Academic literature on the topic 'Accelerative learning'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Accelerative learning.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Accelerative learning"
Knight, Debbie. "Learning styles and accelerative learning: An appraisal." Australian Journal of Learning Disabilities 2, no. 3 (September 1997): 25–28. http://dx.doi.org/10.1080/19404159709546538.
Full textPoynting, Scott, and Greg Noble. "‘Rekindling the Spark’: Teachers' Experiences of ‘Accelerative Learning’." Australian Journal of Education 42, no. 1 (April 1998): 32–48. http://dx.doi.org/10.1177/000494419804200103.
Full textNoble, Greg, and Scott Poynting. "’Weird Science’ and ‘Common Sense’: the discursive construction of accelerative learning." Discourse: Studies in the Cultural Politics of Education 19, no. 2 (August 1998): 141–56. http://dx.doi.org/10.1080/0159630980190201.
Full textPoonoosamy, Mico. "THE INFLUENCE OF PERSONALITY TYPE ON FOREIGN LANGUAGE LEARNING: A CRITIQUE OF THE ACCELERATIVE INTEGRATED METHOD." PEOPLE: International Journal of Social Sciences 5, no. 3 (November 27, 2019): 142–52. http://dx.doi.org/10.20319/pijss.2019.53.142152.
Full textOlszewski-Kubilius, Paula. "Talent Search." Journal of Secondary Gifted Education 9, no. 3 (February 1998): 106–13. http://dx.doi.org/10.1177/1932202x9800900303.
Full textCarroll, Brandon. "Teaching FSL with AIM? An elementary school case study." SURG Journal 4, no. 2 (March 11, 2011): 21–22. http://dx.doi.org/10.21083/surg.v4i2.1261.
Full textKEREN-PORTNOY, TAMAR. "Facilitation and practice in verb acquisition." Journal of Child Language 33, no. 3 (August 2006): 487–518. http://dx.doi.org/10.1017/s0305000906007495.
Full textMulyana, Enceng. "AKSELERASI PENINGKATAN KOMPETENSI PENDIDIK DAN TENAGA KEPENDIDIKAN NONFORMAL." JIV 2, no. 2 (December 31, 2007): 4–10. http://dx.doi.org/10.21009/jiv.0202.1.
Full textRahma, Ulifa. "Effectiveness of Self-Regulated Learning Training in order to Enhance Self-Directed Learning Skill of Acceleration Students at MTsN Malang." GATR Global Journal of Business and Social Science Review (GJBSSR) Vol.5(3) Jul-Sep 2017 5, no. 3 (June 5, 2017): 106–13. http://dx.doi.org/10.35609/gjbssr.2017.5.3(14).
Full textAdebiyi, Abdulafeez, Olatunde Abidakun, and V’yacheslav Akkerman. "Acceleration of Premixed Flames in Obstructed Pipes with Both Extremes Open." Energies 13, no. 16 (August 7, 2020): 4094. http://dx.doi.org/10.3390/en13164094.
Full textDissertations / Theses on the topic "Accelerative learning"
Scharn, Kay. "Accelerative learning in review." Online version, 1999. http://www.uwstout.edu/lib/thesis/1999/1999scharnk.pdf.
Full textMou, Dai, and manchurian0@yahoo com. "The Use of Suggestion as a Classroom Learning Strategy in China and Australia: An Assessment Scale with Structural Equation Explanatory Models in Terms of Stress, Depression, Learning Styles and Academic Grades." RMIT University. Education, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070207.152256.
Full textMathari, Bakthavatsalam Pagalavan. "Hardware Acceleration of a Neighborhood Dependent Component Feature Learning (NDCFL) Super-Resolution Algorithm." University of Dayton / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1366034621.
Full textSamal, Kruttidipta. "FPGA acceleration of CNN training." Thesis, Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54467.
Full textSingh, Karanpreet. "Accelerating Structural Design and Optimization using Machine Learning." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/104114.
Full textDoctor of Philosophy
This thesis presents an innovative application of artificial intelligence (AI) techniques for designing aircraft structures. An important objective for the aerospace industry is to design robust and fuel-efficient aerospace structures. The state of the art research in the literature shows that the structure of aircraft in future could mimic organic cellular structure. However, the design of these new panels with arbitrary structures is computationally expensive. For instance, applying standard optimization methods currently being applied to aerospace structures to design an aircraft, can take anywhere from a few days to months. The presented research demonstrates the potential of AI for accelerating the optimization of an aircraft structures. This will provide an efficient way for aircraft designers to design futuristic fuel-efficient aircraft which will have positive impact on the environment and the world.
Li, Zheng. "Accelerating Catalyst Discovery via Ab Initio Machine Learning." Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/95915.
Full textDoctor of Philosophy
Machine learning and deep learning techniques have revolutionized a range of industries in recent years and have huge potential to improve every aspect of our daily lives. Essentially, machine-learning provides algorithms the ability to automatically discover the hidden patterns of data without being explicitly programmed. Because of this, machine learning models have gained huge successes in applications such as website recommendation systems, online fraud detection, robotic technologies, image recognition, etc. Nevertheless, implementing machine-learning techniques in the field of catalyst design remains difficult due to 2 primary challenges. The first challenge is our insufficient knowledge about the structure-property relationships for diverse material systems. Typically, developing a physically intuitive material feature method requests in-depth expert knowledge about the underlying physics of the material system and it is always an active field. The second challenge is the lack of training data in academic research. In many cases, collecting a sufficient amount of training data is not always feasible due to the limitation of computational/experimental resources. Subsequently, the machine learning model optimized with small data tends to be over-fitted and could provide biased predictions with huge uncertainties. To address the above-mentioned challenges, this thesis focus on the development of robust feature methods and strategies for a variety of catalyst systems using the density functional theory (DFT) calculations. Through the case studies in the chapters, we show that the bulk electronic structure characteristics are successful features for capturing the adsorption properties of metal alloys and metal oxides. While molecular graphs are robust features for the molecular property, e.g., energy gap, of metal-organics compounds. Besides, we demonstrate that the adaptive machine learning workflow is an effective strategy to tackle the data deficiency issue in search of perovskite catalysts for the oxygen evolution reaction.
Erickson, Xavante. "Acceleration of Machine-Learning Pipeline Using Parallel Computing." Thesis, Uppsala universitet, Signaler och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-441722.
Full textDatorer är en central och oundviklig del av mångas vardag idag. De framsteg som har gjorts inom maskin-inlärning har gjort det nästintill lika viktigt inom mångas vardag som datorer. Med de otroliga framsteg som gjorts inom maskininlärning så har man börjat använda det för att försöka tolka hjärnsignaler, i hopp om att skapa BCI (Brain Computer Interface) eller hjärn dator gränssnitt. Forskare på Lund Universitet genomförde ett experiment där de försökte kategorisera hjärnsignaler med hjälp av maskininlärning. Forskarna försökte kategorisera mellan tre olika saker, objekt, ansikten och landmärken. En av de större utmaningarna med projektet var att det tog väldigt lång tid att beräkna på en vanlig dator, runt en veckas tid. Det här projektet hade som uppgift att försöka förbättra och snabba upp beräkningstiden av koden. Projektet översatte den kod som skulle förbättras från programmeringspråket MATLAB till Python. Projektet använde sig utav profilering, kluster och av ett accelereringsverktyg. Med hjälp av profilering kan man lokalisera delar av kod som körs långsamt och förbättra koden till att vara snabbare, ett optimeringsverktyg helt enkelt. Kluster är en samling av datorer som man kan använda för att kollektivt beräkna större problem med, för att öka beräkningshastigheten. Det här projektet använde sig utav ett ramverk kallat Ray, vilket möjliggjorde beräkningar av koden på ett kluster ägt av Ericsson. Ett accellereringsverktyg kallat the Accelerator implementerades också, separat från Ray implementationen av koden. The Accelerator utnyttjar endast lokala processorer för att parallelisera ett problem gentemot att använda flera datorer. Den största fördelen med the Accelerator är att den kan hålla reda på vad som beräknats och inte och sparar alla resultat automatiskt. När the Accelerator håller reda på allt så kan det återanvända gamla resultat till nya beräkningar ifall gammal kod används. Återanvändningen av gamla resultat betyder att man undviker beräkningstiden det skulle ta att beräkna kod man redan har beräknat. Detta projekt förbättrade beräkningshastigheten till att vara över två hundra gånger snabbare än den var innan. Med både Ray och the Accelerator sågs en förbättring på över två hundra gånger snabbare, med de bästa resultaten från the Accelerator på runt två hundra femtio gånger snabbare. Det skall dock nämnas att de bästa resultaten från the Accelerator gjordes på en bra server processor. En bra server processor är en stor investering medan en klustertjänst endast tar betalt för tiden man använder, vilket kan vara billigare på kort sikt. Om man däremot behöver använda datorkraften mycket kan det vara mer lönsamt i längden att använda en serverprocessor. En förbättring på två hundra gånger kan ha stora konsekvenser, om man kan se en sådan förbättring i hastighet för BCI överlag. Man skulle potentiellt kunna se en tolkning av hjärnsignaler mer i realtid, vilket man kunde använda till att styra apparater eller elektronik med. Resultaten i det här projektet har också visat att NumPy, ett vanligt beräknings bibliotek i Python, har saktat ned koden med de standardinställningar det kommer med. NumPy gjorde kod långsammare genom att använda flera trådar i processorn, även i en flertrådad miljö där manuell parallelisering hade gjorts. Det visade sig att NumPy var långsammare för både den fler och entrådade implementationen, vilket antyder att NumPy kan sakta ned kod generellt, något många är omedvetna om. Efter att manuellt fixat de miljövariabler som NumPy kommer med, så var koden mer än tre gånger så snabb än innan.
Irani, Arya John. "Utilizing negative policy information to accelerate reinforcement learning." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53481.
Full textRodrigues, Maia-Pinto Renata, and Fleith Denise de Souza. "Learning acceleration for gifted students: Favorable and unfavorable arguments." Pontificia Universidad Católica del Perú, 2012. http://repositorio.pucp.edu.pe/index/handle/123456789/102530.
Full textSe analiza la aceleración de la enseñanza como práctica de atención a las necesidades educacionales de alumnos superdotados y se presentan argumentos favorables y contrarios. La aceleración de la enseñanza es una práctica educacional compuesta por diversas estrategias para estimular al alumno académicamente superdotado y reducir su tiempo de permanencia en la escuela. Promueve un aprendizaje más rápido al equiparar el currículum al nivel de conocimiento, interés y motivación. Son varios los argumentos a favor de la aceleración, como mejora del desempeño académico, la autoestima y el ajuste social del alumno. Sin embargo, educadores se resisten a implementar esta práctica alegando que los alumnos pueden ser inmaduros o perder parte del contenido del currículum regular.
Obeda, Larry. "Impact of Learning Acceleration Program on Students Academic Success." Thesis, Wingate University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10685692.
Full textThis study is a review of the Learning Acceleration Program and the impact it has on student academic success in the Rural School District (pseudonym). This mixed-methods study used qualitative and quantitative data analyses to identify the impact that the Learning Acceleration Program has on the overall attendance and graduation rates for the district. The study also provided an understanding of the impact the Learning Acceleration Program has on perceptions as it pertains to the program. Data for this study were collected for the period of three academic school years on attendance, graduation rate for each year, and surveys completed by participants who have first-hand knowledge of the Learning Acceleration Program. The participants in this study were high school principals, one assistant principal, high school counselors, and Learning Acceleration Program personnel. The findings exhibited statistical significant difference in attendance or graduation rates on district. Furthermore, the findings from the survey highlighted the ability to meet the needs of each individual on an individual basis and provide future recommendations.
Books on the topic "Accelerative learning"
1930-, Gritton Charles E., ed. Suggestive accelerative learning techniques. New York: Gordon and Breach Science Publishers, 1986.
Find full textLouise, Goll, and Accelerated Learning Systems, eds. Accelerate your learning. Aylesbury: Accelerated Learning Systems Ltd, 1992.
Find full textRose, Colin. Accelerate your learning. Aylesbury: Accelerated Learning Systems Ltd, 1992.
Find full textOrganization development: Accelerating learning and transformation. 2nd ed. New Delhi, India: SAGE/Response Business Books, 2011.
Find full textRose, Colin. Accelerated learning. 5th ed. Aylesbury: Accelerated Learning Systems, 1991.
Find full textRose, Colin. Accelerated learning. New York, N.Y: Dell Pub. Co, 1987.
Find full textRose, Colin. Accelerated learning. 4th ed. Aylesbury: Accelerated Learning Systems, 1989.
Find full textStudy skills strategies: Accelerate your learning. Menlo Park, Calif: Crisp Publications, 1994.
Find full textLengefeld, Uelaine. Study skills strategies: Accelerate your learning. Menlo Park, Calif: Crisp Publications, 1994.
Find full textAccelerated learning. New York, N.Y: Dell Pub. Co., 1987.
Find full textBook chapters on the topic "Accelerative learning"
Roberts, Peter W., and Saurabh A. Lall. "Accelerating Learning About Accelerators." In Observing Acceleration, 187–201. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00042-4_11.
Full textOwens, David H. "Acceleration and Successive Projection." In Iterative Learning Control, 377–402. London: Springer London, 2015. http://dx.doi.org/10.1007/978-1-4471-6772-3_13.
Full textThomke, Stefan. "Accelerating Learning by Experimentation." In Management of the Fuzzy Front End of Innovation, 125–40. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01056-4_10.
Full textThijssen, Thomas J. P., Fons T. J. Vernooij, and Pieter Stein. "Accelerating Learning through Gaming?" In The Power of Technology for Learning, 25–41. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8747-9_2.
Full textGarcía, Daniel, Ana González, and José R. Dorronsoro. "Accelerating Kernel Perceptron Learning." In Lecture Notes in Computer Science, 159–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74690-4_17.
Full textZhou, Zhi-Hua, Yang Yu, and Chao Qian. "Subset Selection: Acceleration." In Evolutionary Learning: Advances in Theories and Algorithms, 285–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-5956-9_18.
Full textBernard, James. "Accelerating Educational Transformation Through ICT." In Creating Holistic Technology-Enhanced Learning Experiences, 209–16. Rotterdam: SensePublishers, 2013. http://dx.doi.org/10.1007/978-94-6209-086-6_13.
Full textAbdelouahab, Kamel, Maxime Pelcat, and François Berry. "Accelerating the CNN Inference on FPGAs." In Deep Learning in Computer Vision, 1–40. First edition. | Boca Raton, FL : CRC Press/Taylor and Francis, 2020. |: CRC Press, 2020. http://dx.doi.org/10.1201/9781351003827-1.
Full textJi, Hangxu, Gang Wu, and Guoren Wang. "Accelerating ELM Training over Data Streams." In Proceedings in Adaptation, Learning and Optimization, 182–90. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23307-5_20.
Full textGuitton, Pierre, Robert Kasprzyk, and Jeannine Sorge. "Dow:Sustaining Change and Accelerating Growth through Business-Focused Learning." In Business Driven Action Learning, 14–28. London: Palgrave Macmillan UK, 2000. http://dx.doi.org/10.1057/9780230285866_2.
Full textConference papers on the topic "Accelerative learning"
Israni, Kumar Chris, and Colleen Watson. "Applying the Concept of Accelerative Learning for Design and Delivery of Process and Personnel Safety Leadership Programs in Oil & Gas Assets." In SPE Health, Safety, Security, Environment, & Social Responsibility Conference - North America. Society of Petroleum Engineers, 2017. http://dx.doi.org/10.2118/184433-ms.
Full textKucherov, Valery, Amy McDonald, Ivan Ivanov, and Janet Rose. "The Application of the Accelerative Learning Cycle to the Design and Delivery of Safety Leadership Programs for Personnel of Onshore and Offshore Upstream Oil Assets." In SPE Annual Caspian Technical Conference & Exhibition. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/177351-ms.
Full textKucherov, Valery, Amy McDonald, Ivan Ivanov, and Janet Rose. "The Application of the Accelerative Learning Cycle to the Design and Delivery of Safety Leadership Programs for Personnel of Onshore and Offshore Upstream Oil Assets (Russian)." In SPE Annual Caspian Technical Conference & Exhibition. Society of Petroleum Engineers, 2015. http://dx.doi.org/10.2118/177351-ru.
Full textKale, David, and Yan Liu. "Accelerating Active Learning with Transfer Learning." In 2013 IEEE International Conference on Data Mining (ICDM). IEEE, 2013. http://dx.doi.org/10.1109/icdm.2013.160.
Full textWang, Yu, Lixue Xia, Ming Cheng, Tianqi Tang, Boxun Li, and Huazhong Yang. "RRAM based learning acceleration." In the International Conference. New York, New York, USA: ACM Press, 2016. http://dx.doi.org/10.1145/2968455.2981124.
Full textQian, Yuhua, Jiye Liang, and Wei Wei. "Accelerating incomplete feature selection." In 2009 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2009. http://dx.doi.org/10.1109/icmlc.2009.5212472.
Full textSantos, A. C. F., P. Fonseca, L. F. S. Coelho, Floyd D. McDaniel, and Barney L. Doyle. "Can Accelerators Accelerate Learning?" In APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY: Twentieth International Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3120016.
Full textLiu, Chuanjian, Yunhe Wang, Kai Han, Chunjing Xu, and Chang Xu. "Learning Instance-wise Sparsity for Accelerating Deep Models." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/416.
Full textChen, Pu, and Hung-Hsuan Chen. "Accelerating Matrix Factorization by Overparameterization." In 1st International Conference on Deep Learning Theory and Applications. SCITEPRESS - Science and Technology Publications, 2020. http://dx.doi.org/10.5220/0009885600890097.
Full textZhao, Ruizhe, Wayne Luk, Xinyu Niu, Huifeng Shi, and Haitao Wang. "Hardware Acceleration for Machine Learning." In 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2017. http://dx.doi.org/10.1109/isvlsi.2017.127.
Full textReports on the topic "Accelerative learning"
Lacy, Susan Whitney, and Charles Snider. Machine Learning and Code Acceleration. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1463447.
Full textDaniels, Matthew, Autumn Toney, Melissa Flagg, and Charles Yang. Machine Intelligence for Scientific Discovery and Engineering Invention. Center for Security and Emerging Technology, May 2021. http://dx.doi.org/10.51593/20200099.
Full textRodriguez, Dominic, Emily Marie Gaffney, Taylor Marie Stewart, Christopher A. Apblett, and Joan Tafoya. Accelerating Learning with Set-Based Concurrent Engineering. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1605517.
Full textDuarte, Javier, and et al. FPGAs as a Service to Accelerate Machine Learning Inference. Office of Scientific and Technical Information (OSTI), March 2019. http://dx.doi.org/10.2172/1570210.
Full textLavadenz, Magaly, Elvira Armas, and Rosalinda Barajas. Preventing Long-Term English Learners: Results from a Project-Based Differentiated ELD Intervention Program. CEEL, 2012. http://dx.doi.org/10.15365/ceel.article.2012.1.
Full text