oxidizing autotrophs and acidophilic heterotrophs from uranium mine environments." Geomicrobiology Journal 14, no. 4 (October 1997): 317–24. http://dx.doi.org/10.1080/01490459709378055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bhattacharyya, Saswati, B. K. Chakrabarty, A. Das, P. N. Kundu, and P. C. Banerjee. "Acidiphilium symbioticum sp.nov., an acidophilic heterotrophic bacterium from Thiobacillus ferrooxidans cultures isolated from Indian mines." Canadian Journal of Microbiology 37, no. 1 (January 1, 1991): 78–85. http://dx.doi.org/10.1139/m91-012.

Full text
Abstract:
Two cultures of Thiobacillus ferrooxidans enriched from Indian mine samples and grown autotrophically on FeSO4 – basal salts medium for periods ranging from several months to years contained acidophilic, heterotrophic bacterial contaminants. The heterotrophs (strains KM2 and H8) were isolated by selective growth in a mineral salts – glucose – yeast extract medium of pH 3 and were purified as single colonies on an agarose medium. Mannose, galactose, sucrose, lactose, citrate, mannitol, and glycerol supported the growth of these strains in the presence of yeast extract. The heterotrophs grew poorly or failed to grow in media without yeast extract. They could not grow autotrophically with Fe2+, or with sulfur and its oxidizable derivatives, as the sole source of energy. Although they exhibited many characteristics of the genus Acidiphilium, they differed from Acidiphilium cryptum and other species of this genus in some physiological properties, notably in their ability to grow at higher glucose (5%, w/v) and Mn2+ (20 mM) concentrations. The G+C mol% contents (58.8 and 60.2) of strains KM2 and H8, respectively, determined from melting temperature (Tm) values were close to that of A. cryptum (62.7%). Strains KM2 and H8 showed 70–80% DNA homology with each other and about 60% with A. cryptum. All of the strains, including A. cryptum, responded similarly to several metal ions and antibiotics. SDS–PAGE of whole-cell proteins exhibited striking similarity between these two isolated strains, which were unlike that of A. cryptum. The strains were also agglutinated with a few common lectins and differed strongly from A. cryptum in respect to wheat-germ agglutinin and concanavalin A. Considering all these characteristics, we propose that strains KM2 and H8 be designated as a new species: Acidiphilium symbioticum. The type strain of A. symbioticum is strain KM2 (= MTCC 566). Key words: Acidiphilium symbioticum, Acidiphilium cryptum, Thiobacillus ferrooxidans, acidophilic bacteria.
APA, Harvard, Vancouver, ISO, and other styles
7

Dedysh, Svetlana N., Alexey V. Beletsky, Anastasia A. Ivanova, Olga V. Danilova, Shahjahon Begmatov, Irina S. Kulichevskaya, Andrey V. Mardanov, and Nikolai V. Ravin. "Peat-Inhabiting Verrucomicrobia of the Order Methylacidiphilales Do Not Possess Methanotrophic Capabilities." Microorganisms 9, no. 12 (December 11, 2021): 2566. http://dx.doi.org/10.3390/microorganisms9122566.

Full text
Abstract:
Methanotrophic verrucomicrobia of the order Methylacidiphilales are known as extremely acidophilic, thermophilic or mesophilic bacteria that inhabit acidic geothermal ecosystems. The occurrence of verrucomicrobial methanotrophs in other types of acidic environments remains an open question. Notably, Methylacidiphilales-affiliated 16S rRNA gene sequences are commonly retrieved from acidic (pH 3.5–5.5) peatlands. In this study, we compared the patterns of verrucomicrobial diversity in four acidic raised bogs and six neutral fens located in European North Russia. Methylacidiphilales-like 16S rRNA gene reads displaying 83–86% similarity to 16S rRNA gene sequences of currently described verrucomicrobial methanotrophs were recovered exclusively from raised bogs. Laboratory incubation of peat samples with 10% methane for 3 weeks resulted in the pronounced increase of a relative abundance of alphaproteobacterial methanotrophs, while no response was detected for Methylacidiphilales-affiliated bacteria. Three metagenome-assembled genomes (MAGs) of peat-inhabiting Methylacidiphilales bacteria were reconstructed and examined for the presence of genes encoding methane monooxygenase enzymes and autotrophic carbon fixation pathways. None of these genomic determinants were detected in assembled MAGs. Metabolic reconstructions predicted a heterotrophic metabolism, with a potential to hydrolyze several plant-derived polysaccharides. As suggested by our analysis, peat-inhabiting representatives of the Methylacidiphilales are acidophilic aerobic heterotrophs, which comprise a sister family of the methanotrophic Methylacidiphilaceae.
APA, Harvard, Vancouver, ISO, and other styles
8

Mehrotra, Akanksha, and T. R. Sreekrishnan. "Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs." Environmental Technology 38, no. 21 (January 10, 2017): 2709–24. http://dx.doi.org/10.1080/09593330.2016.1275821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Beaver, Rachel C., Katja Engel, W. Jeffrey Binns, and Josh D. Neufeld. "Microbiology of barrier component analogues of a deep geological repository." Canadian Journal of Microbiology 68, no. 2 (February 2022): 73–90. http://dx.doi.org/10.1139/cjm-2021-0225.

Full text
Abstract:
Canada is currently implementing a site selection process to identify a location for a deep geological repository (DGR) for the long-term storage of Canada’s used nuclear fuel, wherein used nuclear fuel bundles will be sealed inside copper-coated carbon steel containers, encased in highly compacted bentonite clay buffer boxes, and sealed deep underground in a stable geosphere. Because a DGR must remain functional for a million years, it is important to examine ancient natural systems that serve as analogues for planned DGR components. Specifically, studying the microbiology of natural analogue components of a DGR is important for developing an understanding of the types of microorganisms that may be able to grow and influence the long-term stability of a DGR. This study explored the abundance, viability, and composition of microorganisms in several ancient natural analogues using a combination of cultivation and cultivation-independent approaches. Samples were obtained from the Tsukinuno bentonite deposit (Japan) that formed ∼10 mya, the Opalinus Clay formation (Switzerland) that formed ∼174 mya, and Canadian shield crystalline rock from Northern Ontario that formed ∼2.7 bya. Analysis of 16S rRNA gene amplicons revealed that three of the ten Tsukinuno bentonite samples analyzed were dominated by putative aerobic heterotrophs and fermenting bacteria from the phylum Actinobacteria, whereas five of the Tsukinuno bentonite samples were dominated by sequences associated with putative acidophilic chemolithoautotrophs capable of sulfur reduction. The remaining Tsukinuno bentonite samples, the Northern Ontario rock samples, and the Opalinus Clay samples generated inconsistent replicate 16S rRNA gene profiles and were associated primarily with contaminant sequences, suggesting that the microbial profiles detected were not sample-specific but spurious. Culturable aerobic heterotroph abundances were relatively low for all Tsukinuno bentonite samples, culturable anaerobic heterotrophs were only detected in half of the Tsukinuno samples, and sulfate-reducing bacteria (SRB) were only detected in one Tsukinuno sample by cultivation. Culture-specific 16S rRNA gene profiles from Tsukinuno clay samples demonstrated the presence of phyla Bacteroidetes, Proteobacteria, Actinobacteria, and Firmicutes among aerobic heterotroph cultures and additional bacteria from the phyla Actinobacteria and Firmicutes from anaerobic heterotroph plate incubations. Only one nucleic acid sequence detected from a culture was also associated with its corresponding clay sample profile, suggesting that nucleic acids from culturable bacteria were relatively rare within the clay samples. Sequencing of DNA extracted from the SRB culture revealed that the taxon present in the culture was affiliated with the genus Desulfosporosinus, which has been found in related bentonite clay analyses. Although the crystalline rock and Opalinus Clay samples were associated with inconsistent, likely spurious 16S rRNA gene profiles, we show evidence for viable and detectable microorganisms within several Tsukinuno natural analogue bentonite samples.
APA, Harvard, Vancouver, ISO, and other styles
10

Groudev, Stoyan N., Irena Spasova, Marina Nicolova, and Plamen S. Georgiev. "In Situ Bioremediation of Contaminated Soils in Uranium Deposits." Advanced Materials Research 71-73 (May 2009): 533–40. http://dx.doi.org/10.4028/www.scientific.net/amr.71-73.533.

Full text
Abstract:
Experimental plots consisting of acidic and alkaline soils heavily contaminated with radionuclides (mainly U and Ra) and non-ferrous metals (mainly Cu, Zn, Cd, Pb) were treated in situ under real field conditions using the activity of the indigenous soil microflora. This activity was enhanced by suitable changes of some essential environmental factors such as pH and water, oxygen and nutrient contents of the soil. The treatment was connected with solubilization and removal of contaminants from the top soil layers (horizon A) due to the joint action of the soil microorganisms and leach solutions used to irrigate the soils (mainly acidophilic chemolothotrophic bacteria and diluted sulphuric acid in the acidic soil, and various heterotrophs and bicarbonate and soluble organics in the alkaline soil). The dissolved contaminants were removed from the soil profile through the drainage soil effluents or were transferred to the deeply located soil subhorizon B2 where they were precipitated as the relevant insoluble forms (uranium as uraninite, and the non-ferrous metals as the relevant sulphides) as a result of the activity of the sulphate-reducing bacteria inhabiting this soil subhorizon.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Acidophilic heterotrophs"

1

Bhowal, Suparna. "Studies on microbial biodiversity of acidophilic heterotrophs in acid rock drainage samples of eastern himalaya." Thesis, University of North Bengal, 2011. http://hdl.handle.net/123456789/1439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nicolau, Paula Bacelar V. C. "Novel iron-oxidising acidophilic heterotrophic bacteria from mineral leaching environments." Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321390.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Acidophilic heterotrophs"

1

Berthelot, Deborah. Temperature growth response and identification of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from underground uranium mine leachates and tailings effluents. Sudbury, Ont: Laurentian University, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Acidophilic heterotrophs"

1

Ward, Thomas E. "Electrotransformation of Acidophilic, Heterotrophic, Gram-negative Bacteria." In Electrotransformation of Bacteria, 94–103. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04305-9_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Pakshirajan, K. "Surface Hydrophobicity of an Acidophilic Heterotrophic Bacterium of Mine Origin under Metal Stress." In Advanced Materials Research, 362–65. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-452-9.362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Johnson, D. Barrie, and Francisco F. Roberto. "Heterotrophic Acidophiles and Their Roles in the Bioleaching of Sulfide Minerals." In Biomining, 259–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-06111-4_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gurung, Anirudra, and Cyaria Gurung. "Acidophilic Microbes: Diversity and Adaptation to Low pH." In Extremophiles: Diversity, Adaptation and Applications, 105–19. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815080353122010008.

Full text
Abstract:
Acidophiles are the organisms that usually grow at a pH of 3.0 or below. They usually occur in an environment rich in iron and sulfur. These organisms have the ability to oxidize sulfur and iron producing sulfuric acid thus making the environment acidic. The environments where acidophiles are commonly found are termed acid mine drainage (AMD) or acid rock drainage (ARD). The production of acid helps in the dissolution of several minerals present in the environment; hence acidophiles play important roles in bio-metallurgy. Acidophiles are a diverse group of organisms belonging to all three domains of life viz. Bacteria, Archaea to Eukarya. Many of them are obligate chemolithotrophs, and few are acidophilic heterotrophs. Usually, the chemolithotrophs are the ones that oxidize ferrous iron and sulfur into ferric iron and sulphate respectively. During their growth, they produce or secrete organic waste products, which are otherwise toxic to obligate chemolithotrophs but are usually scavenged by the acidophilic heterotrophs. Because of the acidic environment, proton concentration [H+ ] is always high outside the cell compared to the cytoplasm, thus pH gradient across the membrane is readily generated for these organisms. The pH gradient so generated forms proton motive force (PMF), which is utilized for the coupling of ADP and Pi to generate ATP molecules with the help of ATPase enzymes. However, continuous flow of proton from outside into the cell results in the cytoplasmic protonation or acidification of cytoplasm which may lead to deleterious effects such as denaturation or inactivation of several macromolecules such as DNA or proteins. Thus, the acidophiles must have evolved mechanism(s) to resist or tolerate low pH. Several mechanisms, such as proton impermeability, reverse membrane potential, etc. have been proposed to explain their ability to thrive under low pH maintaining the homeostatic balance in their systems. In this chapter, the diversity of acidophilic microorganisms and the mechanisms of their acid resistance are discussed in detail.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography