Academic literature on the topic 'Absolute gravity measurements'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Absolute gravity measurements.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Absolute gravity measurements"

1

Zumberge, M. A., G. Sasagawa, and M. Kappus. "Absolute gravity measurements in California." Journal of Geophysical Research 91, B9 (1986): 9135. http://dx.doi.org/10.1029/jb091ib09p09135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ardyukov, D. G., E. N. Kalish, D. A. Nosov, I. S. Sizikov, M. G. Smirnov, Yu F. Stus, V. Yu Timofeev, R. G. Kulinich, and M. G. Valitov. "Absolute gravity measurements at Shults Cape." Giroskopiya i Navigatsiya 23, no. 3 (2015): 13–18. http://dx.doi.org/10.17285/0869-7035.2015.23.3.013-018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ardyukov, D. G., E. N. Kalish, D. A. Nosov, I. S. Sizikov, M. G. Smirnov, Yu F. Stus, V. Yu Timofeev, R. G. Kulinich, and M. G. Valitov. "Absolute gravity measurements at shults cape." Gyroscopy and Navigation 6, no. 4 (October 2015): 260–64. http://dx.doi.org/10.1134/s2075108715040021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Goodacre, A. K., J. O. Liard, P. N. Courtier, R. V. Cooper, P. J. Winter, and R. K. McConnell. "Absolute gravity measurements on the canadian gravity standardization network." Bulletin Géodésique 65, no. 3 (September 1991): 170–78. http://dx.doi.org/10.1007/bf00806346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Krynski, Jan, Tomasz Olszak, Marcin Barlik, and Przemyslaw Dykowski. "New gravity control in Poland – needs, the concept and the design." Geodesy and Cartography 62, no. 1 (June 1, 2013): 3–21. http://dx.doi.org/10.2478/geocart-2013-0001.

Full text
Abstract:
Abstract The existing Polish gravity control (POGK) established in the last few years of 20th century according to the international standards is spanned on 12 absolute gravity stations surveyed with four different types of absolute gravimeters. Relative measurements performed by various groups on nearly 350 points of POGK with the use of LaCoste&Romberg (LCR) gravimeters were linked to those 12 stations. The construction of the network, in particular the limited number of non homogeneously distributed absolute gravity stations with gravity determined with different instruments in different epochs is responsible for systematic errors in g on POGK stations. The estimate of those errors with the use of gravity measurements performed in 2007-2008 is given and their possible sources are discussed. The development of absolute gravity measurement technologies, in particular instruments for precise field absolute gravity measurements, provides an opportunity to establish new type of gravity control consisting of stations surveyed with absolute gravimeters. New gravity control planned to be established in 2012-2014 will consist of 28 fundamental points (surveyed with the FG5 - gravimeter), and 169 base points (surveyed with the A10 gravimeter). It will fulfill recent requirements of geodesy and geodynamics and it will provide good link to the existing POGK. A number of stations of the new gravity control with precisely determined position and height will form the national combined geodetic network. Methodology and measurement schemes for both absolute gravimeters as well as the technology for vertical gravity gradient determinations in the new gravity control were developed and tested. The way to assure proper gravity reference level with relation to ICAG and ECAG campaigns as well as local absolute gravimeter comparisons are described highlighting the role of metrology in the project. Integral part of the project are proposals of re-computation of old gravity data and their transformation to a new system (as 2nd order network) as well as a definition of gravity system as “zero-tide” system. Seasonal variability of gravity has been discussed indicating that the effects of environmental changes when establishing modern gravity control with absolute gravity survey cannot be totally neglected.
APA, Harvard, Vancouver, ISO, and other styles
6

Fukuda, Yoichi, Toshihiro Higashi, Shuzo Takemoto, Maiko Abe, Sjafra Dwipa, Dendi Surya Kusuma, Achmad Andan, Koichiro Doi, Yuichi Imanishi, and Giuseppe Arduino. "The first absolute gravity measurements in Indonesia." Journal of Geodynamics 38, no. 3-5 (October 2004): 489–501. http://dx.doi.org/10.1016/j.jog.2004.07.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Williams, Simon D. P., Trevor F. Baker, and Graham Jeffries. "Absolute gravity measurements at UK tide gauges." Geophysical Research Letters 28, no. 12 (June 15, 2001): 2317–20. http://dx.doi.org/10.1029/2000gl012438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sasagawa, Glenn, and Mark A. Zumberge. "Absolute gravity measurements in California, 1984–1989." Journal of Geophysical Research 96, B2 (1991): 2501. http://dx.doi.org/10.1029/90jb02283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kaczorowski, Marek, Tomasz Olszak, Janusz Walo, and Marcin Barlik. "Research on absolute gravity variations in geodynamic laboratory in Książ in the period of 2007- 2011." Artificial Satellites 47, no. 4 (December 1, 2012): 169–76. http://dx.doi.org/10.2478/v10018-012-0022-z.

Full text
Abstract:
ABSTRACT In 2006 a gravimetric pavilion was installed inside the Geodynamic Laboratory (LG) in Książ. The pavilion was equipped with two pillars intended to serve relative and absolute gravimetric measurements. Installation of measurement platform for absolute gravity measurements inside gravimetric pavilion of LG made it possible to perform four sessions of absolute gravity measurements: two of them in 2007 (June 10-12 and Nov. 21-22), one in 2008 (Apr. 21-22) and one in 2011 (June 19-21). In 2007 the absolute measurements were performed using two FG5 ballistic gravimeters. In April 2007 the measurements were performed by Dr Makinen from Geodetic Institute of Finnish Academy of Science with application of FG5 No. 221 absolute gravimeter. In June 2007 and in the years 2008 and 2011 such gravimetric measurements were performed by the team from Department of Geodesy and Astronomical Geodesy of Warsaw University of Technology using FG5 No. 230 absolute gravimeter. Elaboration of observation sessions from both gravimeters was performed in the Department of Higher Geodesy following the procedures used in constituting of uniform gravimetric system of geodynamic polygons reference. This constituting of gravimetric system comprised inter alia application of identical models of lithospheric tides (global model by Wenzel, 1997) and ocean tides (Schwiderski, 1980) (reduction of absolute measurements with tidal signals). Observations performed during summer of 2007, autumn of 2007, and spring of 2008 and 2011 indicated existence of small changes of absolute gravity of the order of 1 Gal. Maxima of accelerations appear in the spring period, and minima in the autumn period. This effect is connected with the influence of global hydrological factors the annual amplitude of which is ca 1,5 Gal and achieve extreme values in the spring-autumn interval. Very small value of observed amplitude of gravity changes in the period of extreme variability suggests that the observed gravity changes in LG are caused only by global phenomenon. This proves high degree of „independence” of gravimetric measurement base in LG from the local environmental factors such as ground water level variations, ground humidity, impact of snow cover, etc. At this moment the instrumental environment of absolute measurements obtains particular value, especially in the case of the tiltmeters and relative the gravimeter Lacoste& Romberg (LR-648). The relative gravity measurements as performed simultaneously with absolute gravity measurements enable us to determine the local tidal ephemeredes which makes it possible to replace the global tidal modal with ocean tidal model with the more realistic, locally determined tidal parameters (the local tidal ephemeredes).
APA, Harvard, Vancouver, ISO, and other styles
10

Bower, D. R., and N. Courtier. "Precipitation effects on gravity measurements at the Canadian Absolute Gravity Site." Physics of the Earth and Planetary Interiors 106, no. 3-4 (April 1998): 353–69. http://dx.doi.org/10.1016/s0031-9201(97)00101-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Absolute gravity measurements"

1

Rothleitner, Christian. "Ultra-high precision, absolute, earth gravity measurements." kostenfrei, 2008. http://www.opus.ub.uni-erlangen.de/opus/volltexte/2008/994/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hauth, Matthias. "A mobile, high-precision atom-interferometer and its application to gravity observations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17353.

Full text
Abstract:
Atom Interferometrie ist eine sehr genaue und sensitive Methode mit einer Vielzahl von Anwendungsmöglichkeiten, zu der auch die Messung der Erdbeschleunigung zählt. Während die meisten Atom Interferometer aus großen, ortsfesten Aufbauten bestehen, werden auf diesem Gebiet häufig mobile Messgeräte benötigt. Das Gravimetric Atom Interferometer (GAIN) Projekt wurde ins Leben gerufen, um dieser zusätzlichen Anforderung bei bestmöglicher Messgenauigkeit gerecht zu werden. Es soll eine Alternative zu anderen modernsten Gravimetertypen geschaffen werden, die wichtige funktionale Eigenschaften wie eine hohe Auflösung und absolute Genauigkeit in einem Gerät vereint. Der GAIN Sensor verwendet lasergekühlte Rb87 Atome in einer 1 m hohen Fontäne. Mit Hilfe von stimulierten Raman Übergängen wird ein beschleunigungssensitives Interferometer realisiert. In dieser Arbeit wurde der Sensor mit Blick auf mobile und driftfreie Langzeitmessungen weiterentwickelt. Dafür wurden einzelne Subsysteme des Laseraufbaus auf die daraus resultierenden Anforderungen hin angepasst oder neu entwickelt. Mit derselben Zielstellung wurden weiterhin systematische Effekte in dem Messaufbau untersucht und Maßnahmen für ihre Reduzierung realisiert. Der Aufbau wurde transportiert und in relevanten Umgebungen getestet. Dabei konnte gezeigt werden, dass die Leistungsfäigkeit dieses Aufbaus mit denen der wichtigsten und modernsten Gravimeter konkurieren kann, sie teilweise übertrifft und dass dieser Sensor zur präzisen Kalibrierung der relativen Gravimeter verwendet werden kann. In den Messungen wurde eine Sensitivität von 138 nm/s^2/Sqrt(Hz) sowie eine Langzeitstabilität von 5 x 10^−11 g über 10^5 s erreicht.
Atom interferometry offers a very precise and sensitive measurement tool for various areas of application whereof one is the registration of the gravity acceleration. While the vast majority of atom interferometers include large and stationary setups, this field very often implies the additional request for a mobile apparatus. The Gravimetric Atom Interferometer (GAIN) project has been started to meet this requirement and to provide best possible accuracy at the same time. It aims to realize an alternative to other types of gravimeters and to combine important qualities such as high sensitivity and absolute accuracy in one instrument. The GAIN sensor is based on laser-cooled Rb87 atoms in a 1 m atomic fountain. Stimulated Raman transitions form a Mach-Zehnder type interferometer which is sensitive to accelerations. In this work it has been advanced to meet all requirements for mobile and drift-free long-term operation. Therefore, selected parts of the laser system have been improved or redeveloped. A second focus has been on systematic effects for the same objective. They have been analyzed and measures for their suppression have been undertaken. The apparatus has been transported, tested in relevant environments, and compared to the most important state-of-the-art gravimeter types where a competitive performance has been achieved. It is demonstrated, that the gravity signal of this sensor allows for a precise calibration of the relative gravimeter types. During the measurements a best sensitivity of 138 nm/s^2/Sqrt(Hz) and a stability of 5 x 10^−11 g after 10^5 s has been reached.
APA, Harvard, Vancouver, ISO, and other styles
3

Bedada, Tullu Besha. "Absolute geopotential height system for Ethiopia." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4726.

Full text
Abstract:
This study used airborne gravity data, the 2008 Earth Gravity Model (EGM08) and Shuttle Radar Topographic Mission (SRTM) digital elevation data in a ‘Remove-Compute-Restore’ process to determine absolute vertical reference system for Ethiopia. This gives a geopotential height at any isolated field point where there is a Global Navigation Satellite System (GNSS) measurement without reference to a vertical network or a regional datum point. Previously, height was determined conventionally by connecting the desired field point physically to a nearby bench mark of a vertical network using co-located measurements of gravity and spirit levelling. With the use of precise GNSS positioning and a gravity model this method becomes obsolesce. The new approach uses the ‘Remove-Restore’ process to eliminate longer to shorter wavelengths from the measured gravity data using EGM08 and geometrical and condensed gravity models of the SRTM data. This provides small, smooth and localised residuals so that the interpolation and integration involved is reliable and the Stokes-like integral can be legitimately restricted to a spherical cap. A very fast, stable and accurate computational algorithm has been formulated by combining ‘hedgehog’ and ‘multipoint’ models in order to make tractable an unavoidably huge computational task required to remove the effects of about 1.5 billion! SRTM topographic mass elements representing Ethiopia and its immediate surroundings at 92433 point airborne gravity observations. The compute stage first uses an iterative Fast Fourier Transform (FFT) to predict residual gravity at aircraft height as a regular grid on to the surface of the ellipsoidal Earth and then it used a Fourier operation equivalent to Stokes’ integral to transform the localised gravity disturbance to residual potential. The restore process determines the geopotential number on or above the Earth’s surface where practitioners need it by restoring the potential effects of the removed masses. The accuracy of the geopotential number computed from gravity and topography was evaluated by comparing it with the one derived directly from EGM08 and precise geodetic levelling. The new model is in a good agreement across 100 km baseline with a standard deviation of 56 10−2 2 −2 × m s and 39 10−2 2 −2 × m s relative to EGM08 and levelling, respectively ( 10−2 2 −2 m s is approximately equivalent to 1mm of height). The new method provides an absolute geopotential height of a point on or above the Earth’s surface in a global sense by interpolating from geopotential models prepared as the digital grids carried in a chip for use with the GNSS receiver in the field.
APA, Harvard, Vancouver, ISO, and other styles
4

Senger, Alexander. "A mobile atom interferometer for high-precision measurements of local gravity." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2012. http://dx.doi.org/10.18452/16449.

Full text
Abstract:
Eine Reihe fundamentaler Problemstellungen setzt die genaue Kenntnis der Erdbeschleunigung g voraus, z.B. die Neudefinition des Kilogramms im laufenden Watt-Waage-Projekt. Des Weiteren sind Gravitationsmessungen ein herausragendes Werkzeug der geophysikalischen Forschung, machen sie doch Phänomene vom oberen Erdreich bis hinab in den Erdkern zugänglich. Für Absolutmessungen geeignete Quanten-Sensoren mit höchster Präzision sind deshalb Gegenstand aktueller Entwicklungen. Diese Arbeit beschreibt die Planung und Implementierung eines solchen Sensors, der für eine überlegene absolute Genauigkeit von fünf Teilen in 10^10, zu erreichen in Messungen von 24 h, ausgelegt ist. Ein Merkmal, das dieses Instrument vor früheren Entwicklungen auszeichnet, ist seine Mobilität, die Anwendungen im Feld sowie Vergleichsmessungen mit anderen Gravimetern ermöglicht. Die quantenmechanische Wellennatur von (Rubidium-) Atomen wird genutzt, um durch kohärente Teilung, Reflexion und Wiedervereinigung der sie konstituierenden Wellenpakete mit Hilfe von Lichtpulsen ein Materiewelleninterferometer darzustellen. Auf ein Ensemble lasergekühlter Atome im freien Fall angewandt, kann deren Empfindlichkeit auf Inertialkräfte genutzt werden, um hochsensible Messungen der auftretenden Beschleunigungen zu erreichen. Eine Messpräzision von 160 nm s^(-2) / sqrt(Hz) wird demonstriert, die ausreicht, um g in 15 h mit einer statistischen Ungewissheit von 0.8 nm s^(-2) zu bestimmen; dies ist um einen Faktor acht besser, als mit den besten klassischen Absolutgravimetern üblich. Ein Vergleich mit dem Deutschen Schweregrundnetz ergibt eine Abweichung von 260 nm s^(-2) bei einer Ungewissheit von 520 nm s^(-2) in den systematischen Einflüssen. Deren wahrscheinliche Ursachen sowie geeignete Gegenmaßnahmen werden identifiziert.
Precise measurements of Earth''s gravitational acceleration $g$ are important for a range of fundamental problems - e.g. the Watt balance as an approach for a new definition of the kilogram - and a great tool to investigate geophysical phenomena reaching from the topmost layers of soil to the very core of our planet. Recently, research efforts have been made to develop dedicated quantum sensors capable of such measurements with very high precision and accuracy. This thesis describes the design and implementation of such a sensor, aiming at a superior accuracy of 0.5 ppb, resolvable in measurements of 24 h. A feature distinguishing this device from previous work is its mobility, allowing for comparison with other state-of-the-art instruments, and for applications in field use in various locations. Rubidium atoms are laser-cooled and launched on a free-fall trajectory. Exploiting the wave nature of quantum particles, coherent manipulation with light pulses is used to split, reflect and recombine the atoms'' wave-packets. The resulting matter-wave interferometer is highly susceptible to inertial forces and allows for sensitive measurements of accelerations. Inertial sensing with a precision of 160 nm s^(-2) / sqrt(Hz) was demonstrated, resulting in a measurement of g with a statistical uncertainty of 0.8 nm s^(-2) in 15 h, surpassing a conventional state-of-the-art absolute gravimeter by a factor of eight. Comparison with the German gravity reference net revealed a discrepancy of 260 nm s^(-2), well covered by the combined systematic uncertainties of 520 nm s^(-2). Likely causes for this deviation are identified and suitable countermeasures are proposed.
APA, Harvard, Vancouver, ISO, and other styles
5

Rothleitner, Christian [Verfasser]. "Ultra-high precision absolute earth gravity measurements / vorgelegt von Christian Rothleitner." 2008. http://d-nb.info/989639665/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Di, Nezza Maria. "Struttura e Dinamica del Distretto Vulcanico dei Colli Albani da misure gravimetriche:implicazioni geodinamiche e vulcanologiche." Thesis, 2007. http://hdl.handle.net/2122/11864.

Full text
Abstract:
In 2005-2006 in the framework of an INGV-DPC projects, in co-operation with the University of Rome “La Sapienza”, a gravity research started in the Colli Albani Volcanic District aimed: i) to realize a new gravity network to detect gravity changes due to mass redistribution in the underground inferred by the local volcanic activity; ii) to upgrade the already available Bouguer gravity map by means of new stations and to carry out new analyses and interpretations to outline a more detailed structural setting of the area. The gravity network has been designed so as to incorporate an old net of 7 stations, settled in 1981 by the same University group and periodically reoccupied until 2004. The new network is presently formed by 30 stations covering the whole volcanic area and all close to levelling benchmarks to remove the effect of the vertical ground movements. Taking into account the logistic situation of the area, three absolute gravity stations have been settled. Two of them have been located out of the volcanic area to be adopted as references (Sant'Angelo Romano and Palestrina). The third ones has been realized inside the most active part of the volcanic district to calibrate in future (Castel Gandolfo), through its repetition, the gravity changes detected by relative measurements. In the absolute sites the measurements of the vertical gravity gradient have been carried out because g is not directly measured on the ground. Each absolute station is completed with an external satellite ones, then included in the relative network, where the absolute value of g has been also transported through relative measurements. Moreover, 13 selected stations are also sites of vertical gravity gradient measurements. Those measurements helpful to reduce the effect of height changes on gravity variations and their space distribution is useful to reduce the prospecting gravity data. Four surveys of both relative and gradiometric measurements has been carried out (March and June 2006 - January and June 2007). In order to outline a more structural setting of the investigated area, a new set of about 900 new prospecting gravity stations have been settled inside an old survey made by 1500 stations measured partly by the Servizio Geologico d’Italia (SGI) in 1969 and partly by the University of Rome in 1995. Up today, the new stations have been partly measured and all the available data have been reprocessed and uniformed. The results from both the dynamics and the static gravimetry will be presented and discussed. 3-D density model of the Colli Albani Volcanic District was obtained. Based on its volcano-tectonic evolution, we interpret volcanic structures that have never been imaged before.
Dipartimento di Scienze della Terra Università Sapienza di Roma
Unpublished
1V. Storia eruttiva
2V. Struttura e sistema di alimentazione dei vulcani
4V. Dinamica dei processi pre-eruttivi
5V. Dinamica dei processi eruttivi e post-eruttivi
6V. Pericolosità vulcanica e contributi alla stima del rischio
2SR. VULCANI - Servizi e ricerca per la Società
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Absolute gravity measurements"

1

Crombaghs, Marc. The first absolute gravity measurements in The Netherlands: Period 1991-1999. Delft: NCG, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Blanchard, Robert C. Preliminary OARE absolute acceleration measurements on STS-50. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Blanchard, Robert C. Preliminary OARE absolute acceleration measurements on STS-50. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

A, Zumberge M., United States. Dept. of Energy. Nevada Operations Office., and Geological Survey (U.S.), eds. Preliminary results of absolute and high-precision gravity measurements at the Nevada Test Site and vicinity, Nevada. Denver, Colo: U.S. Dept. of the Interior, Geological Survey, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Boedecker, Gerd. International absolute gravity basestation network: Status report March 1986. München: Verlag der Bayerischen Akademie der Wissenschaften in Kommission bei der C.H. Beck'schen Verlagsbuchhandlung, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Iliff, Robert L. The AFGL absolute gravity system's error budget revisited. Hanscom AFB, MA: Earth Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Iliff, Robert L. The AFGL absolute gravity system's error budget revisited. Hanscom AFB, MA: Earth Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Iliff, Robert L. The AFGL absolute gravity system's error budget revisited. Hanscom AFB, MA: Earth Sciences Division, Air Force Geophysics Laboratory, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Francis, O., and T. Van Dam. International comparison of absolute gravimeters in Walferdange (Luxembourg) of November 2003: November 3-7, 2003, Walferdange (Grand-Duchy of Luxembourg). Luxembourg: Centre européen de géodynamique et de séismologie, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

C, Poitevin, European Centre for Geodynamics and Seismology., and International Gravity Commission, eds. Proceedings of the second workshop, non tidal gravity changes: Intercomparison between absolute and superconducting gravimeters : September 6th to 8th, 1994, Walferdange (Grand-Duchy of Luxemburg). Luxembourg: Centre Européen de Géodynamique et de Séismologie, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Absolute gravity measurements"

1

Zumberge, Mark A. "Gravity Measurements, Absolute." In Encyclopedia of Solid Earth Geophysics, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_92-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zumberge, Mark A. "Gravity Measurements, Absolute." In Encyclopedia of Solid Earth Geophysics, 494–97. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vitushkin, Leonid F. "Absolute Gravity Measurements." In Encyclopedia of Geodesy, 1–8. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02370-0_25-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zumberge, Mark A. "Gravity Measurements, Absolute." In Encyclopedia of Solid Earth Geophysics, 633–37. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_92.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fukuda, Yoichi, Hiroshi Takiguchi, Takahito Kazama, Jun Nishijima, Sergei Gulyaev, Tim Natusch, Matt Amos, Vaughan Stagpoole, and Christopher Pearson. "New Absolute Gravity Measurements in New Zealand." In International Symposium on Gravity, Geoid and Height Systems 2016, 95–101. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/1345_2017_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wziontek, H., H. Wilmes, and S. Bonvalot. "AGrav: An International Database for Absolute Gravity Measurements." In Geodesy for Planet Earth, 1037–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20338-1_130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

D’Agostino, G., A. Germak, D. Quagliotti, O. Pinzon, R. Batista, and L. A. Echevers. "Gravity Measurements in Panama with the IMGC-02 Transportable Absolute Gravimeter." In Gravity, Geoid and Earth Observation, 101–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Amalvict, Martine, Jacques Hinderer, and Bernard Luck. "First absolute gravity measurements at the French station Dumont d’Urville (Antarctica)." In Gravity, Geoid and Geodynamics 2000, 373–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04827-6_62.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Murakami, Msk, K. Nitta, H. Yamamoto, K. Matsuo, M. Machida, K. Yamaguchi, Mkt Murakami, K. Doi, and M. Ishihara. "Absolute Gravity Measurements Using FG5 at Kyoto Fundamental Gravity Station: Kyoto C, Japan." In International Association of Geodesy Symposia, 63–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03482-8_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mogren, Saad. "High-Precision Gravity Measurements in Riyadh Using FGL Absolute Gravimeter." In On Significant Applications of Geophysical Methods, 13–17. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01656-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Absolute gravity measurements"

1

Newell, D. B., A. D. Inglis, M. C. Eckl, J. O. Liard, R. J. Silliker, and C. G. L. Gagnon. "The 2012 North American Watt Balance Absolute Gravity Comparison." In 2012 Conference on Precision Electromagnetic Measurements (CPEM 2012). IEEE, 2012. http://dx.doi.org/10.1109/cpem.2012.6250940.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Su, Duowu, Chunjian Li, Shuqing Wu, Jinyang Feng, and Jinyi Xu. "Influence of diffraction effect on measurements of absolute gravity." In International Symposium on Precision Engineering Measurement and Instrumentation, edited by Junning Cui, Jiubin Tan, and Xianfang Wen. SPIE, 2015. http://dx.doi.org/10.1117/12.2181427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sugihara, Mituhiko, Yuji Nishi, Shinichi Takakura, and Tsuneo Ishido. "Repeated absolute and relative gravity measurements for groundwater monitoring." In Proceedings of the 9th SEGJ International Symposium. Society of Exploration Geophysicists of Japan, 2009. http://dx.doi.org/10.1190/segj092009-001.54.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Psiaki, Mark. "Absolute Orbit and Gravity Determination Using Relative Position Measurements Between Two Satellites." In AIAA Guidance, Navigation and Control Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-6661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wen, Yi, Kang Wu, Meiying Guo, and Lijun Wang. "A Compound Recoil-Compensated Chamber Design for Free-Fall Absolute Gravimeters." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23572.

Full text
Abstract:
Abstract The ballistic free-fall absolute gravimeters are most commonly-used instruments for high-precision absolute gravity measurements in many fields, such as scientific research, resource survey, geophysics and so on. The instrumental recoil vibrations generated by the release of the test mass can cause troublesome systematic bias, because these vibrations are highly reproducible from drop to drop with coherent phase. A compound counterbalanced design of chamber using both belt-driven mechanism and cam-driven structure is proposed in this paper. This structure is designed to achieve excellent recoil compensation as well as long freefall length for high precision measurements. Simulation results show that the recoil vibration amplitude of the compound recoil-compensated structure during the drop is about 1/4 of that with only belt-driven counterbalanced structure. This confirms the feasibility and superiority of the new design. And it is believed that the absolute gravimeter based on this newly proposed chamber design is expected to obtain more precise gravity measurement results in the future.
APA, Harvard, Vancouver, ISO, and other styles
6

Cogbill, Allen H., John F. Ferguson, Elizabeth H. Keating, and Mingjie Chen. "Use of Absolute Gravity Measurements to Monitor Groundwater in the Española Basin, New Mexico." In Symposium on the Application of Geophysics to Engineering and Environmental Problems 2006. Environment and Engineering Geophysical Society, 2006. http://dx.doi.org/10.4133/1.2923716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

H. Cogbill, Allen, John F. Ferguson, Elizabeth H. Keating, and Mingjie Chen. "USE OF ABSOLUTE GRAVITY MEASUREMENTS TO MONITOR GROUNDWATER IN THE ESPAÑOLA BASIN, NEW MEXICO." In 19th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems. European Association of Geoscientists & Engineers, 2006. http://dx.doi.org/10.3997/2214-4609-pdb.181.81.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Qiyu, Lishuang Mou, Jinyang Feng, Chunjian Li, Duowu Su, and Shuqing Wu. "Investigation on gPhone gravimeter-119 for gravity variations observation during the 10th International Comparison of Absolute Gravimeters (ICAG-2017)." In 10th International Symposium on Precision Engineering Measurements and Instrumentation (ISPEMI 2018), edited by Jiubin Tan and Jie Lin. SPIE, 2019. http://dx.doi.org/10.1117/12.2512020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sizikov, I. S., A. V. Timofeev, D. G. Ardyukov, and D. A. Nosov. "GRAVITY AND DISPLACEMENTS OBSERVATION AT YAMBURGSKOE AND ZAPOLYARNOYE GAS-OIL DEPOSIT." In All-Russian Youth Scientific Conference with the Participation of Foreign Scientists Trofimuk Readings - 2021. Novosibirsk State University, 2021. http://dx.doi.org/10.25205/978-5-4437-1251-2-71-75.

Full text
Abstract:
This work is devoted to analysis of results of measurements developed by absolute gravity method and space geodesy method at territory of Zapolyarnoye deposit situated at Polar part of West Siberia. Gravity increase registered up to 7 microGal and connected with surface subsidence (with normal vertical gradient). We estimated subsidence rates 20 mm/y at Yam-burgskoe gas-oil deposit. This result agreed with Zapolyarnoye rates and are typical rates for exploitation regions of gas-oil deposits at West Siberia.
APA, Harvard, Vancouver, ISO, and other styles
10

Nishijima, Jun, Yoichi Fukuda, Yayan Sofyan, Matomu Itakura, Eko Januari Wahyudi, and Toshifumi Matsuoka. "Repeat micro-gravity measurements using A10 absolute gravimeter for CO2 injection monitoring in Gundih gas field, Central Java, Indonesia." In Proceedings of the 12th SEGJ International Symposium, Tokyo, Japan, 18-20 November 2015. Society of Exploration Geophysicists and Society of Exploration Geophysicists of Japan, 2015. http://dx.doi.org/10.1190/segj122015-061.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography