Academic literature on the topic 'Accélérateurs de réseaux de neurones'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Accélérateurs de réseaux de neurones.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Accélérateurs de réseaux de neurones"
-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 31. http://dx.doi.org/10.3845/ree.2006.074.
Full text-BORNE, Pierre. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 37. http://dx.doi.org/10.3845/ree.2006.075.
Full text-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 43. http://dx.doi.org/10.3845/ree.2006.076.
Full text-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 47. http://dx.doi.org/10.3845/ree.2006.077.
Full text-Y. HAGGEGE, Joseph. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 50. http://dx.doi.org/10.3845/ree.2006.078.
Full text-BENREJEB, Mohamed. "Les réseaux de neurones." Revue de l'Electricité et de l'Electronique -, no. 08 (2006): 55. http://dx.doi.org/10.3845/ree.2006.079.
Full textBélanger, M., N. El-Jabi, D. Caissie, F. Ashkar, and J. M. Ribi. "Estimation de la température de l'eau de rivière en utilisant les réseaux de neurones et la régression linéaire multiple." Revue des sciences de l'eau 18, no. 3 (April 12, 2005): 403–21. http://dx.doi.org/10.7202/705565ar.
Full textMézard, Marc, and Jean-Pierre Nadal. "Réseaux de neurones et physique statistique." Intellectica. Revue de l'Association pour la Recherche Cognitive 9, no. 1 (1990): 213–45. http://dx.doi.org/10.3406/intel.1990.884.
Full textLaks, Bernard. "Réseaux de neurones et syllabation du français." Linx 34, no. 1 (1996): 327–46. http://dx.doi.org/10.3406/linx.1996.1440.
Full textJelassi, Khaled, Najiba Bellaaj-Merabet, and Bruno Dagues. "Estimation du flux par réseaux de neurones." Revue internationale de génie électrique 7, no. 1-2 (April 30, 2004): 105–31. http://dx.doi.org/10.3166/rige.7.105-131.
Full textDissertations / Theses on the topic "Accélérateurs de réseaux de neurones"
Wenzek, Didier. "Construction de réseaux de neurones." Phd thesis, Grenoble INPG, 1993. http://tel.archives-ouvertes.fr/tel-00343569.
Full textTsopze, Norbert. "Treillis de Galois et réseaux de neurones : une approche constructive d'architecture des réseaux de neurones." Thesis, Artois, 2010. http://www.theses.fr/2010ARTO0407/document.
Full textThe artificial neural networks are successfully applied in many applications. But theusers are confronted with two problems : defining the architecture of the neural network able tosolve their problems and interpreting the network result. Many research works propose some solutionsabout these problems : to find out the architecture of the network, some authors proposeto use the problem domain theory and deduct the network architecture and some others proposeto dynamically add neurons in the existing networks until satisfaction. For the interpretabilityproblem, solutions consist to extract rules which describe the network behaviour after training.The contributions of this thesis concern these problems. The thesis are limited to the use of theartificial neural networks in solving the classification problem.In this thesis, we present a state of art of the existing methods of finding the neural networkarchitecture : we present a theoritical and experimental study of these methods. From this study,we observe some limits : difficulty to use some method when the knowledges are not available ;and the network is seem as ’black box’ when using other methods. We a new method calledCLANN (Concept Lattice-based Artificial Neural Network) which builds from the training dataa semi concepts lattice and translates this semi lattice into the network architecture. As CLANNis limited to the two classes problems, we propose MCLANN which extends CLANN to manyclasses problems.A new method of rules extraction called ’MaxSubsets Approach’ is also presented in thisthesis. Its particularity is the possibility of extracting the two kind of rules (If then and M-of-N)from an internal structure.We describe how to explain the MCLANN built network result aboutsome inputs
Voegtlin, Thomas. "Réseaux de neurones et auto-référence." Lyon 2, 2002. http://theses.univ-lyon2.fr/documents/lyon2/2002/voegtlin_t.
Full textThe purpose of this thesis is to present a class of unsupervised learning algorithms for recurrent networks. In the first part (chapters 1 to 4), I propose a new approach to this question, based on a simple principle: self-reference. A self-referent algorithm is not based on the minimization of an objective criterion, such as an error function, but on a subjective function, that depends on what the network has previously learned. An example of a supervised recurrent network where learning is self-referent is the Simple Recurrent Network (SRN) by Elman (1990). In the SRN, self-reference is applied to the supervised error back-propagation algorithm. In this aspect, the SRN differs from other generalizations of back-propagation to recurrent networks, that use an objective criterion, such as Back-Propagation Through Time, or Real-Time Recurrent Learning. In this thesis, I show that self-reference can be combined with several well-known unsupervised learning methods: the Self-Organizing Map (SOM), Principal Components Analysis (PCA), and Independent Components Analysis (ICA). These techniques are classically used to represent static data. Self-reference allows one to generalize these techniques to time series, and to define unsupervised learning algorithms for recurrent networks
Teytaud, Olivier. "Apprentissage, réseaux de neurones et applications." Lyon 2, 2001. http://theses.univ-lyon2.fr/documents/lyon2/2001/teytaud_o.
Full textCôté, Marc-Alexandre. "Réseaux de neurones génératifs avec structure." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/10489.
Full textJodouin, Jean-François. "Réseaux de neurones et traitement du langage naturel : étude des réseaux de neurones récurrents et de leurs représentations." Paris 11, 1993. http://www.theses.fr/1993PA112079.
Full textBrette, Romain. "Modèles Impulsionnels de Réseaux de Neurones Biologiques." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00005340.
Full textTardif, Patrice. "Autostructuration des réseaux de neurones avec retards." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24240/24240.pdf.
Full textMaktoobi, Sheler. "Couplage diffractif pour réseaux de neurones optiques." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD019.
Full textPhotonic networks with high performance can be considered as substrates for future computing systems. In comparison with electronics, photonic systems have substantial privileges, for instance the possibility of a fully parallel implementation of networks. Recently, neural networks have moved into the center of attention of the photonic community. One of the most important requirements for parallel large-scale photonic networks is to realize the connectivities. Diffraction is considered as a method to process the connections between the nodes (coupling) in optical neural networks. In the current thesis, we evaluate the scalability of a diffractive coupling in more details as follow:First, we begin with a general introductions for artificial intelligence, machine learning, artificial neural network and photonic neural networks. To establish a working neural network, learning rules are an essential part to optimize a configuration for obtaining a low error from the system, hence learning rules are introduced (Chapter 1). We investigate the fundamental concepts of diffractive coupling in our spatio-temporal reservoir. In that case, theory of diffraction is explained. We use an analytical scheme to provide the limits for the size of diffractive networks which is a part of our photonic neural network (Chapter 2). The concepts of diffractive coupling are investigated experimentally by two different experiments to confirm the analytical limits and to obtain maximum number of nodes which can be coupled in the photonic network (Chapter 3). Numerical simulations for such an experimental setup is modeled in two different schemes to obtain the maximum size of network numerically, which approaches a surface of 100 mm2 (Chapter 4). Finally, the complete photonic neural network is demonstrated. We design a spatially extended reservoir for 900 nodes. Consequently, our system generalizes the prediction for the chaotic Mackey–Glass sequence (Chapter 5)
Ouali, Jamel. "Architecture intégrée flexible pour réseaux de neurones." Grenoble INPG, 1991. http://www.theses.fr/1991INPG0035.
Full textBooks on the topic "Accélérateurs de réseaux de neurones"
Michel, Verleysen, ed. Les réseaux de neurones artificiels. Paris: Presses universitaires de France, 1996.
Find full textKamp, Yves. Réseaux de neurones récursifs pour mémoires associatives. Lausanne: Presses polytechniques et universitaires romandes, 1990.
Find full textRollet, Guy. Les RÉSEAUX DE NEURONES DE LA CONSCIENCE - Approche multidisciplinaire du phénomène. Paris: Editions L'Harmattan, 2013.
Find full textPersonnaz, L. Réseaux de neurones formels pour la modélisation, la commande et la classification. Paris: CNRS Editions, 2003.
Find full textAmat, Jean-Louis. Techniques avancées pour le traitement de l'information: Réseaux de neurones, logique floue, algorithmes génétiques. 2nd ed. Toulouse: Cépaduès-Ed., 2002.
Find full textJournées d'électronique (1989 Lausanne, Switzerland). Réseaux de neurones artificiels: Comptes rendus des Journées d'électronique 1989, Lausanne, 10-12 october 1983. Lausanne: Presses polytechniques romande, 1989.
Find full textSeidou, Ousmane. Modélisation de la croissance de glace de lac par réseaux de neurones artificiels et estimation du volume de la glace abandonnée sur les berges des réservoirs hydroélectriques pendant les opérations d'hiver. Québec, QC: INRS--ETE, 2005.
Find full textSuzanne, Tyc-Dumont, ed. Le neurone computationnel: Histoire d'un siècle de recherches. Paris: CNRS, 2005.
Find full textBiophysics of computation: Information processing in single neurons. New York: Oxford University Press, 1999.
Find full textK, Kaczmarek Leonard, ed. The neuron: Cell and molecular biology. 3rd ed. Oxford: Oxford University Press, 2002.
Find full textBook chapters on the topic "Accélérateurs de réseaux de neurones"
Martaj, Dr Nadia, and Dr Mohand Mokhtari. "Réseaux de neurones." In MATLAB R2009, SIMULINK et STATEFLOW pour Ingénieurs, Chercheurs et Etudiants, 807–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11764-0_17.
Full textKipnis, C., and E. Saada. "Un lien entre réseaux de neurones et systèmes de particules: Un modele de rétinotopie." In Lecture Notes in Mathematics, 55–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0094641.
Full text"4. Les réseaux de neurones artificiels." In L'intelligence artificielle, 91–112. EDP Sciences, 2021. http://dx.doi.org/10.1051/978-2-7598-2580-6.c006.
Full textMOLINIER, Matthieu, Jukka MIETTINEN, Dino IENCO, Shi QIU, and Zhe ZHU. "Analyse de séries chronologiques d’images satellitaires optiques pour des applications environnementales." In Détection de changements et analyse des séries temporelles d’images 2, 125–74. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch4.
Full textBYTYN, Andreas, René AHLSDORF, and Gerd ASCHEID. "Systèmes multiprocesseurs basés sur un ASIP pour l’efficacité des CNN." In Systèmes multiprocesseurs sur puce 1, 93–111. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9021.ch4.
Full textBENMAMMAR, Badr, and Asma AMRAOUI. "Application de l’intelligence artificielle dans les réseaux de radio cognitive." In Gestion et contrôle intelligents des réseaux, 233–60. ISTE Group, 2020. http://dx.doi.org/10.51926/iste.9008.ch9.
Full textCOGRANNE, Rémi, Marc CHAUMONT, and Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias." In Sécurité multimédia 1, 261–303. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.
Full textATTO, Abdourrahmane M., Héla HADHRI, Flavien VERNIER, and Emmanuel TROUVÉ. "Apprentissage multiclasse multi-étiquette de changements d’état à partir de séries chronologiques d’images." In Détection de changements et analyse des séries temporelles d’images 2, 247–71. ISTE Group, 2024. http://dx.doi.org/10.51926/iste.9057.ch6.
Full textDE’ FAVERI TRON, Alvise. "La détection d’intrusion au moyen des réseaux de neurones : un tutoriel." In Optimisation et apprentissage, 211–47. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9071.ch8.
Full textATTO, Abdourrahmane M., Fatima KARBOU, Sophie GIFFARD-ROISIN, and Lionel BOMBRUN. "Clustering fonctionnel de séries d’images par entropies relatives." In Détection de changements et analyse des séries temporelles d’images 1, 121–38. ISTE Group, 2022. http://dx.doi.org/10.51926/iste.9056.ch4.
Full textConference papers on the topic "Accélérateurs de réseaux de neurones"
Fourcade, A. "Apprentissage profond : un troisième oeil pour les praticiens." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206601014.
Full textGresse, Adrien, Richard Dufour, Vincent Labatut, Mickael Rouvier, and Jean-François Bonastre. "Mesure de similarité fondée sur des réseaux de neurones siamois pour le doublage de voix." In XXXIIe Journées d’Études sur la Parole. ISCA: ISCA, 2018. http://dx.doi.org/10.21437/jep.2018-2.
Full textORLIANGES, Jean-Christophe, Younes El Moustakime, Aurelian Crunteanu STANESCU, Ricardo Carrizales Juarez, and Oihan Allegret. "Retour vers le perceptron - fabrication d’un neurone synthétique à base de composants électroniques analogiques simples." In Les journées de l'interdisciplinarité 2023. Limoges: Université de Limoges, 2024. http://dx.doi.org/10.25965/lji.761.
Full textWalid, Tazarki, Fareh Riadh, and Chichti Jameleddine. "La Prevision Des Crises Bancaires: Un essai de modélisation par la méthode des réseaux de neurones [Not available in English]." In International Conference on Information and Communication Technologies from Theory to Applications - ICTTA'08. IEEE, 2008. http://dx.doi.org/10.1109/ictta.2008.4529985.
Full textKim, Lila, and Cédric Gendrot. "Classification automatique de voyelles nasales pour une caractérisation de la qualité de voix des locuteurs par des réseaux de neurones convolutifs." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-82.
Full textGendrot, Cedric, Emmanuel Ferragne, and Anaïs Chanclu. "Analyse phonétique de la variation inter-locuteurs au moyen de réseaux de neurones convolutifs : voyelles seules et séquences courtes de parole." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-94.
Full textQuintas, Sebastião, Alberto Abad, Julie Mauclair, Virginie Woisard, and Julien Pinquier. "Utilisation de réseaux de neurones profonds avec attention pour la prédiction de l’intelligibilité de la parole de patients atteints de cancers ORL." In XXXIVe Journées d'Études sur la Parole -- JEP 2022. ISCA: ISCA, 2022. http://dx.doi.org/10.21437/jep.2022-7.
Full text