Journal articles on the topic 'Acceptor Systems'

To see the other types of publications on this topic, follow the link: Acceptor Systems.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Acceptor Systems.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhang, Deqing, and Martin Heeney. "Organic Donor–Acceptor Systems." Asian Journal of Organic Chemistry 9, no. 9 (September 2020): 1251. http://dx.doi.org/10.1002/ajoc.202000465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kotowicz, Sonia, Mateusz Korzec, Agnieszka Katarzyna Pająk, Sylwia Golba, Jan Grzegorz Małecki, Mariola Siwy, Justyna Grzelak, Sebastian Maćkowski, and Ewa Schab-Balcerzak. "New Acceptor–Donor–Acceptor Systems Based on Bis-(Imino-1,8-Naphthalimide)." Materials 14, no. 11 (May 21, 2021): 2714. http://dx.doi.org/10.3390/ma14112714.

Full text
Abstract:
In this paper, six novel symmetrical bis-(imino-1,8-naphthalimides) differing in core and N-substituent structure were synthesized, and their thermal (TGA, DSC), optical (UV-Vis, PL), electrochemical (DPV, CV) properties were evaluated. The compounds were stable to 280 °C and could be transferred into amorphous materials. Electrochemical investigations showed their ability to occur reductions and oxidations processes. They exhibited deep LUMO levels of about −3.22 eV and HOMO levels above −5.80 eV. The optical investigations were carried out in the solutions (polar and non-polar) and in films and blends with PVK:PBD. Bis-(imino-1,8-naphthalimides) absorbed electromagnetic radiation in the range of 243–415 nm and emitted light from blue to yellow. Their capacity for light emission under voltage was preliminarily tested in devices with an active layer consisting of a neat compound and a blend with PVK:PBD. The diodes emitted green or red light.
APA, Harvard, Vancouver, ISO, and other styles
3

Pilarczyk, K., K. Lewandowska, K. Mech, M. Kawa, M. Gajewska, B. Barszcz, A. Bogucki, A. Podborska, and K. Szaciłowski. "Charge transfer tuning in TiO2 hybrid nanostructures with acceptor–acceptor systems." Journal of Materials Chemistry C 5, no. 9 (2017): 2415–24. http://dx.doi.org/10.1039/c6tc05190a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pop, Flavia, and Narcis Avarvari. "Covalent non-fused tetrathiafulvalene–acceptor systems." Chemical Communications 52, no. 51 (2016): 7906–27. http://dx.doi.org/10.1039/c6cc01827k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ignat'ev, N., L. Netchitaylo, R. Garlyauskaite, and L. Yagupolskii. "Electrochemical reduction of super-acceptor systems." Journal of Fluorine Chemistry 58, no. 2-3 (August 1992): 280. http://dx.doi.org/10.1016/s0022-1139(00)80736-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Im, C., W. Tian, H. Bässler, A. Fechtenkötter, M. D. Watson, and K. Müllen. "Photoconduction in organic donor–acceptor systems." Journal of Chemical Physics 119, no. 7 (August 15, 2003): 3952–57. http://dx.doi.org/10.1063/1.1590954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zych, Dawid, and Aneta Slodek. "Acceptor-π-Acceptor-Acceptor/Donor systems containing dicyanovinyl acceptor group with substituted 1,2,3-triazole motif – synthesis, photophysical and theoretical studies." Journal of Molecular Structure 1204 (March 2020): 127488. http://dx.doi.org/10.1016/j.molstruc.2019.127488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maiya, G. Bhaskar, and V. Krishnan. "Intramolecular electron transfer in donor-acceptor systems. Porphyrins bearing trinitroaryl acceptor group." Journal of Physical Chemistry 89, no. 24 (November 1985): 5225–35. http://dx.doi.org/10.1021/j100270a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Duan, Pengfei, Deepak Asthana, Takuya Nakashima, Tsuyoshi Kawai, Nobuhiro Yanai, and Nobuo Kimizuka. "All-or-none switching of photon upconversion in self-assembled organogel systems." Faraday Discussions 196 (2017): 305–16. http://dx.doi.org/10.1039/c6fd00170j.

Full text
Abstract:
Aggregation-induced photon upconversion (iPUC) based on a triplet–triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor–acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor–acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.
APA, Harvard, Vancouver, ISO, and other styles
10

DelPo, Courtney A., Saeed-Uz-Zaman Khan, Kyu Hyung Park, Bryan Kudisch, Barry P. Rand, and Gregory D. Scholes. "Polariton Decay in Donor–Acceptor Cavity Systems." Journal of Physical Chemistry Letters 12, no. 40 (October 1, 2021): 9774–82. http://dx.doi.org/10.1021/acs.jpclett.1c02644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Leikauf, B., H. A. Schneider, and W. Regel. "Electron-donor-acceptor interactions with cellulosic systems." Polymer Bulletin 22, no. 5-6 (December 1989): 573–78. http://dx.doi.org/10.1007/bf00718936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Das, Paramita, Ray J. Butcher, and Chhanda Mukhopadhyay. "ChemInform Abstract: Zinc Titanate Nanopowder: An Advanced Nanotechnology Based Recyclable Heterogeneous Catalyst for the One-Pot Selective Synthesis of Self-Aggregated Low-Molecular Mass Acceptor-Donor-Acceptor-Acceptor Systems and Acceptor-Donor-Accepto." ChemInform 43, no. 39 (August 30, 2012): no. http://dx.doi.org/10.1002/chin.201239045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kournoutas, Fotis, Kostas Seintis, Nikolaos Karakostas, Jiří Tydlitát, Sylvain Achelle, George Pistolis, Filip Bureš, and Mihalis Fakis. "Photophysical and Protonation Time Resolved Studies of Donor–Acceptor Branched Systems With Pyridine Acceptors." Journal of Physical Chemistry A 123, no. 2 (October 26, 2018): 417–28. http://dx.doi.org/10.1021/acs.jpca.8b08628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Im, Chan, Sang-Woong Kang, Jeong-Yoon Choi, and Jongdeok An. "Comparing Donor- and Acceptor-Originated Exciton Dynamics in Non-Fullerene Acceptor Blend Polymeric Systems." Polymers 13, no. 11 (May 28, 2021): 1770. http://dx.doi.org/10.3390/polym13111770.

Full text
Abstract:
Non-fullerene type acceptors (NFA) have gained attention owing to their spectral extension that enables efficient solar energy capturing. For instance, the solely NFA-mediated absorbing region contributes to the photovoltaic power conversion efficiency (PCE) as high as ~30%, in the case of the solar cells comprised of fluorinated materials, PBDB-T-2F and ITIC-4F. This implies that NFAs must be able to serve as electron donors, even though they are conventionally assigned as electron acceptors. Therefore, the pathways of NFA-originated excitons need to be explored by the spectrally resolved photovoltaic characters. Additionally, excitation wavelength dependent transient absorption spectroscopy (TAS) was performed to trace the nature of the NFA-originated excitons and polymeric donor-originated excitons separately. Unique origin-dependent decay behaviors of the blend system were found by successive comparing of those solutions and pristine films which showed a dramatic change upon film formation. With the obtained experimental results, including TAS, a possible model describing origin-dependent decay pathways was suggested in the framework of reaction kinetics. Finally, numerical simulations based on the suggested model were performed to verify the feasibility, achieving reasonable correlation with experimental observables. The results should provide deeper insights in to renewable energy strategies by using novel material classes that are compatible with flexible electronics.
APA, Harvard, Vancouver, ISO, and other styles
15

Çakal, Deniz, Yalçın Boztaş, Akın Akdag, and Ahmet M. Önal. "Investigation of Fluorine Atom Effect on Benzothiadiazole Acceptor Unit in Donor Acceptor Donor Systems." Journal of The Electrochemical Society 166, no. 12 (2019): G141—G147. http://dx.doi.org/10.1149/2.0471912jes.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Ohtani, Shunsuke, Masayuki Gon, Kazuo Tanaka, and Yoshiki Chujo. "Construction of the Luminescent Donor–Acceptor Conjugated Systems Based on Boron-Fused Azomethine Acceptor." Macromolecules 52, no. 9 (April 24, 2019): 3387–93. http://dx.doi.org/10.1021/acs.macromol.9b00259.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Bergkamp, Jesse J., Silvio Decurtins, and Shi-Xia Liu. "Current advances in fused tetrathiafulvalene donor–acceptor systems." Chemical Society Reviews 44, no. 4 (2015): 863–74. http://dx.doi.org/10.1039/c4cs00255e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Fischer, Markus K. R., Chang-Qi Ma, René A. J. Janssen, Tony Debaerdemaeker, and Peter Bäuerle. "Core-functionalized dendritic oligothiophenes—novel donor–acceptor systems." Journal of Materials Chemistry 19, no. 27 (2009): 4784. http://dx.doi.org/10.1039/b904243a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Albinsson, Bo, and Jerker Mårtensson. "Excitation energy transfer in donor–bridge–acceptor systems." Physical Chemistry Chemical Physics 12, no. 27 (2010): 7338. http://dx.doi.org/10.1039/c003805a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sneddon, Scott F., and Charles L. Brooks. "The conformations of proline-linked donor-acceptor systems." Journal of the American Chemical Society 114, no. 21 (October 1992): 8220–25. http://dx.doi.org/10.1021/ja00047a036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mews, Rüdiger. "Donor-acceptor properties of sulphur-nitrogen-fluorine systems." Journal of Fluorine Chemistry 29, no. 1-2 (August 1985): 21. http://dx.doi.org/10.1016/s0022-1139(00)83256-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Li, Zhen, Mengyuan He, Dangdang Xu, and Zhihong Liu. "Graphene materials-based energy acceptor systems and sensors." Journal of Photochemistry and Photobiology C: Photochemistry Reviews 18 (March 2014): 1–17. http://dx.doi.org/10.1016/j.jphotochemrev.2013.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Kachkovskii, A. D., and N. M. Kovalenko. "Conformation transformation barriers in linear donor-acceptor systems." Theoretical and Experimental Chemistry 33, no. 4 (July 1997): 192–95. http://dx.doi.org/10.1007/bf02764767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kang, E. T. "Charge transfer interactions in polyphenylacetylene-electron acceptor systems." European Polymer Journal 21, no. 11 (January 1985): 919–24. http://dx.doi.org/10.1016/0014-3057(85)90176-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Merkli, Marco, Gennady P. Berman, and Avadh Saxena. "Quantum electron transport in degenerate donor–acceptor systems." Journal of Mathematical Physics 61, no. 7 (July 1, 2020): 072102. http://dx.doi.org/10.1063/1.5138725.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Hurenkamp, Johannes H., Jaap J. D. de Jong, Wesley R. Browne, Jan H. van Esch, and Ben L. Feringa. "Tuning energy transfer in switchable donor–acceptor systems." Organic & Biomolecular Chemistry 6, no. 7 (2008): 1268. http://dx.doi.org/10.1039/b719095f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Vijatović Petrović, M. M., J. D. Bobić, R. Grigalaitis, N. I. Ilic, A. S. Dzunuzovic, V. Jankauskaite, J. Banys, and B. D. Stojanović. "Donor–acceptor joint effect in barium titanate systems." Ceramics International 41, no. 9 (November 2015): 11365–71. http://dx.doi.org/10.1016/j.ceramint.2015.05.096.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Blok, Victor R., and Gennady M. Krochik. "Photo-transfer of electrons in donor-acceptor systems." Solid State Communications 75, no. 1 (July 1990): 11–15. http://dx.doi.org/10.1016/0038-1098(90)90148-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Miro, Paula, Ignacio Vayá, Germán Sastre, M. Consuelo Jiménez, M. Luisa Marin, and Miguel A. Miranda. "Triplet energy management between two signaling units through cooperative rigid scaffolds." Chemical Communications 52, no. 4 (2016): 713–16. http://dx.doi.org/10.1039/c5cc08102e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Arrechea, Susana, Agustín Molina-Ontoria, Ana Aljarilla, Pilar de la Cruz, Fernando Langa, and Luis Echegoyen. "New acceptor–π-porphyrin–π-acceptor systems for solution-processed small molecule organic solar cells." Dyes and Pigments 121 (October 2015): 109–17. http://dx.doi.org/10.1016/j.dyepig.2015.04.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Salmerón-valverde, A., J. G. Robles-Martínez, J. García-serrano, R. Gómez, R. Ridaura, M. Quintana, and A. Zehe. "Effects of Acceptor Modification on Charge Transfer in Crystals of Donor-Acceptor Systems of TTF." Crystal Research and Technology 32, no. 5 (1997): 717–22. http://dx.doi.org/10.1002/crat.2170320516.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Medyakova, L. V., Zakir M. O. Rzaev, Ali G�ner, and G�nay Kibarer. "Complex-radical terpolymerization of acceptor-donor-acceptor systems: Maleic anhydride (n-butyl methacrylate)-styrene-acrylonitrile." Journal of Polymer Science Part A: Polymer Chemistry 38, no. 15 (2000): 2652–62. http://dx.doi.org/10.1002/1099-0518(20000801)38:15<2652::aid-pola40>3.0.co;2-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ming, Shouli, Shijie Zhen, Ximei Liu, Kaiwen Lin, Hongtao Liu, Yao Zhao, Baoyang Lu, and Jingkun Xu. "Chalcogenodiazolo[3,4-c]pyridine based donor–acceptor–donor polymers for green and near-infrared electrochromics." Polymer Chemistry 6, no. 48 (2015): 8248–58. http://dx.doi.org/10.1039/c5py01321f.

Full text
Abstract:
Thiadiazolo[3,4-c]pyridine and selenadiazolo[3,4-c]pyridine were employed as novel acceptors for rational design of donor-acceptor-type systems, yielding neutral green and near-infrared electrochromic polymers.
APA, Harvard, Vancouver, ISO, and other styles
34

Razus, Alexandru C. "Azulene Moiety as Electron Reservoir in Positively Charged Systems; A Short Survey." Symmetry 13, no. 4 (March 24, 2021): 526. http://dx.doi.org/10.3390/sym13040526.

Full text
Abstract:
The non-alternant aromatic azulene, an isomer of alternant naphthalene, differs from the latter in peculiar properties. The large polarization of the π-electron system over the seven and five rings gives to azulene electrophile property a pronounced tendency to donate electrons to an acceptor, substituted at azulene 1 position. This paper presents cases in which azulene transfers electrons to a suitable acceptor as methylium ions, positive charged heteroaromatics and examples of neutral molecules that can accept electrons. The proposed product synthesis was outlined and the expected electron transfer was highlighted by analyzing the NMR, UV-Vis spectra and the pKR+ values.
APA, Harvard, Vancouver, ISO, and other styles
35

D'Souza, Francis, and V. Krishnan. "INTRAMOLECULAR DONOR-ACCEPTOR SYSTEMS: STRUCTURES OF NOVEL LINKED PORPHYRIN- PHENOLPHTHALEIN MOLECULAR SYSTEMS." Photochemistry and Photobiology 51, no. 3 (March 1990): 285–91. http://dx.doi.org/10.1111/j.1751-1097.1990.tb01712.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Das, Paramita, Ray J. Butcher, and Chhanda Mukhopadhyay. "Zinc titanate nanopowder: an advanced nanotechnology based recyclable heterogeneous catalyst for the one-pot selective synthesis of self-aggregated low-molecular mass acceptor–donor–acceptor–acceptor systems and acceptor–donor–acceptor triads." Green Chemistry 14, no. 5 (2012): 1376. http://dx.doi.org/10.1039/c2gc16641k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Wei, Zimu, Sushil Sharma, Abbey M. Philip, Sanchita Sengupta, and Ferdinand C. Grozema. "Excited state dynamics of BODIPY-based acceptor–donor–acceptor systems: a combined experimental and computational study." Physical Chemistry Chemical Physics 23, no. 14 (2021): 8900–8907. http://dx.doi.org/10.1039/d1cp00453k.

Full text
Abstract:
Donor-bridge-acceptor systems based on boron dipyrromethene (BODIPY) are attractive candidates for bio-imagining and sensing applications because of their sensitivity to temperature, micro-viscosity and solvent polarity.
APA, Harvard, Vancouver, ISO, and other styles
38

Shun-Lai, Li, Dong Xiao-Yang, and Xu Hui-Jun. "Intramolecular Photoinduced Electron Transfer in Donor-BA-Acceptor Systems." Acta Physico-Chimica Sinica 13, no. 08 (1997): 680–84. http://dx.doi.org/10.3866/pku.whxb19970802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

SHIROTA, Yasuhiko, Kentaro YAMAGUCHI, Shin-Chol OH, Satoshi MASUMI, and Guang-Jie JIANG. "PHOTOPOLYMERIZATIONS OF ELECTRON-DONOR MONOMER-ELECTRON-ACCEPTOR MONOMER SYSTEMS." Journal of Photopolymer Science and Technology 1, no. 2 (1988): 346–53. http://dx.doi.org/10.2494/photopolymer.1.346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Colquhoun, Howard M., Barnaby W. Greenland, Zhixue Zhu, John S. Shaw, Christine J. Cardin, Stefano Burattini, Joanne M. Elliott, Subhadeep Basu, Travis B. Gasa, and J. Fraser Stoddart. "A General Synthesis of Macrocyclic π-Electron-Acceptor Systems." Organic Letters 11, no. 22 (November 19, 2009): 5238–41. http://dx.doi.org/10.1021/ol9021782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Shizu, Katsuyuki, Jiyoung Lee, Hiroyuki Tanaka, Hiroko Nomura, Takuma Yasuda, Hironori Kaji, and Chihaya Adachi. "Highly efficient electroluminescence from purely organic donor–acceptor systems." Pure and Applied Chemistry 87, no. 7 (July 1, 2015): 627–38. http://dx.doi.org/10.1515/pac-2015-0301.

Full text
Abstract:
AbstractThermally activated delayed fluorescence (TADF) emitters are third-generation electroluminescent materials that realize highly efficient organic light-emitting diodes (OLEDs) without using rare metals. Here, after briefly reviewing the principles of TADF and its use in OLEDs, we report a sky-blue TADF emitter, 9-(4-(benzo[d]thiazol-2-yl)phenyl)-N3,N3,N6,N6-tetraphenyl-9H-carbazole-3,6-diamine (DAC-BTZ). DAC-BTZ is a purely organic donor–acceptor-type molecule with a small energy difference between its lowest excited singlet state and lowest triplet state of 0.18–0.22 eV according to fluorescence and phosphorescence spectra of a DAC-BTZ-doped film. In addition, the doped film exhibits a high photoluminescence quantum yield of 0.82. Time-resolved photoluminescence measurements of the doped film confirm that DAC-BTZ emits TADF. An OLED containing DAC-BTZ as an emitter exhibits a maximum external quantum efficiency (EQE) of 10.3%, which exceeds those obtained with conventional fluorescent emitters (5–7.5%). TADF from DAC-BTZ makes a large contribution to the high EQE of its OLED.
APA, Harvard, Vancouver, ISO, and other styles
42

Vannikov, Anatolii V., and Antonina D. Grishina. "Spectral Sensitisation of Photoprocesses in Polymeric Donor–Acceptor Systems." Russian Chemical Reviews 56, no. 7 (July 31, 1987): 633–52. http://dx.doi.org/10.1070/rc1987v056n07abeh003295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yagupolskii, Lev M., Vitalij N. Petrik, and Yurij L. Slominskii. "N-Trifluoromethylsulfonylimino derivatives of carbonyl-containing donor–acceptor systems." Tetrahedron Letters 43, no. 21 (May 2002): 3957–59. http://dx.doi.org/10.1016/s0040-4039(02)00586-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dissanayake, Dhammike P., and M. D. P. De Costa. "Fluorescence Characteristics of [(Benzoyloxy)methyl]anthracene Donor–Acceptor Systems." Journal of Physical Chemistry A 119, no. 29 (June 30, 2015): 7973–79. http://dx.doi.org/10.1021/acs.jpca.5b01451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Cooray, Anusha S., and K. M. Nalin de Silva. "Theoretical investigations of self-organising donor–acceptor aromatic systems." Journal of Molecular Structure: THEOCHEM 678, no. 1-3 (June 2004): 223–31. http://dx.doi.org/10.1016/j.theochem.2004.02.048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Imahori, Hiroshi. "(Invited) Photoinduced Donor-Acceptor Interaction in Nanocarbon-Based Systems." ECS Meeting Abstracts MA2020-01, no. 9 (May 1, 2020): 802. http://dx.doi.org/10.1149/ma2020-019802mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Drigo, Nikita A., Sanghyun Paek, Aron J. Huckaba, Pascal A. Schouwink, Nouar Tabet, and Mohammad K. Nazeeruddin. "Approaches for Selective Synthesis of Ullazine Donor-Acceptor Systems." Chemistry - A European Journal 23, no. 68 (November 20, 2017): 17209–12. http://dx.doi.org/10.1002/chem.201704694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Coutinho-Neto, Maurício D., and A. Arnóbio de S. da Gama. "Donor-acceptor interaction in two-level-reduced molecular systems." Chemical Physics 203, no. 1 (February 1996): 43–52. http://dx.doi.org/10.1016/0301-0104(95)00320-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Heitele, H., M. E. Michel-Beyerle, and P. Finckh. "Electron transfer through intramolecular bridges in donor/acceptor systems." Chemical Physics Letters 134, no. 3 (February 1987): 273–78. http://dx.doi.org/10.1016/0009-2614(87)87135-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Psiachos, D. "Short-lived electron transfer in donor-bridge-acceptor systems." Chemical Physics Letters 662 (October 2016): 201–7. http://dx.doi.org/10.1016/j.cplett.2016.09.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography