Dissertations / Theses on the topic 'Accelerative learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Accelerative learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Scharn, Kay. "Accelerative learning in review." Online version, 1999. http://www.uwstout.edu/lib/thesis/1999/1999scharnk.pdf.
Full textMou, Dai, and manchurian0@yahoo com. "The Use of Suggestion as a Classroom Learning Strategy in China and Australia: An Assessment Scale with Structural Equation Explanatory Models in Terms of Stress, Depression, Learning Styles and Academic Grades." RMIT University. Education, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070207.152256.
Full textMathari, Bakthavatsalam Pagalavan. "Hardware Acceleration of a Neighborhood Dependent Component Feature Learning (NDCFL) Super-Resolution Algorithm." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1366034621.
Full textSamal, Kruttidipta. "FPGA acceleration of CNN training." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54467.
Full textSingh, Karanpreet. "Accelerating Structural Design and Optimization using Machine Learning." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104114.
Full textDoctor of Philosophy
This thesis presents an innovative application of artificial intelligence (AI) techniques for designing aircraft structures. An important objective for the aerospace industry is to design robust and fuel-efficient aerospace structures. The state of the art research in the literature shows that the structure of aircraft in future could mimic organic cellular structure. However, the design of these new panels with arbitrary structures is computationally expensive. For instance, applying standard optimization methods currently being applied to aerospace structures to design an aircraft, can take anywhere from a few days to months. The presented research demonstrates the potential of AI for accelerating the optimization of an aircraft structures. This will provide an efficient way for aircraft designers to design futuristic fuel-efficient aircraft which will have positive impact on the environment and the world.
Li, Zheng. "Accelerating Catalyst Discovery via Ab Initio Machine Learning." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/95915.
Full textDoctor of Philosophy
Machine learning and deep learning techniques have revolutionized a range of industries in recent years and have huge potential to improve every aspect of our daily lives. Essentially, machine-learning provides algorithms the ability to automatically discover the hidden patterns of data without being explicitly programmed. Because of this, machine learning models have gained huge successes in applications such as website recommendation systems, online fraud detection, robotic technologies, image recognition, etc. Nevertheless, implementing machine-learning techniques in the field of catalyst design remains difficult due to 2 primary challenges. The first challenge is our insufficient knowledge about the structure-property relationships for diverse material systems. Typically, developing a physically intuitive material feature method requests in-depth expert knowledge about the underlying physics of the material system and it is always an active field. The second challenge is the lack of training data in academic research. In many cases, collecting a sufficient amount of training data is not always feasible due to the limitation of computational/experimental resources. Subsequently, the machine learning model optimized with small data tends to be over-fitted and could provide biased predictions with huge uncertainties. To address the above-mentioned challenges, this thesis focus on the development of robust feature methods and strategies for a variety of catalyst systems using the density functional theory (DFT) calculations. Through the case studies in the chapters, we show that the bulk electronic structure characteristics are successful features for capturing the adsorption properties of metal alloys and metal oxides. While molecular graphs are robust features for the molecular property, e.g., energy gap, of metal-organics compounds. Besides, we demonstrate that the adaptive machine learning workflow is an effective strategy to tackle the data deficiency issue in search of perovskite catalysts for the oxygen evolution reaction.
Erickson, Xavante. "Acceleration of Machine-Learning Pipeline Using Parallel Computing." Thesis, Uppsala universitet, Signaler och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441722.
Full textDatorer är en central och oundviklig del av mångas vardag idag. De framsteg som har gjorts inom maskin-inlärning har gjort det nästintill lika viktigt inom mångas vardag som datorer. Med de otroliga framsteg som gjorts inom maskininlärning så har man börjat använda det för att försöka tolka hjärnsignaler, i hopp om att skapa BCI (Brain Computer Interface) eller hjärn dator gränssnitt. Forskare på Lund Universitet genomförde ett experiment där de försökte kategorisera hjärnsignaler med hjälp av maskininlärning. Forskarna försökte kategorisera mellan tre olika saker, objekt, ansikten och landmärken. En av de större utmaningarna med projektet var att det tog väldigt lång tid att beräkna på en vanlig dator, runt en veckas tid. Det här projektet hade som uppgift att försöka förbättra och snabba upp beräkningstiden av koden. Projektet översatte den kod som skulle förbättras från programmeringspråket MATLAB till Python. Projektet använde sig utav profilering, kluster och av ett accelereringsverktyg. Med hjälp av profilering kan man lokalisera delar av kod som körs långsamt och förbättra koden till att vara snabbare, ett optimeringsverktyg helt enkelt. Kluster är en samling av datorer som man kan använda för att kollektivt beräkna större problem med, för att öka beräkningshastigheten. Det här projektet använde sig utav ett ramverk kallat Ray, vilket möjliggjorde beräkningar av koden på ett kluster ägt av Ericsson. Ett accellereringsverktyg kallat the Accelerator implementerades också, separat från Ray implementationen av koden. The Accelerator utnyttjar endast lokala processorer för att parallelisera ett problem gentemot att använda flera datorer. Den största fördelen med the Accelerator är att den kan hålla reda på vad som beräknats och inte och sparar alla resultat automatiskt. När the Accelerator håller reda på allt så kan det återanvända gamla resultat till nya beräkningar ifall gammal kod används. Återanvändningen av gamla resultat betyder att man undviker beräkningstiden det skulle ta att beräkna kod man redan har beräknat. Detta projekt förbättrade beräkningshastigheten till att vara över två hundra gånger snabbare än den var innan. Med både Ray och the Accelerator sågs en förbättring på över två hundra gånger snabbare, med de bästa resultaten från the Accelerator på runt två hundra femtio gånger snabbare. Det skall dock nämnas att de bästa resultaten från the Accelerator gjordes på en bra server processor. En bra server processor är en stor investering medan en klustertjänst endast tar betalt för tiden man använder, vilket kan vara billigare på kort sikt. Om man däremot behöver använda datorkraften mycket kan det vara mer lönsamt i längden att använda en serverprocessor. En förbättring på två hundra gånger kan ha stora konsekvenser, om man kan se en sådan förbättring i hastighet för BCI överlag. Man skulle potentiellt kunna se en tolkning av hjärnsignaler mer i realtid, vilket man kunde använda till att styra apparater eller elektronik med. Resultaten i det här projektet har också visat att NumPy, ett vanligt beräknings bibliotek i Python, har saktat ned koden med de standardinställningar det kommer med. NumPy gjorde kod långsammare genom att använda flera trådar i processorn, även i en flertrådad miljö där manuell parallelisering hade gjorts. Det visade sig att NumPy var långsammare för både den fler och entrådade implementationen, vilket antyder att NumPy kan sakta ned kod generellt, något många är omedvetna om. Efter att manuellt fixat de miljövariabler som NumPy kommer med, så var koden mer än tre gånger så snabb än innan.
Irani, Arya John. "Utilizing negative policy information to accelerate reinforcement learning." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53481.
Full textRodrigues, Maia-Pinto Renata, and Fleith Denise de Souza. "Learning acceleration for gifted students: Favorable and unfavorable arguments." Pontificia Universidad Católica del Perú, 2012. http://repositorio.pucp.edu.pe/index/handle/123456789/102530.
Full textSe analiza la aceleración de la enseñanza como práctica de atención a las necesidades educacionales de alumnos superdotados y se presentan argumentos favorables y contrarios. La aceleración de la enseñanza es una práctica educacional compuesta por diversas estrategias para estimular al alumno académicamente superdotado y reducir su tiempo de permanencia en la escuela. Promueve un aprendizaje más rápido al equiparar el currículum al nivel de conocimiento, interés y motivación. Son varios los argumentos a favor de la aceleración, como mejora del desempeño académico, la autoestima y el ajuste social del alumno. Sin embargo, educadores se resisten a implementar esta práctica alegando que los alumnos pueden ser inmaduros o perder parte del contenido del currículum regular.
Obeda, Larry. "Impact of Learning Acceleration Program on Students Academic Success." Thesis, Wingate University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10685692.
Full textThis study is a review of the Learning Acceleration Program and the impact it has on student academic success in the Rural School District (pseudonym). This mixed-methods study used qualitative and quantitative data analyses to identify the impact that the Learning Acceleration Program has on the overall attendance and graduation rates for the district. The study also provided an understanding of the impact the Learning Acceleration Program has on perceptions as it pertains to the program. Data for this study were collected for the period of three academic school years on attendance, graduation rate for each year, and surveys completed by participants who have first-hand knowledge of the Learning Acceleration Program. The participants in this study were high school principals, one assistant principal, high school counselors, and Learning Acceleration Program personnel. The findings exhibited statistical significant difference in attendance or graduation rates on district. Furthermore, the findings from the survey highlighted the ability to meet the needs of each individual on an individual basis and provide future recommendations.
Walsh, Debra. "An analysis of the competencies that instructors need to teach using accelerated learning." Online version, 2002. http://www.uwstout.edu/lib/thesis/2002/2002walshd.pdf.
Full textJones, Matthew Cecil. "Accelerating Conceptual Design Analysis of Marine Vehicles through Deep Learning." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/89341.
Full textDoctor of Philosophy
Evaluation of the flow field of a marine vehicle reveals the underlying performance, however, the exact relationship between design features and their impact on the flow field is not well established. The goal of this work is first, to investigate the flow surrounding a self–propelled marine vehicle to identify the significance of various design decisions, and second, to develop a functional relationship between an arbitrary vehicle design and its flow field, thereby accelerating the design analysis process. Near–field wake profiles are computed through simulation, showing good agreement to experimental data. Machine learning is employed to discover the relationship between vehicle geometries and their associated flow fields with two distinct approaches. The first approach directly maps explicitly–specified geometric design parameters to their corresponding flow fields. The second approach considers the vehicle geometries themselves to implicitly–learn the underlying relationships. Once trained, both approaches generate a realistic flow field corresponding to a user–provided vehicle geometry, accelerating the design analysis from a multi–day process to one that takes a fraction of a second. The implicit–parameter approach successfully learns from the underlying geometric features, showing comparable performance to the explicit–parameter approach. With a larger and more–diverse training database, this network has the potential to abstractly learn the design space relationships for arbitrary marine vehicle geometries, even those beyond the scope of the training database.
MARTINS, FABIO JESSEN WERNECK DE ALMEIDA. "METHODS FOR ACCELERATION OF LEARNING PROCESS OF REINFORCEMENT LEARNING NEURO-FUZZY HIERARCHICAL POLITREE MODEL." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16421@1.
Full textFUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Neste trabalho foram desenvolvidos e avaliados métodos com o objetivo de melhorar e acelerar o processo de aprendizado do modelo de Reinforcement Learning Neuro-Fuzzy Hierárquico Politree (RL-NFHP). Este modelo pode ser utilizado para dotar um agente de inteligência através de processo de Aprendizado por Reforço (Reinforcement Learning). O modelo RL-NFHP apresenta as seguintes características: aprendizado automático da estrutura do modelo; auto-ajuste dos parâmetros associados à estrutura; capacidade de aprendizado da ação a ser adotada quando o agente está em um determinado estado do ambiente; possibilidade de lidar com um número maior de entradas do que os sistemas neuro-fuzzy tradicionais; e geração de regras linguísticas com hierarquia. Com intenção de melhorar e acelerar o processo de aprendizado do modelo foram implementadas seis políticas de seleção, sendo uma delas uma inovação deste trabalho (Q-DC-roulette); implementado o método early stopping para determinação automática do fim do treinamento; desenvolvido o eligibility trace cumulativo; criado um método de poda da estrutura, para eliminação de células desnecessárias; além da reescrita do código computacional original. O modelo RL-NFHP modificado foi avaliado em três aplicações: o benchmark Carro na Montanha simulado, conhecido na área de agentes autônomos; uma simulação robótica baseada no robô Khepera; e uma num robô real NXT. Os testes efetuados demonstram que este modelo modificado se ajustou bem a problemas de sistemas de controle e robótica, apresentando boa generalização. Comparado o modelo RL-NFHP modificado com o original, houve aceleração do aprendizado e obtenção de menores modelos treinados.
In this work, methods were developed and evaluated in order to improve and accelerate the learning process of Reinforcement Learning Neuro-Fuzzy Hierarchical Politree Model (RL-NFHP). This model is employed to provide an agent with intelligence, making it autonomous, due to the capacity of ratiocinate (infer actions) and learning, acquired knowledge through interaction with the environment by Reinforcement Learning process. The RL-NFHP model has the following features: automatic learning of structure of the model; self-adjustment of parameters associated with its structure, ability to learn the action to be taken when the agent is in a particular state of the environment; ability to handle a larger number of inputs than the traditional neuro-fuzzy systems; and generation of rules with linguistic interpretable hierarchy. With the aim to improve and accelerate the learning process of the model, six selection action policies were developed, one of them an innovation of this work (Q-DC-roulette); implemented the early stopping method for automatically determining the end of the training; developed a cumulative eligibility trace; created a method of pruning the structure, for removing unnecessary cells; in addition to rewriting the original computer code. The modified RL-NFHP model was evaluated in three applications: the simulated benchmark Car-Mountain problem, well known in the area of autonomous agents; a simulated application in robotics based on the Khepera robot; and an application in a real robot. The experiments show that this modified model fits well the problems of control systems and robotics, with a good generalization. Compared the modified RL-NFHP model with the original one, there was acceleration of learning process and smaller structures of the model trained.
Ida, Yasutoshi. "Algorithms for Accelerating Machine Learning with Wide and Deep Models." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263771.
Full textBhave, Sampada Vasant. "Novel dictionary learning algorithm for accelerating multi-dimensional MRI applications." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2182.
Full textMcDonald, Terry E. "A comprehensive literature review and critique of the identification of methods and practical applications of accelerated learning strategies." Online version, 2001. http://www.uwstout.edu/lib/thesis/2001/2001mcdonaldt.pdf.
Full textMeloy, Faye A. Haslam Elizabeth L. "Managing the maelstrom self-regulated learning, academic outcomes, and the student learning experience in a second-degree accelerated baccalaureate nursing program /." Philadelphia, Pa. : Drexel University, 2009. http://hdl.handle.net/1860/3118.
Full textAmar, Yehia. "Accelerating process development of complex chemical reactions." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288220.
Full textXu, Yi. "Accelerating convex optimization in machine learning by leveraging functional growth conditions." Diss., University of Iowa, 2019. https://ir.uiowa.edu/etd/7048.
Full textBiswas, Rajarshi. "Benchmarking and Accelerating TensorFlow-based Deep Learning on Modern HPC Systems." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1531827968620294.
Full textMorozs, Nils. "Accelerating reinforcement learning for dynamic spectrum access in cognitive wireless networks." Thesis, University of York, 2015. http://etheses.whiterose.ac.uk/11523/.
Full textKodi, Ramanah Doogesh. "Bayesian statistical inference and deep learning for primordial cosmology and cosmic acceleration." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS169.
Full textThe essence of this doctoral research constitutes the development and application of novel Bayesian statistical inference and deep learning techniques to meet statistical challenges of massive and complex data sets from next-generation cosmic microwave background (CMB) missions or galaxy surveys and optimize their scientific returns to ultimately improve our understanding of the Universe. The first theme deals with the extraction of the E and B modes of the CMB polarization signal from the data. We have developed a high-performance hierarchical method, known as the dual messenger algorithm, for spin field reconstruction on the sphere and demonstrated its capabilities in reconstructing pure E and B maps, while accounting for complex and realistic noise models. The second theme lies in the development of various aspects of Bayesian forward modelling machinery for optimal exploitation of state-of-the-art galaxy redshift surveys. We have developed a large-scale Bayesian inference framework to constrain cosmological parameters via a novel implementation of the Alcock-Paczyński test and showcased our cosmological constraints on the matter density and dark energy equation of state. With the control of systematic effects being a crucial limiting factor for modern galaxy redshift surveys, we also presented an augmented likelihood which is robust to unknown foreground and target contaminations. Finally, with a view to building fast complex dynamics emulators in our above Bayesian hierarchical model, we have designed a novel halo painting network that learns to map approximate 3D dark matter fields to realistic halo distributions
Javed, Muhammad Haseeb. "Characterizing and Accelerating Deep Learning and Stream Processing Workloads using Roofline Trajectories." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1574445196024129.
Full textWilliams, Richard Larry. "The impact of accelerated versus traditional learning with a practical test in advanced culinary skills at Fox Valley Technical College." Online version, 2008. http://www.uwstout.edu/lib/thesis/2008/2008williamsr.pdf.
Full textMukherjee, Rajaditya. "Accelerating Data-driven Simulations for Deformable Bodies and Fluids." The Ohio State University, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=osu1523634514740489.
Full textVan, Mai Vien. "Large-Scale Optimization With Machine Learning Applications." Licentiate thesis, KTH, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263147.
Full textQC 20191105
Koufetta, Christiana. "Teaching thinking in schools : an investigation into the teaching of CASE and its contribution to student learning." Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.322909.
Full textArale, Brännvall Marian. "Accelerating longitudinal spinfluctuation theory for iron at high temperature using a machine learning method." Thesis, Linköpings universitet, Teoretisk Fysik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-170314.
Full textMills, Alessaundra D. "Strategic school solutions| A capacity building framework for leaders accelerating 21st century teaching and learning." Thesis, Pepperdine University, 2016. http://pqdtopen.proquest.com/#viewpdf?dispub=10182306.
Full textThis grounded theory study sought to create a viable framework that may help school leaders accelerate the expansion of an authentic 21st century instructional model. The U.S. economy is now more dependent on knowledge work than manufacturing. Yet, many for-profit, non-profit, and public sectors perceive schools as not adequately preparing students for 21st century careers and colleges. However, customary principal-led change is challenging. Leaders face several complex organizational challenges, including a modern-day duty and role expansion that limits time, and the inherent difficulty of human-behavior and organizational change, observed in the fact that schools have deeply entrenched norms: an estimated 150 years of traditional lecture-dominant instruction.
As such, a singular research question informed this study: What leadership competencies do 21st century change-savvy school administrators perceive as critical to accelerate successful change to a 21st century instructional model? Using a purposive sampling method, change-savvy school leaders (n = 22) with lived experience were interviewed covering germane topics such as what worked for them, professional development, and change management.
Utilizing Charmaz’s (2014) constructed grounded theory coding process and data analysis technique, the results include two key findings: five leadership competencies (discerning, authentic, facilitative, collaborative, and communicative) and the Authentic 21st Century Leadership Framework, which integrates the respective competencies to provide a user guide for the contemporary time-burdened school leader. Ultimately, the study concluded the following: (a) the leadership competencies are essential; (b) the framework provides a supportive guide to accelerate expansion of the 21st century instructional model; (c) 21st century leadership is chiefly collaborative; (d) leader created and sustained growth culture is critical; and, lastly (e) as the 21st century instructional model magnifies in utilization across schools, opportunities for all students improve.
Dantas, Cássio Fraga. "Accelerating sparse inverse problems using structured approximations." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S065.
Full textAs the quantity and size of available data grow, the existing algorithms for solving sparse inverse problems can become computationally intractable. In this work, we explore two main strategies for accelerating such algorithms. First, we study the use of structured dictionaries which are fast to operate with. A particular family of dictionaries, written as a sum of Kronecker products, is proposed. Then, we develop stable screening tests, which can safely identify and discard useless atoms (columns of the dictionary matrix which do not correspond to the solution support), despite manipulating approximate dictionaries
TAKEUCHI, Yoshinori, Hiroaki KUDO, Noboru OHNISHI, Tetsuya MATSUMOTO, and Ukrit WATCHAREERUETAI. "Acceleration of Genetic Programming by Hierarchical Structure Learning: A Case Study on Image Recognition Program Synthesis." Institute of Electronics, Information and Communication Engineers, 2009. http://hdl.handle.net/2237/15003.
Full textALMEIDA, RAPHAEL CELESTINO DE. "THE FATE OF THE WEAKEST: SUBORDINATE INCLUSION: A STUD OF STUDENTS PLACED IN LEARNING ACCELERATION CLASSES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=25997@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Esta pesquisa investiga o destino de alunos do Ensino Médio em defasagem idade-série em uma escola da rede estadual de educação do Rio de Janeiro, analisando a experiência de inserção em duas classes de aceleração da aprendizagem do Programa Autonomia da Fundação Roberto Marinho. A partir da conjugação de observações com entrevistas, busca, na fronteira entre etnografia e educação, aproximar-se da perspectiva destes alunos para tentar construir um conhecimento sob novos ângulos. Investiga o sentido do que pensam estes alunos sobre seu atraso escolar, sobre a transição para o programa de aceleração, sobre a experiência de estudar nestas classes e sobre os ganhos simbólicos e concretos percebidos por eles. Identifica nos problemas de comportamento dos alunos a principal explicação escolar para o fracasso, explicação internalizada pelos próprios estudantes. Caracteriza a ênfase dada no Programa Autonomia à socialização e adequação dos comportamentos, e não à aprendizagem, o que acaba por assegurar uma inclusão subalterna no sistema escolar.
This study investigates the fate of high school students with an age-grade gap at a state school in Rio de Janeiro, analyzing the placement experience in two learning acceleration classes in the Roberto Marinho Foundation Autonomy Program. From a set of observations through interviews, it aims, on the boundary between ethnography and education, to get a closer perspective of these students to try to build knowledge from new angles. It investigates the meaning of the reflections that these students make about their educational delay and the transition to the accelerated program on the experience of studying in these classes and the symbolic and concrete gains they perceived. It identifies the main reason for school failure as the students behavior problems, an explanation internalized by the students themselves. It characterizes the acceleration classes as a space for socialization and behavior suitability at the expense of learning, which ultimately ensures subordinate inclusion in the school system.
Rose, Linda Dean. "Teaching and learning in community college a close-up view of student success in accelerated developmental writing classes /." Diss., Restricted to subscribing institutions, 2007. http://proquest.umi.com/pqdweb?did=1459901941&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textAbdelouahab, Kamel. "Reconfigurable hardware acceleration of CNNs on FPGA-based smart cameras." Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC042/document.
Full textDeep Convolutional Neural Networks (CNNs) have become a de-facto standard in computer vision. This success came at the price of a high computational cost, making the implementation of CNNs, under real-time constraints, a challenging task.To address this challenge, the literature exploits the large amount of parallelism exhibited by these algorithms, motivating the use of dedicated hardware platforms. In power-constrained environments, such as smart camera nodes, FPGA-based processing cores are known to be adequate solutions in accelerating computer vision applications. This is especially true for CNN workloads, which have a streaming nature that suits well to reconfigurable hardware architectures.In this context, the following thesis addresses the problems of CNN mapping on FPGAs. In Particular, it aims at improving the efficiency of CNN implementations through two main optimization strategies; The first one focuses on the CNN model and parameters while the second one considers the hardware architecture and the fine-grain building blocks
Dahlin, Johan. "Accelerating Monte Carlo methods for Bayesian inference in dynamical models." Doctoral thesis, Linköpings universitet, Reglerteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125992.
Full textBorde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Nowak, Michel. "Accelerating Monte Carlo particle transport with adaptively generated importance maps." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS403/document.
Full textMonte Carlo methods are a reference asset for the study of radiation transport in shielding problems. Their use naturally implies the sampling of rare events and needs to be tackled with variance reduction methods. These methods require the definition of an importance function/map. The aim of this study is to propose an adaptivestrategy for the generation of such importance maps during the Montne Carlo simulation. The work was performed within TRIPOLI-4®, a Monte Carlo transport code developped at the nuclear energy division of CEA in Saclay, France. The core of this PhD thesis is the implementation of a forward-weighted adjoint score that relies on the trajectories sampled with Adaptive Multilevel Splitting, a robust variance reduction method. It was validated with the integration of a deterministic module in TRIPOLI-4®. Three strategies were proposed for the reintegrationof this score as an importance map and accelerations were observed. Two of these strategies assess the convergence of the adjoint score during exploitation phases by evalutating the figure of merit yielded by the use of the current adjoint score. Finally, the smoothing of the importance map with machine learning algorithms concludes this work with a special focus on Kernel Density Estimators
Ghneim, Jabra F. "The Practice of Belonging: Can Learning Entrepreneurship Accelerate and Aid the Social Inclusion of Refugees in the United States." BYU ScholarsArchive, 2021. https://scholarsarchive.byu.edu/etd/8979.
Full textSepp, Löfgren Nicholas. "Accelerating bulk material property prediction using machine learning potentials for molecular dynamics : predicting physical properties of bulk Aluminium and Silicon." Thesis, Linköpings universitet, Teoretisk Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-179894.
Full textPetti, Amy Daggett. "Comprehensive School Reform Influence on Teacher Practice: Listening in the Classroom: An Examination of Powerful Learning Labs within the Accelerated Schools Project." PDXScholar, 2002. https://pdxscholar.library.pdx.edu/open_access_etds/614.
Full textVaupel, Yannic [Verfasser], Alexander [Akademischer Betreuer] Mitsos, and Sergio [Akademischer Betreuer] Lucia. "Accelerating nonlinear model predictive control through machine learning with application to automotive waste heat recovery / Yannic Vaupel ; Alexander Mitsos, Sergio Lucia." Aachen : Universitätsbibliothek der RWTH Aachen, 2020. http://d-nb.info/1231738715/34.
Full textBarduhn, Susan. "Traits and conditions that accelerate teacher learning : a consideration of the four-week Cambridge RSA Certificate in English Language Teaching to Adults." Thesis, University of West London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262820.
Full textFortes, Maria Auxiliadora Soares. "AceleraÃÃo da Aprendizagem - resultado de decisÃes curriculares no contexto escolar?" Universidade Federal do CearÃ, 2006. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=511.
Full textEsse trabalho decorre da preocupaÃÃo com resultados de pesquisas, as quais indicam que, ainda hoje, a educaÃÃo de nÃvel fundamental continua um grave problema do ensino pÃblico brasileiro a ser solucionado. Nesse contexto, privilegiou-se as classes de aceleraÃÃo da aprendizagem, a qual compÃs o cenÃrio educacional cearense de 1998 a 2002, com forte apelo de inovaÃÃo pedagÃgica capaz de inserir os alunos âdefasadosâ no ensino dito regular. Desse modo, o presente estudo tem como objetivo central explicitar o sentido e o alcance que a implantaÃÃo desse programa adquire quando preconiza o desenvolvimento de uma escola sem exclusÃo. A Teoria CrÃtica ancora esta discussÃo, cuja anÃlise coloca como questÃo bÃsica as relaÃÃes de poder, esclarecendo que as contradiÃÃes e resistÃncias tÃm papel de destaque nessa teorizaÃÃo. A metodologia empregada engloba um estudo de caso mÃltiplo com tÃcnicas da histÃria oral, delineado com base na pesquisa em jornal e bibliogrÃfica, anÃlise documental, conversas informais e entrevistas semi-estruturadas com tÃcnicos das secretarias estadual e municipal, diretores, professores e alunos de uma escola da rede estadual e outra da rede municipal, em Fortaleza. Os resultados esclarecem que, a implantaÃÃo das classes de aceleraÃÃo nÃo resolveu o problema da exclusÃo escolar, notadamente, porque os alunos nÃo retornaram, em sua grande maioria, ao ensino regular.
Results of recent research indicate that the low quality of the basic level education is one of the most serious problems of Brazilian public education. In this work we study the âclasses de aceleraÃÃo da aprendizagemâ (learning acceleration classrooms) in the State of Cearà educational system, in the period 1998 - 2002. The âacceleration classroomsâ appeal to pedagogical innovation as a means to insert "defasados" (out of fase) pupils in regular education. We objective to identify the reach of this modality of education for the development of a non exclusive school. The study is based on the "Critical Theory"; it focus on power relations in society; and points the role of contradictions and resistency as explanation to students progress. The methodology used here is the case study, with techniques of life history, searches in periodical, bibliographical, documentary analysis, informal and semi-structured interviews. Technician of the Board of Education (both of the State of Cearà and of the city of Fortaleza) managers, professors, and pupils of a State school, and of the city of Fortaleza school had been interviewed. The results show that the acceleration classrooms did not solve the problem of school exclusion because the pupils had not returned, in its great majority, to regular education.
Lin, Hongzhou. "Algorithmes d'accélération générique pour les méthodes d'optimisation en apprentissage statistique." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAM069/document.
Full textOptimization problems arise naturally in machine learning for supervised problems. A typical example is the empirical risk minimization (ERM) formulation, which aims to find the best a posteriori estimator minimizing the regularized risk on a given dataset. The current challenge is to design efficient optimization algorithms that are able to handle large amounts of data in high-dimensional feature spaces. Classical optimization methods such as the gradient descent algorithm and its accelerated variants are computationally expensive under this setting, because they require to pass through the entire dataset at each evaluation of the gradient. This was the motivation for the recent development of incremental algorithms. By loading a single data point (or a minibatch) for each update, incremental algorithms reduce the computational cost per-iteration, yielding a significant improvement compared to classical methods, both in theory and in practice. A natural question arises: is it possible to further accelerate these incremental methods? We provide a positive answer by introducing several generic acceleration schemes for first-order optimization methods, which is the main contribution of this manuscript. In chapter 2, we develop a proximal variant of the Finito/MISO algorithm, which is an incremental method originally designed for smooth strongly convex problems. In order to deal with the non-smooth regularization penalty, we modify the update by introducing an additional proximal step. The resulting algorithm enjoys a similar linear convergence rate as the original algorithm, when the problem is strongly convex. In chapter 3, we introduce a generic acceleration scheme, called Catalyst, for accelerating gradient-based optimization methods in the sense of Nesterov. Our approach applies to a large class of algorithms, including gradient descent, block coordinate descent, incremental algorithms such as SAG, SAGA, SDCA, SVRG, Finito/MISO, and their proximal variants. For all of these methods, we provide acceleration and explicit support for non-strongly convex objectives. The Catalyst algorithm can be viewed as an inexact accelerated proximal point algorithm, applying a given optimization method to approximately compute the proximal operator at each iteration. The key for achieving acceleration is to appropriately choose an inexactness criteria and control the required computational effort. We provide a global complexity analysis and show that acceleration is useful in practice. In chapter 4, we present another generic approach called QNing, which applies Quasi-Newton principles to accelerate gradient-based optimization methods. The algorithm is a combination of inexact L-BFGS algorithm and the Moreau-Yosida regularization, which applies to the same class of functions as Catalyst. To the best of our knowledge, QNing is the first Quasi-Newton type algorithm compatible with both composite objectives and the finite sum setting. We provide extensive experiments showing that QNing gives significant improvement over competing methods in large-scale machine learning problems. We conclude the thesis by extending the Catalyst algorithm into the nonconvex setting. This is a joint work with Courtney Paquette and Dmitriy Drusvyatskiy, from University of Washington, and my PhD advisors. The strength of the approach lies in the ability of the automatic adaptation to convexity, meaning that no information about the convexity of the objective function is required before running the algorithm. When the objective is convex, the proposed approach enjoys the same convergence result as the convex Catalyst algorithm, leading to acceleration. When the objective is nonconvex, it achieves the best known convergence rate to stationary points for first-order methods. Promising experimental results have been observed when applying to sparse matrix factorization problems and neural network models
Barbosa, Raimundo José Pereira. "Análise da implementação do projeto avançar na coordenadoria distrital de educação 4 da secretaria estadual de educação do estado do Amazonas." Universidade Federal de Juiz de Fora, 2015. https://repositorio.ufjf.br/jspui/handle/ufjf/2195.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-25T16:32:28Z (GMT) No. of bitstreams: 1 raimundojosepereirabarbosa.pdf: 2983435 bytes, checksum: e3f779bd6cb6fe8344f53da29841fcee (MD5)
Made available in DSpace on 2016-07-25T16:32:28Z (GMT). No. of bitstreams: 1 raimundojosepereirabarbosa.pdf: 2983435 bytes, checksum: e3f779bd6cb6fe8344f53da29841fcee (MD5) Previous issue date: 2015-12-18
A presente dissertação foi desenvolvida no âmbito do Mestrado Profissional em Gestão e Avaliação da Educação (PPGP) do Centro de Políticas Públicas e Avaliação da Educação da Universidade Federal de Juiz de Fora (CAEd/UFJF). O caso de gestão estudado tem o objetivo de compreender quais as principais dificuldades na implementação do “Programa de Correção do Fluxo Escolar do Ensino Fundamental: Projeto Avançar”, na Coordenadoria Distrital de Educação – 4 (CDE-4), a partir da descrição do programa e da análise de sua implementação nas escolas e na sede da CDE-4 e assim propor ações que contribuam para solucionar as dificuldades de implementação encontradas. A CDE-4 esta localizada na zona centro-oeste da cidade de Manaus - Amazonas - Brasil, faz parte da Secretaria Estadual de Educação do Amazonas (SEDUC-AM) e coordena 34 escolas de Ensino Fundamental e Médio, das quais, dezessete implementaram o programa em 2015. O Projeto Avançar foi implantado pela SEDUC-AM, com o objetivo de corrigir a distorção idade-ano dos alunos matriculados no Ensino Fundamental, com até dois anos de atraso escolar, através de uma metodologia diferenciada, baseada na interdisciplinaridade e na aprendizagem significativa. As coordenadorias distritais e regionais de educação da SEDUC-AM são as responsáveis pela implementação e monitoramento do projeto em suas escolas, seguindo as orientações do Departamento de Politicas e Programas Educacionais (DEPPE) e da Proposta Curricular do Projeto Avançar (PCPAV). O motivo desta pesquisa foi a dificuldade enfrentada pelo pesquisador, no período em que atuou como gestor escolar, para implementar o programa na escola onde trabalhava e por observar, enquanto supervisor pedagógico, atuando desde 2012 na CDE-4, que a referida coordenadoria, também enfrentava dificuldades com a implementação do Projeto Avançar. A pesquisa é um estudo de caso, baseado na análise documental do programa e de suas atividades de implementação (PCPAV, legislação, atas, pautas de reuniões e registros acadêmicos, dentre outros), na aplicação de questionários e entrevistas com principais atores que implementam o programa no âmbito da CDE-4. Os achados da pesquisa permitiram identificar os seguintes problemas na implementação do Projeto Avançar na CDE-4: inadequação da formação continuada oferecida aos atores envolvidos; falta da prática pedagógica interdisciplinar e ineficiência do monitoramento do programa feito pela CDE-4. A partir dos achados da pesquisa, o PAE apresentado propõe as seguintes medidas visando a melhoria da implementação do programa na CDE-4: fortalecer a interdisciplinaridade como prática pedagógica, melhorar a formação continuada e tornar o monitoramento do programa mais eficiente.
This work was developed under the Professional Master in Management and Education Assessment (PPGP) of the Center for Public Policy and Federal University of Education Evaluation of Juiz de Fora (CAEd / UFJF). The case management study aims to understand what the main difficulties in implementing the "School Flow Correction Program Elementary School: Next Project", the District Coordinator of Education - 4 (CDE-4), starting from the description the program and the analysis of its implementation in schools and the headquarters of the CDE-4 and so propose actions aimed at contributing to resolving implementation difficulties. The CDE-4 is located in the center-west of the city of Manaus - Amazonas - Brazil, is part of the State Department of Amazonas Education (SEDUC-AM) and coordinates 34 primary schools and East, of which seventeen implementaramm the program in 2015. The next project was implemented by SEDUC-AM, in order to correct the age-year students enrolled in elementary school, within two years of school delay, through a different methodology based on interdisciplinary and meaningful learning. The district and regional coordinators SEDUC-AM of education are responsible for the implementation and monitoring of the project in their schools, following the guidelines of the Department of Policies and Educational Programs (DEPPE) and the Curriculum Proposal of the Forward Project. The reason for this research was the difficulty faced by the researcher, in the period when he served as school manager, to implement the program at the school where he worked and watched as teaching supervisor, working since 2012 in the CDE-4, said coordinating body also facing difficulties with implementation of the Next Project. The research is a case study based on document analysis of the program and its implementation activities (Curriculum Proposal, legislation, minutes, meeting agendas and academic records, among others), the use of questionnaires and interviews with key actors that implement the program within the CDE-4. The research findings have identified the following problems in implementing the Project on Next CDE-4: inadequacy of continuing education offered to stakeholders; lack of interdisciplinary teaching practice and inefficiency of program monitoring done by the CDE-4. From, the research findings, the PAE presented proposed the following measures aimed at improving program implementation in the CDE-4: strengthen interdisciplinarity as a pedagogical practice, enhance continuing education and make the monitoring more efficient program.
Cyr-Mutty, Paul B. "Accelerating Experience| Using Learning Scenarios Based on Master Teacher Experiences and Specific School Contexts to Help Induct Novice Faculty into Teaching at an Independent Boarding School." Thesis, University of Pennsylvania, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10264630.
Full textMany independent boarding schools have customarily hired significant numbers of novice faculty who are not certified teachers and who do not have significant teaching experience. Additionally, the time available to help such novice faculty learn about the many aspects of their jobs is quite limited. Therefore, the methods used to help novice faculty learn, while they already enacting their roles as educators, are important. As a result, this study examined the effectiveness of using school context based learning scenarios as a tool for teaching novice faculty at independent boarding schools. Specifically, the study tried to determine if such scenarios helped novice faculty feel greater self-efficacy and helped them to more effectively gain the benefits of their own experiential learning, thus acquiring more quickly the important knowledge of their craft that senior teachers developed through their own experiential learning. I theorized that this would ultimately lead to their achieving better educational outcomes with their students in all facets of their jobs. First, the researcher interviewed six master teachers from three different junior boarding schools to gather information about the key experiential learning events of successful teachers and then analyzed this data to identify common themes and types of experiences. These narrated, real experiences and the analyses of them were used as the basis for the construction of learning scenarios. These scenarios attempted to both highlight important concepts and approaches to working with adolescents that the master teachers felt they gleaned from the actual experiences and reflect the specific details of the independent boarding middle school where they were used. These scenarios were then read and discussed with the novice faculty at the school as part of their induction to life and work there over the course of a four-month period. To assess the impact of the use of scenarios, the researcher audio recorded, video taped and analyzed two of the scenario learning sessions; had the new faculty respond, in written form, to two scenarios; conducted a focus group with the new faculty, and administered a pre and post scenario learning experience self-efficacy scale.
Lingala, Sajan Goud. "Novel adaptive reconstruction schemes for accelerated myocardial perfusion magnetic resonance imaging." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/5016.
Full textKarlsson, Johanna. "Identifying patterns in physiological parameters of expert and novice marksmen in simulation environment related to performance outcomes." Thesis, Linköpings universitet, Avdelningen för medicinsk teknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139589.
Full textMcCaw, Donna S. Davis-Lenski Susan Braun Joseph A. "Teaching reading using small flexible-skills grouping and whole classroom instruction a study of project : FIRST /." Normal, Ill. Illinois State University, 2001. http://wwwlib.umi.com/cr/ilstu/fullcit?p3006623.
Full textTitle from title page screen, viewed April 20, 2006. Dissertation Committee: Susan Davis-Lenski, Joseph Braun (co-chairs), Anthony Lorsbach. Includes bibliographical references (leaves 115-139) and abstract. Also available in print.
Gruvstad, Kim, and Ebba Remes. "Särskilt begåvade elever i matematikklassrummet : Hur kan lärare upptäcka, stimulera och utmana särskilt begåvade elever i matematik?" Thesis, Linköpings universitet, Pedagogik och didaktik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-152015.
Full textBarbosa, Tânia Maria Meneses Farias. "A implementação do Projeto Acelerar para Vencer (PAV) em uma unidade escolar: das intenções às ações." Universidade Federal de Juiz de Fora, 2013. https://repositorio.ufjf.br/jspui/handle/ufjf/1000.
Full textApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-04-24T02:23:01Z (GMT) No. of bitstreams: 1 taniamariamenesesfariasbarbosa.pdf: 1525501 bytes, checksum: bb1ca4d56c8cd73e1c4d10a0743853a9 (MD5)
Made available in DSpace on 2016-04-24T02:23:01Z (GMT). No. of bitstreams: 1 taniamariamenesesfariasbarbosa.pdf: 1525501 bytes, checksum: bb1ca4d56c8cd73e1c4d10a0743853a9 (MD5) Previous issue date: 2013-08-16
O objetivo desta pesquisa é analisar a efetividade da implementação do Projeto Acelerar Para Vencer (PAV), no período de 2009 a 2012, e sua relação com a gestão de uma unidade escolar pertencente à Superintendência Regional de Ensino (SRE) de São João del-Rei, visando a verificar quais ações do gestor escolar da unidade pesquisada contribuem para a efetividade da implementação do projeto. O PAV se constitui como uma estratégia para atender aos alunos do Ensino Fundamental (EF) com pelo menos dois anos ou mais de distorção da idade em relação ao ano de escolaridade adequada. Seus principais objetivos são aumentar a proficiência média do aluno e reduzir a distorção idade/ano de escolaridade. A presente pesquisa revela, entretanto, que os objetivos preconizados nos documentos estruturadores do projeto, não têm sido alcançados. Para o desenvolvimento da pesquisa foi selecionada uma das escolas que têm turmas de PAV desde 2009. Sua escolha está associada aos bons resultados obtidos pela instituição, no âmbito da política, evidenciados pelo Programa de Avaliação da Rede Pública de Educação Básica (PROEB) e pelos menores índices de evasão e infrequência no projeto. É uma escola que, sob a jurisdição pesquisada, apresenta menos problemas em relação à implementação do PAV. A pesquisa foi desenvolvida por meio de observação não participante, aplicação de questionários aos alunos e pais, grupo focal e realização de entrevistas com os professores do projeto, Especialistas da Educação Básica (EEB) e o diretor da escola. Os profissionais da SRE/SJDR integram o grupo de atores pesquisados, tendo em vista o papel dessa instituição como mediadora das políticas implantadas pela SEE/MG e a implementação destas nas escolas da rede estadual. A análise dos resultados da pesquisa é feita a partir de duas categorias que envolvem como mote da discussão a proposta curricular do PAV e as contradições da política. Os instrumentos metodológicos e os referenciais teóricos forneceram subsídios para a confirmação de que o PAV não tem alcançado seus objetivos em decorrência de sua implementação inadequada, por ter sido uma política implantada de forma pouco democrática; pela dificuldade de aceitação do regime de progressão continuada, pelo corpo docente; pela ausência de um perfil pedagógico do gestor escolar para atuação no PAV e pelo desconhecimento, por parte dos profissionais que atuam diretamente no projeto, dos documentos estruturadores e, consequentemente, de suas premissas, objetivos e orientações. A partir dos resultados observados, é proposto um plano de ação que envolve a formação de gestores escolares com foco na gestão pedagógica e, para os professores com ênfase na construção de uma proposta curricular para o projeto. Para a escola e SRE/SJDR, consideradas suas especificidades de atuação, são propostas ações que promovam uma implementação mais efetiva do PAV. Em caráter sugestivo, tendo em vista as contradições observadas na implementação da política em questão, são apresentadas para a SEE/MG propostas que possam adequar as diretrizes contidas nos documentos oficiais ao contexto da prática.
The aim of this research is to analyze the effectiveness of the implementation of the Project Acelerar Para Vencer (PAV, in Portuguese), from 2009 to 2012, and its relation to a school unit belonging to the Regional Superintendency of Education (SRE, in Portuguese), of São João del-Rei, aiming to verify which actions by the school manager of the studied school have contributed to the effectiveness in implementing the project. PAV is constituted as a strategy to attend to Basic Education students with two or more years of age distortion in relation to the adequate grade. Its mains goals are to increase the student’s average proficiency levels and to reduce the age/grade distortion. The present research reveals, however, that the goals established in the documents which structure the project have not been met. In order to conduct the research we selected a school which has had PAV classes since 2009, Such choice is associated with the good results obtained by the institution regarding the policy, highlighted by the Assessment Program of the Public Network of Basic Education (PROEB, in Portuguese) and by the lesser levels of evasion and absence in the project. It is a school that, under the researched jurisdiction, presents less problems regarding the PAV’s implementation. The research was developed by means of non participating observation, surveys being conducted among students and parents, focal group and conducting of interviews with the project’s teachers, Specialists in Basic Education (EEB, in Portuguese) and the school manager. The professionals from SRE/SJDR integrate the group of research actors, considering their role in mediating the policies fomented by the SEE/MG and their implementations in the state schools. The analysis of the results is conducted from two categories which have evolved as a motto of the discussion surrounding PAV’s curricular proposal and the contradictions of the policy. The methodological instruments and theoretical references subsidized the confirmation that the PAV has not reached its goals due to its inadequate implementation, having been a policy implemented in a less than democratic way, due to the difficulty in accepting of the continued progression regimen by the teaching staff, due to the absence of a pedagogical posture by the school manager to act in the PAV and by the lack of knowledge, by the professionals who work directly with the project, of their structuring documents and, consequently, of tits premises, goals and orientations. From the results observed, we propose an action plan which involved the training of school managers with a focus on the pedagogical management and for the teachers with an emphasis in the construction of a curricular proposal for the project. To the school and the SRE/SJDR, considering its specificities we propose actions which promote a more effective implementation of the PAV. We also suggest, never losing sight of the contradictions observed in implementing the policy in question, proposals to the SEE/MG which may adequate the guidelines contained in the official documents to the practice’s context.