Academic literature on the topic 'Acid hydrolysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Acid hydrolysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Acid hydrolysis"
Paventi, Martino, Francis L. Chubb, and John T. Edward. "Assisted hydrolysis of the nitrile group of 2-aminoadamantane-2-carbonitrile." Canadian Journal of Chemistry 65, no. 9 (September 1, 1987): 2114–17. http://dx.doi.org/10.1139/v87-351.
Full textKurbanova, Marina, and Svetlana Maslennikova. "Acid Hydrolysis of Casein." Foods and Raw Materials 2, no. 1 (May 26, 2014): 27–30. http://dx.doi.org/10.12737/4124.
Full textThanh Ngoc, Nguyen Thi. "INFLUENCES OF TECHOLOGICAL HYDROLYSIS CONDITION ON NUCLEIC ACID CONTENT OF SPENT BREWER’S YEAST HYDROLYSATE." Vietnam Journal of Science and Technology 55, no. 5A (March 24, 2018): 169. http://dx.doi.org/10.15625/2525-2518/55/5a/12192.
Full textHendriks, W. H., M. F. Tarttelin, and P. J. Moughan. "The amino acid composition of cat (Felis catus) hair." Animal Science 67, no. 1 (August 1998): 165–70. http://dx.doi.org/10.1017/s1357729800009905.
Full textPęksa, A., and J. Miedzianka. "Amino acid composition of enzymatically hydrolysed potato protein preparations." Czech Journal of Food Sciences 32, No. 3 (June 11, 2014): 265–72. http://dx.doi.org/10.17221/286/2013-cjfs.
Full textLü, F., P. J. He, L. P. Hao, and L. M. Shao. "Impact of recycled effluent on the hydrolysis during anaerobic digestion of vegetable and flower waste." Water Science and Technology 58, no. 8 (October 1, 2008): 1637–43. http://dx.doi.org/10.2166/wst.2008.511.
Full textSinninghe Damsté, Jaap S., W. Irene C. Rijpstra, Ellen C. Hopmans, Johan W. H. Weijers, Bärbel U. Foesel, Jörg Overmann, and Svetlana N. Dedysh. "13,16-Dimethyl Octacosanedioic Acid (iso-Diabolic Acid), a Common Membrane-Spanning Lipid of Acidobacteria Subdivisions 1 and 3." Applied and Environmental Microbiology 77, no. 12 (April 22, 2011): 4147–54. http://dx.doi.org/10.1128/aem.00466-11.
Full textZhuang, Jun Ping, Lu Lin, Chun Sheng Pang, and Ying Liu. "Hydrolysis Kinetics of Wheat Straw in Saturated Formic Acid / 4% Hydrochloric Acid Solution." Advanced Materials Research 236-238 (May 2011): 138–41. http://dx.doi.org/10.4028/www.scientific.net/amr.236-238.138.
Full textFreeman, Stuart J., Prema Shankaran, Leonhard S. Wolfe, and John W. Callahan. "Phosphatidylcholine and 4-methylumbelliferyl phosphorylcholine hydrolysis by purified placental sphingomyelinase." Canadian Journal of Biochemistry and Cell Biology 63, no. 4 (April 1, 1985): 272–77. http://dx.doi.org/10.1139/o85-040.
Full textLoh, Zhi Hung, Natasha L. Hungerford, Diane Ouwerkerk, Athol V. Klieve, and Mary T. Fletcher. "Identification of Acid Hydrolysis Metabolites of the Pimelea Toxin Simplexin for Targeted UPLC-MS/MS Analysis." Toxins 15, no. 9 (September 5, 2023): 551. http://dx.doi.org/10.3390/toxins15090551.
Full textDissertations / Theses on the topic "Acid hydrolysis"
Burton, Russell J. "Mild acid hydrolysis of wood." Thesis, Loughborough University, 1986. https://dspace.lboro.ac.uk/2134/27345.
Full textPeña, Duque Leidy Eugenia. "Acid-functionalized nanoparticles for biomass hydrolysis." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16800.
Full textDepartment of Biological & Agricultural Engineering
Donghai Wang
Cellulosic ethanol is a renewable source of energy. Lignocellulosic biomass is a complex material composed mainly of cellulose, hemicellulose, and lignin. Biomass pretreatment is a required step to make sugar polymers liable to hydrolysis. Mineral acids are commonly used for biomass pretreatment. Using acid catalysts that can be recovered and reused could make the process economically more attractive. The overall goal of this dissertation is the development of a recyclable nanocatalyst for the hydrolysis of biomass sugars. Cobalt iron oxide nanoparticles (CoFe[superscript]2O[subscript]4) were synthesized to provide a magnetic core that could be separated from reaction using a magnetic field and modified to carry acid functional groups. X-ray diffraction (XRD) confirmed the crystal structure was that of cobalt spinel ferrite. CoFe[superscript]2O[superscript]4 were covered with silica which served as linker for the acid functions. Silica-coated nanoparticles were functionalized with three different acid functions: perfluoropropyl-sulfonic acid, carboxylic acid, and propyl-sulfonic acid. Transmission electron microscope (TEM) images were analyzed to obtain particle size distributions of the nanoparticles. Total carbon, nitrogen, and sulfur were quantified using an elemental analyzer. Fourier transform infra-red spectra confirmed the presence of sulfonic and carboxylic acid functions and ion-exchange titrations accounted for the total amount of catalytic acid sites per nanoparticle mass. These nanoparticles were evaluated for their performance to hydrolyze the β-1,4 glycosidic bond of the cellobiose molecule. Propyl-sulfonic (PS) and perfluoropropyl-sulfonic (PFS) acid functionalized nanoparticles catalyzed the hydrolysis of cellobiose significantly better than the control. PS and PFS were also evaluated for their capacity to solubilize wheat straw hemicelluloses and performed better than the control. Although PFS nanoparticles were stronger acid catalysts, the acid functions leached out of the nanoparticle during the catalytic reactions. PS nanoparticles were further evaluated for the pretreatment of corn stover in order to increase digestibility of the biomass. The pretreatment was carried out at three different catalyst load and temperature levels. At 180°C, the total glucose yield was linearly correlated to the catalyst load. A maximum glucose yield of 90% and 58% of the hemicellulose sugars were obtained at this temperature.
Dolmetsch, Troy R. "Phosphomolybdic Acid Catalysis of Cellulose Hydrolysis." Digital Commons @ East Tennessee State University, 2017. https://dc.etsu.edu/honors/413.
Full textKupiainen, L. (Laura). "Dilute acid catalysed hydrolysis of cellulose – extension to formic acid." Doctoral thesis, Oulun yliopisto, 2012. http://urn.fi/urn:isbn:9789526200033.
Full textTiivistelmä Uusia menetelmiä etsitään kemikaalien, polttoaineiden ja energian valmistamiseen uusiutuvasta biomassasta. Eräs biomassa, ns. lignoselluloosa, koostuu pääasiassa selluloosasta, hemiselluloosasta ja ligniinistä. Selluloosa ja hemiselluloosa voidaan muuttaa hydrolyysin avulla niiden rakennuspalikoikseen eli sokereiksi. Tämä väitöskirja keskittyy glukoosin tuottamiseen selluloosasta laimean happohydrolyysin menetelmällä. Happohydrolyysi kärsii rajoittuneesta glukoosin saannosta, mutta sillä on potentiaalia tulla lyhyen aikavälin ratkaisuksi biokemikaalien tuotannossa. Happohydrolyysin aikana selluloosaketju pilkkoutuu glukoosiksi, joka reagoi edelleen hajoamisreaktioiden kautta hydroksimetyylifurfuraaliksi, levuliini- ja muurahaishapoiksi ja kiinteäksi sivutuotteeksi. Tämän tutkimuksen tavoitteena on kasvattaa ymmärrystämme monimutkaisesta happokatalysoidusta selluloosan hydrolyysistä. Glukoosin hajoamista ja selluloosan hydrolyysiä tutkittiin erikseen laboratoriokokein. Kineettistä mallinnusta käytettiin työkaluna arvioimaan tuloksia. Vety-ionien vaikutus reaktioihin arvioitiin käyttämällä muurahais- ja rikkihappoja katalyytteinä. Tämä väitöskirja antaa uutta tietoa selluloosan hydrolyysistä ja glukoosin hajoamisreaktioista muurahaishapossa, joka on uusi katalyytti korkean lämpötilan laimean hapon hydrolyysissä. Glukoosisaannot muurahaishappo-hydrolysoidusta selluloosasta olivat vertailukelpoisia vastaaviin rikkihappo-hydrolyysi saantoihin. Tämä viittaa siihen, että heikko orgaaninen happo voisi toimia selluloosahydrolyysin katalyyttinä. Kun katalyyttinä käytettiin muurahaishappoa, vehnän oljesta tehdyt kuidut hydrolysoituivat selektiivisemmin glukoosiksi kuin mallikomponenttina toimineen mikrokiteisen selluloosan. Kun vetyionikonsentraation lämpötilariippuvuus otettiin huomioon, glukoosi hajosi samalla tavalla sekä muurahais- että rikkihappokatalyytissä, mutta merkittävä ero havaittiin selluloosahydrolyysin reaktionopeudessa. Havainnot voidaan selittää selluloosahydrolyysin mekanismissa tapahtuvilla muutoksilla. Väitöskirjassa esitetään, että sivureaktioilla selluloosasta ei-glukoosi-tuotteiksi on merkittävä vaikutus systeemiin
Orozco, Angela Maria. "Dilute acid hydrolysis of municipal solid waste using phosphoric acid." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501392.
Full textHartley, James Holroyd. "Saccharide accelerated hydrolysis of boronic acid imines." Thesis, University of Birmingham, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.369335.
Full textPeña, Duque Leidy E. "Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks." Thesis, Kansas State University, 2009. http://hdl.handle.net/2097/2201.
Full textDepartment of Biological and Agricultural Engineering
Donghai Wang
Acid catalysts have been successfully used for pretreatment of cellulosic biomass to improve sugar recovery and its later conversion to ethanol. However, use of acid requires a considerable equipment investment as well as disposal of residues. Acid-functionalized nanoparticles were synthesized for pretreatment and hydrolysis of lignocellulosic biomass to increase conversion efficiency at mild conditions. Advantages of using acid-functionalized metal nanoparticles are not only the acidic properties to catalyze hydrolysis and being small enough to penetrate into the lignocellulosic structure, but also being easily separable from hydrolysis residues by using a strong magnetic field. Cobalt spinel ferrite magnetic nanoparticles were synthesized using a microemulsion method and then covered with a layer of silica to protect them from oxidation. The silanol groups of the silica serve as the support of the sulfonic acid groups that were later attached to the surface of the nanoparticles. TEM images and FTIR methods were used to characterize the properties of acid-functionalized nanoparticles in terms of nanoparticle size, presence of sulfonic acid functional groups, and pH as an indicator of acid sites present. Citric acid-functionalized magnetite nanoparticles were also synthesized and evaluated. Wheat straw and wood fiber samples were treated with the acid supported nanoparticles at 80°C for 24 h to hydrolyze their hemicellulose fraction to sugars. Further hydrolysis of the liquid fraction was carried out to account for the amount of total solubilized sugars. HPLC was used to determine the total amount of sugars obtained in the aqueous solution. The perfluroalkyl-sulfonic acid functional groups from the magnetic nanoparticles yielded significantly higher amounts of oligosaccharides from wood and wheat straw samples than the alkyl-sulfonic acid functional groups did. More stable fluorosulfonic acid functionalized nanoparticles can potentially work as an effective heterogeneous catalyst for pretreatment of lignocellulosic materials.
Pena, Duque Leidy E. "Acid-functionalized nanoparticles for hydrolysis of lignocellulosic feedstocks." Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2201.
Full textYusoff, M. I. "The acid-catalysed hydrolysis of some mesoionic heterocyclic compounds." Thesis, University of Essex, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234173.
Full textPatel, Manisha. "Pyrolysis and gasification of biomass and acid hydrolysis residues." Thesis, Aston University, 2013. http://publications.aston.ac.uk/19567/.
Full textBooks on the topic "Acid hydrolysis"
Hartley, James Holroyd. Saccharide accelerated hydrolysis of boronic acid imines. Birmingham: University of Birmingham, 2000.
Find full textVecil, Giacomo G. Pharmacological characterization of excitatory amino acid-induced polyphosphoinositide hydrolysis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textF, Harris John, and Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Find full textZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Find full textZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Find full textBrenner, Walter. High temperature dilute acid hydrolysis of waste cellulose: Batch and continuous processes. Cincinnati, OH: Hazardous Waste Engineering Research Laboratory, U.S. Environmental Protection Agency, 1986.
Find full textZerbe, John I. Investigation of fundamentals of two-stage, dilute sulfuric acid hydrolysis of wood. [Madison, Wis.?: Forest Products Laboratory, 1988.
Find full text1940-, Harris John Frank, and Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Find full text1940-, Harris John Frank, and Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Find full text1940-, Harris John Frank, and Forest Products Laboratory (U.S.), eds. Two-stage, dilute sulfuric acid hydrolysis of wood: An investigation of fundamentals. [Madison, Wis.]: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1985.
Find full textBook chapters on the topic "Acid hydrolysis"
Dörr, Mark. "Acid Hydrolysis." In Encyclopedia of Astrobiology, 37–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_21.
Full textDörr, Mark. "Acid Hydrolysis." In Encyclopedia of Astrobiology, 10. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_21.
Full textDörr, Mark. "Acid Hydrolysis." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_21-2.
Full textDörr, Mark. "Acid Hydrolysis." In Encyclopedia of Astrobiology, 50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2023. http://dx.doi.org/10.1007/978-3-662-65093-6_21.
Full textFan, Liang-tseng, Mahendra Moreshwar Gharpuray, and Yong-Hyun Lee. "Acid Hydrolysis of Cellulose." In Cellulose Hydrolysis, 121–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72575-3_4.
Full textNguyen, Quang A., Melvin P. Tucker, Fred A. Keller, Delicia A. Beaty, Kevin M. Connors, and Fannie P. Eddy. "Dilute Acid Hydrolysis of Softwoods." In Twentieth Symposium on Biotechnology for Fuels and Chemicals, 133–42. Totowa, NJ: Humana Press, 1999. http://dx.doi.org/10.1007/978-1-4612-1604-9_13.
Full textSlakey, L. L. "Extracellular Nucleotide Hydrolysis and Integration of Signalling." In Biochemistry of Arachidonic Acid Metabolism, 323–41. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2597-0_20.
Full textGuo, Qingbin, Lianzhong Ai, and Steve W. Cui. "Partial Acid Hydrolysis and Molecular Degradation." In SpringerBriefs in Molecular Science, 37–43. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-96370-9_5.
Full textPenner, Michael H., Andrew G. Hashimoto, Alireza Esteghlalian, and John J. Fenske. "Acid-Catalyzed Hydrolysis of Lignocellulosic Materials." In ACS Symposium Series, 12–31. Washington, DC: American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0647.ch002.
Full textLee, Y. Y., Prashant Iyer, and R. W. Torget. "Dilute-Acid Hydrolysis of Lignocellulosic Biomass." In Recent Progress in Bioconversion of Lignocellulosics, 93–115. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-49194-5_5.
Full textConference papers on the topic "Acid hydrolysis"
M Soleimani, L Tabil, S Panigrahi, and B Crerar. "Kinetics of Acid-Catalyzed Hemicellulose Hydrolysis." In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27364.
Full textZhang, Qin, Yanbin Li, Jingjing Li, and Chunmei Ma. "Dilute acid hydrolysis of cotton stalks and ethanol production from hydrolytic liquids." In Environment (ICMREE). IEEE, 2011. http://dx.doi.org/10.1109/icmree.2011.5930852.
Full textLeidy Peña, Donghai Wang, Keit Hohn, Milles Ikenberry, and Dan Boyle. "Acid Functionalized Nanoparticles for Hydrolysis of Lignocellulosic Feedstocks." In 2009 Reno, Nevada, June 21 - June 24, 2009. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27249.
Full textTarigan, Ayu Syufiatun, Basuki Wirjosentono, Cut Fatimah Zuhra, and Zulnazri. "Preparation of low crystallinity nanocellulose using acid hydrolysis." In THE II INTERNATIONAL SCIENTIFIC CONFERENCE “INDUSTRIAL AND CIVIL CONSTRUCTION 2022”. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0136122.
Full textYuangsawad, Ratanaporn, Sarawut Sinpichai, Arunrot Sukra, and Duangkamol Na-Ranong. "Free sterols from acid hydrolysis of steryl glucosides." In 2021 6th International Conference on Business and Industrial Research (ICBIR). IEEE, 2021. http://dx.doi.org/10.1109/icbir52339.2021.9465867.
Full textYazdani, Parviz, Keikhosro Karimi, and Mohammad J. Taherzadeh. "Improvement of Enzymatic Hydrolysis of A Marine Macro-Alga by Dilute Acid Hydrolysis Pretreatment." In World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden. Linköping University Electronic Press, 2011. http://dx.doi.org/10.3384/ecp11057186.
Full textAndersson, Sanna, Mari Lähde, Satu Mikkola, Gareth Morris, Alicja Stachelska, Satu Valakoski, and Nicholas H. Williams. "Metal ion-promoted hydrolysis of mRNA 5'-cap models." In XIIth Symposium on Chemistry of Nucleic Acid Components. Prague: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, 2002. http://dx.doi.org/10.1135/css200205373.
Full textPopa, Emil, Tudorel Balau Mindru, Melinda Pruneanu, and Stelian Sergiu Maier. "Studies on the Acid Hydrolysis of Chamois Leather Wastes." In The 6th International Conference on Advanced Materials and Systems. INCDTP - Division: Leather and Footwear Research Institute, Bucharest, RO, 2016. http://dx.doi.org/10.24264/icams-2016.iv.11.
Full textChao, Chung-Hsing, Tien-Chien Jen, and Yen-Hsi Ho. "Analysis and Experiment on Dynamic Prediction in Magnesium Hydride Hydrolysis as Hydrogen Generator." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62502.
Full textJen, Tien-Chien, Joshua Adeniran, Esther Akinlabi, Chung-Hsing Chao, Yen-Hsi Ho, and Johan De Koker. "Hydrogen Generation From Acetic Acid Catalyzed Magnesium Hydride Using an On-Demand Hydrogen Reactor." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-66459.
Full textReports on the topic "Acid hydrolysis"
Lee, Y. Y. Enhancement of Dilute-Acid Total-Hydrolysis Process. Office of Scientific and Technical Information (OSTI), April 2000. http://dx.doi.org/10.2172/764595.
Full textMarek, J. C. Hydrolysis of late-washed, irradiated tetraphenylborate slurry simulants I: Phenylboric acid hydrolysis kinetics. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/751282.
Full textHarris, John F., Andrew J. Baker, Anthony H. Conner, Thomas W. Jeffries, James L. Minor, Roger C. Pettersen, Ralph W. Scott, Edward L. Springer, Theodore H. Wegner, and John I. Zerbe. Two-stage, dilute sulfuric acid hydrolysis of wood : an investigation of fundamentals. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 1985. http://dx.doi.org/10.2737/fpl-gtr-45.
Full textLee, Y. Y., Qian Xiang, Tae-Hyun Kim, and Junseok Kim. Enhancement of Dilute-Acid Total-Hydrolysis Process for High-Yield Saccharification of Cellulosic Biomass. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/763027.
Full textVan Wychen, Stefanie R., and Lieve M. Laurens. Determination of Total Sterols in Microalgae by Acid Hydrolysis and Extraction: Laboratory Analytical Procedure (LAP). Issue Date: December 21, 2018. Office of Scientific and Technical Information (OSTI), December 2018. http://dx.doi.org/10.2172/1488917.
Full textTao, L., D. Schell, R. Davis, E. Tan, R. Elander, and A. Bratis. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover. Office of Scientific and Technical Information (OSTI), April 2014. http://dx.doi.org/10.2172/1129271.
Full textAden, A., M. Ruth, K. Ibsen, J. Jechura, K. Neeves, J. Sheehan, B. Wallace, L. Montague, A. Slayton, and J. Lukas. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover. Office of Scientific and Technical Information (OSTI), June 2002. http://dx.doi.org/10.2172/15001119.
Full textDean R. Peterman, Bruce J. Mincher, Catherine L. Riddle, and Richard D. Tillotson. Summary Report on Gamma Radiolysis of TBP/n-dodecane in the Presence of Nitric Acid Using the Radiolysis/Hydrolysis Test Loop. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/993164.
Full textWooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski, and A. Galvez. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis Current and Futuristic Scenarios. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/12150.
Full textLarson, Steven L., Deborah R. Felt, Scott Waisner, Catherine C. Nestler, Charles G. Coyle, and Victor F. Medina. The Effect of Acid Neutralization on Analytical Results Produced from SW846 Method 8330 after the Alkaline Hydrolysis of Explosives in Soil. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada570210.
Full text