Dissertations / Theses on the topic 'Abrasive waterjet cutting'

To see the other types of publications on this topic, follow the link: Abrasive waterjet cutting.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 18 dissertations / theses for your research on the topic 'Abrasive waterjet cutting.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Pi, Vu Ngoc. "Performance enhancement of abrasive waterjet cutting /." [S.l. : s.n.], 2008. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=016765942&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lamache, Anthony. "Feasibility study of abrasive waterjet silicon cutting." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/15827.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Roberson, Joshua. "Abrasive waterjet damage of silicon wafers." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Söderwall, Patrik. "Procedur för delning av casing offshore med hjälp av vattenskärning." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-37052.

Full text
Abstract:
Within the oil and gas industry on offshore installations in the North Sea, several oil wells are closing in on the brink where they no longer are being profitable to keep producing from. When that day comes the oil wells are closed off and the boreholes are plugged with cement. Before the holes can be cemented shut the companies need to remove all their equipment that has been used for underwater exploitations of the well and if applicable remove the above water installation as well. This includes removing the casing that the holes are lined with which main purpose is to prevent the hole from collapsing on the production line and to prevent oil and gas leaks into the surroundings. This thesis focuses on removal of the borehole casing.  When performing this task problems have been raised regarding corrosion on the casing couplings, making them very hard to separate. When this problem occurs, the need for an alternative method to split them is necessary. As of today this operation is performed by cold cut sawing or with a beveling machine. This is a highly time consuming task and an alternative method to perform a faster cut is wanted. This degree work investigates the possibilities of doing this using the benefits of abrasive water jet (AWJ) cutting. The major concerns on using this technic is whether it is fast enough and if it is possible to perform in accordance with the fire and explosive hazards on a hydrocarbon producing installation. As a reference the maximum cut time is set to one minute. Calculations on theoretical cutting speeds as well as physical testing on the AWJ method has been performed and evaluated. The investigations show that the method does have the possibilities of making the cut within the target time.  The work also contains a simple concept model on how the equipment could be constructed.
Inom olje- och gasindustrin på offshoreanläggningar i Nordsjön, närmar sig flera reservoarer randen där de inte längre är lönsamma att fortsätta producera från. När den dagen kommer pensioneras borrhålen och pluggas med en cementblandning. Innan hålen pluggas måste företagen ta bort all utrustning som har använts vid utvinningen av brunnen, både ovan och under ytan. Detta innefattar avlägsnande av casingen, som hålen är fodrade med, och vars huvudsakliga syfte är att förhindra att hålet kollapsar och skadar produktionsledningen, men även för att förhindra olje- och gasläckor till omgivningen. Denna avhandling fokuserar på borttagandet av casingen. När detta görs upplevs problem med att casingskarvarna är kraftigt korroderade vilket gör dem mycket svåra att separera. Detta är ett problem som efterfrågar en alternativ delningsmetod. I dag utförs den här operationen med antingen kallsågning eller med en avfasningsmaskin. Detta är en mycket tidskrävande uppgift och en metod för att utföra en snabbare delning önskas. Detta examensarbete är tänkt att undersöka möjligheterna att göra detta genom att använda fördelarna med abrasiv vattenskärning för att kapa rören. De största frågorna gällande denna metod är om den är tillräckligt snabb och om det är möjligt att utföra i enlighet med de brand- och explosionsrisker som finns på en kolväteproducerande installation. Som referens är målet för maximal skärtid satt till en minut. Beräkningar på teoretiska skärhastigheter samt fysiska tester på metoden har utförts och utvärderats. Undersökningarna visar på att metoden har möjligheter att göra snittet inom utsatt tid. Arbetet innehåller också en enkel konceptmodell på hur utrustningen skulle kunna konstrueras.
APA, Harvard, Vancouver, ISO, and other styles
5

Lauque, Olivier. "Effects of abrasive waterjet erosion on single crystal silicon." Thesis, Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/16782.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Xu, Shunli. "Modelling the cutting process and cutting performance in abrasive waterjet machining with controlled nozzle oscillation." Thesis, Queensland University of Technology, 2006. https://eprints.qut.edu.au/16237/1/Shunli_Xu_Thesis.pdf.

Full text
Abstract:
Abrasive waterjet (AWJ) cutting is one of the most recently developed manufacturing technologies. It is superior to many other cutting techniques in processing various materials, particularly in processing difficult-to-cut materials. This technology is being increasingly used in various industries. However, its cutting capability in terms of the depth of jet penetration and kerf quality is the major obstruction limiting its further applications. More work is required to fully understand the cutting process and cutting mechanism, and to optimise cutting performance. This thesis presents a comprehensive study on the controlled nozzle oscillation technique aiming at increasing the cutting performance in AWJ machining. In order to understand the current state and development in AWJ cutting, an extensive literature review is carried out. It has found that the reported studies on controlled nozzle oscillation cutting are primarily about the use of large oscillation angles of 10 degrees or more. Nozzle oscillation in the cutting plane with such large oscillation angles results in theoretical geometrical errors on the component profile in contouring. No published attempt has been found on the study of oscillation cutting under small angles although it is a common application in practice. Particularly, there is no reported research on the integration of nozzle oscillation technique into AWJ multipass cutting, which is expected to significantly enhance the cutting performance. An experimental investigation is first undertaken to study the major cutting performance measures in AWJ single pass cutting of an 87% alumina ceramic with controlled nozzle oscillation at small angles. The trends and characteristics of cutting performance quantities with respect to the process parameters as well as the science behind which nozzle oscillation affects the cutting performance have been analysed. It has been shown that as with oscillation cutting at large angles, oscillation at small angles can have an equally significant impact on the cutting performance. When the optimum cutting parameters are used for both nozzle oscillation and normal cutting, the former can statistically increase the depth of cut by 23% and smooth depth of cut by 30.8%, and reduce kerf surface roughness by 11.7% and kerf taper by 54%. It has also been found that if the cutting parameters are not selected properly, nozzle oscillation can reduce some major cutting performance measures. In order to correctly select the process parameters and to optimise the cutting process, the mathematical models for major cutting performance measures have then been developed. The predictive models for the depth of cut in both normal cutting and oscillation cutting are developed by using a dimensional analysis technique. Mathematical models for other major cutting performance measures are also developed with the aid of empirical approach. These mathematical models are verified both qualitatively and quantitatively based on the experimental data. The assessment reveals that the developed models conform well to the experimental results and can provide an effective means for the optimum selection of process variables in AWJ cutting with nozzle oscillation. A further experimental investigation of AWJ cutting of alumina ceramics is carried out in order to study the application of AWJ oscillation technique in multipass cutting. While high nozzle traverse speed with multipass can achieve overall better cutting performance than low traverse speed with single pass in the same elapsed time, it has been found that the different combination of nozzle traverse speed with the number of passes significantly affects cutting process. Optimum combination of nozzle traverse speed with the number of passes is determined to achieve maximum depth of cut. It has also demonstrated that the multipass cutting with low nozzle traverse speed in the first pass and a comparatively high traverse speed for the following passes is a sensible choice for a small kerf taper requirement. When nozzle oscillation is incorporated into multipass cutting, it can greatly increase the depth of cut and reduce kerf taper. The predictive models for the depth of cut in both multipass normal cutting and multipass oscillation cutting are finally developed. With the help of dimensional analysis, the models of the incremental cutting depth for individual pass are derived based on the developed depth of cut models for single pass cutting. The models of depth of cut for a multipass cutting operation are then established by the sum of the incremental cutting depth from each pass. A numerical analysis has verified the models and demonstrated the adequacy of the models' predictions. The models provide an essential basis for the development of optimization strategies for the effective use of the AWJ cutting technology when the multipass cutting technique is used with controlled nozzle oscillation.
APA, Harvard, Vancouver, ISO, and other styles
7

Xu, Shunli. "Modelling the cutting process and cutting performance in abrasive waterjet machining with controlled nozzle oscillation." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16237/.

Full text
Abstract:
Abrasive waterjet (AWJ) cutting is one of the most recently developed manufacturing technologies. It is superior to many other cutting techniques in processing various materials, particularly in processing difficult-to-cut materials. This technology is being increasingly used in various industries. However, its cutting capability in terms of the depth of jet penetration and kerf quality is the major obstruction limiting its further applications. More work is required to fully understand the cutting process and cutting mechanism, and to optimise cutting performance. This thesis presents a comprehensive study on the controlled nozzle oscillation technique aiming at increasing the cutting performance in AWJ machining. In order to understand the current state and development in AWJ cutting, an extensive literature review is carried out. It has found that the reported studies on controlled nozzle oscillation cutting are primarily about the use of large oscillation angles of 10 degrees or more. Nozzle oscillation in the cutting plane with such large oscillation angles results in theoretical geometrical errors on the component profile in contouring. No published attempt has been found on the study of oscillation cutting under small angles although it is a common application in practice. Particularly, there is no reported research on the integration of nozzle oscillation technique into AWJ multipass cutting, which is expected to significantly enhance the cutting performance. An experimental investigation is first undertaken to study the major cutting performance measures in AWJ single pass cutting of an 87% alumina ceramic with controlled nozzle oscillation at small angles. The trends and characteristics of cutting performance quantities with respect to the process parameters as well as the science behind which nozzle oscillation affects the cutting performance have been analysed. It has been shown that as with oscillation cutting at large angles, oscillation at small angles can have an equally significant impact on the cutting performance. When the optimum cutting parameters are used for both nozzle oscillation and normal cutting, the former can statistically increase the depth of cut by 23% and smooth depth of cut by 30.8%, and reduce kerf surface roughness by 11.7% and kerf taper by 54%. It has also been found that if the cutting parameters are not selected properly, nozzle oscillation can reduce some major cutting performance measures. In order to correctly select the process parameters and to optimise the cutting process, the mathematical models for major cutting performance measures have then been developed. The predictive models for the depth of cut in both normal cutting and oscillation cutting are developed by using a dimensional analysis technique. Mathematical models for other major cutting performance measures are also developed with the aid of empirical approach. These mathematical models are verified both qualitatively and quantitatively based on the experimental data. The assessment reveals that the developed models conform well to the experimental results and can provide an effective means for the optimum selection of process variables in AWJ cutting with nozzle oscillation. A further experimental investigation of AWJ cutting of alumina ceramics is carried out in order to study the application of AWJ oscillation technique in multipass cutting. While high nozzle traverse speed with multipass can achieve overall better cutting performance than low traverse speed with single pass in the same elapsed time, it has been found that the different combination of nozzle traverse speed with the number of passes significantly affects cutting process. Optimum combination of nozzle traverse speed with the number of passes is determined to achieve maximum depth of cut. It has also demonstrated that the multipass cutting with low nozzle traverse speed in the first pass and a comparatively high traverse speed for the following passes is a sensible choice for a small kerf taper requirement. When nozzle oscillation is incorporated into multipass cutting, it can greatly increase the depth of cut and reduce kerf taper. The predictive models for the depth of cut in both multipass normal cutting and multipass oscillation cutting are finally developed. With the help of dimensional analysis, the models of the incremental cutting depth for individual pass are derived based on the developed depth of cut models for single pass cutting. The models of depth of cut for a multipass cutting operation are then established by the sum of the incremental cutting depth from each pass. A numerical analysis has verified the models and demonstrated the adequacy of the models' predictions. The models provide an essential basis for the development of optimization strategies for the effective use of the AWJ cutting technology when the multipass cutting technique is used with controlled nozzle oscillation.
APA, Harvard, Vancouver, ISO, and other styles
8

Guo, Zihong. "Experimental and numerical analysis of abrasive waterjet drilling of brittle materials /." Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/7092.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Llanto, Jennifer M. "Optimisation of process parameters in abrasive waterjet contour cutting of AISI 304L." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2022. https://ro.ecu.edu.au/theses/2502.

Full text
Abstract:
This research work presents an optimisation of abrasive waterjet contour cutting process parameters with the objectives of maximising material removal rate, whilst minimising taper angle and surface roughness. This thesis contains an in-depth review of the systems behind abrasive waterjet machining and recent progress trends regarding its applications. The impacts of input parameters are investigated including traverse speed, waterjet pressure and abrasive mass flow rate against selected responses in abrasive waterjet contour cutting of austenitic stainless steel 304L. Experimental data is utilised to generate regression models in predicting responses, where the results are statistically evaluated to assess the percentage contribution of each parameter in the performance of contour cutting. Techniques, such as Taguchi and Response Surface Methodology, are employed to perform a single and multi-objective optimisation. Abrasive waterjets demonstrate similar responses in cutting curvature and straight line profiles during contour cutting. The study reveals that an increasing level of waterjet pressure and abrasive mass flow rate results in lower surface roughness, lower kerf taper angle and higher rate of material removal. Similarly, a lower rate of traverse speed achieves minimum surface roughness and kerf taper angle, whereas increasing its rate attains the maximum value of material removal rate.
APA, Harvard, Vancouver, ISO, and other styles
10

Gudimetla, Prasad. "Abrasive waterjet cutting of polycrystalline alumina ceramics-modelling, process optimisation & finite element analysis." Thesis, Queensland University of Technology, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Liu, Hua. "A study of the cutting performance in abrasive waterjet contouring of alumina ceramics and associated jet dynamic characteristics." Thesis, Queensland University of Technology, 2004. https://eprints.qut.edu.au/16110/1/Hua_Liu_Thesis.pdf.

Full text
Abstract:
Abrasive waterjet (AWJ) cutting is one of the most recently developed nontraditional manufacturing technologies. It has been increasingly used in industry owing to its various distinct advantages over the other cutting technologies. However, many aspects of this technology require to be fully understood in order to increase its capability and cutting performance as well as to optimize the cutting process. This thesis contains an extensive literature review on the investigations of the various aspects in AWJ machining. It shows that while considerable work has been carried out, very little reported research has been found on the AWJ contouring process although it is a common AWJ cutting application. Because of the very nature of the AWJ cutting process, the changing nozzle traverse direction involved in AWJ contouring results in kerf geometrical or shape errors. A thorough understanding of the AWJ contouring process is essential for the reduction or elimination of these shape errors. It also shows that a lack of understanding of the AWJ hydrodynamic characteristics has limited the development of cutting performance models that are required for process control and optimization. Accordingly, a detailed experimental investigation is presented in this thesis to study the various cutting performance measures in AWJ contouring of an 87% alumina ceramic over a wide range of process parameters. For a comparison purpose, the study also considers AWJ straight-slit cutting. The effects of process parameters on the major cutting performance measures in AWJ contouring have been comprehensively discussed and plausible trends are amply analysed. It finds that the taper angles on the two kerf walls are in different magnitudes in AWJ contouring. The kerf taper on the outer kerf wall increases with the arc radius (or profile curvature), while that on the inner kerf wall decreases. Moreover, the depth of cut increases with an increase in arc radius and approaches the maximum in straight cutting for a given combination of parameters. The other process variables affect the AWJ contouring process in a way similar to that in straight cutting. The analysis has provided a guideline for the selection of process parameters in the AWJ contouring of alumina ceramics. In order to predict the cutting performance in process planning and ultimately optimize the cutting process, mathematical models for the major cutting performance measures in both straight-slit cutting and contouring are developed using a dimensional analysis technique. The models are then verified by assessing both qualitatively and quantitatively the model predictions with respect to the corresponding experimental data. It shows that the models can adequately predict the cutting performance measures and form the essential basis for developing strategies for selecting the optimum process parameters in AWJ cutting. To achieve an in-depth understanding of the jet dynamic characteristics such as the velocity and pressure distributions inside a jet, a Computational Fluid Dynamics (CFD) simulation is carried out using a Fluent6 flow solver and the simulation results are validated by an experimental investigation. The water and particle velocities in the jet are obtained under different input and boundary conditions to provide an insight into the jet characteristics and a good understanding of the kerf formation process in AWJ cutting. Various plausible trends and characteristics of the water and particle velocities are analysed and discussed, which provides the essential knowledge for optimizing the jet performance through optimizing the jetting and abrasive parameters. Mathematical models for the water and particle velocity distributions in an AWJ are finally developed and verified by comparing the predicted jet characteristics with the corresponding CFD simulation data. It shows that the jet characteristics models can yield good predictions for both water and particle velocity distributions in an AWJ. The successful development of these jet dynamic characteristics models is an essential step towards developing more comprehensive mathematical cutting performance models for AWJ cutting and eventually developing the optimization strategies for the effective and efficient use of this advanced manufacturing technology.
APA, Harvard, Vancouver, ISO, and other styles
12

Liu, Hua. "A Study of the Cutting Performance in Abrasive Waterjet Contouring of Alumina Ceramics and Associated Jet Dynamic Characteristics." Queensland University of Technology, 2004. http://eprints.qut.edu.au/16110/.

Full text
Abstract:
Abrasive waterjet (AWJ) cutting is one of the most recently developed nontraditional manufacturing technologies. It has been increasingly used in industry owing to its various distinct advantages over the other cutting technologies. However, many aspects of this technology require to be fully understood in order to increase its capability and cutting performance as well as to optimize the cutting process. This thesis contains an extensive literature review on the investigations of the various aspects in AWJ machining. It shows that while considerable work has been carried out, very little reported research has been found on the AWJ contouring process although it is a common AWJ cutting application. Because of the very nature of the AWJ cutting process, the changing nozzle traverse direction involved in AWJ contouring results in kerf geometrical or shape errors. A thorough understanding of the AWJ contouring process is essential for the reduction or elimination of these shape errors. It also shows that a lack of understanding of the AWJ hydrodynamic characteristics has limited the development of cutting performance models that are required for process control and optimization. Accordingly, a detailed experimental investigation is presented in this thesis to study the various cutting performance measures in AWJ contouring of an 87% alumina ceramic over a wide range of process parameters. For a comparison purpose, the study also considers AWJ straight-slit cutting. The effects of process parameters on the major cutting performance measures in AWJ contouring have been comprehensively discussed and plausible trends are amply analysed. It finds that the taper angles on the two kerf walls are in different magnitudes in AWJ contouring. The kerf taper on the outer kerf wall increases with the arc radius (or profile curvature), while that on the inner kerf wall decreases. Moreover, the depth of cut increases with an increase in arc radius and approaches the maximum in straight cutting for a given combination of parameters. The other process variables affect the AWJ contouring process in a way similar to that in straight cutting. The analysis has provided a guideline for the selection of process parameters in the AWJ contouring of alumina ceramics. In order to predict the cutting performance in process planning and ultimately optimize the cutting process, mathematical models for the major cutting performance measures in both straight-slit cutting and contouring are developed using a dimensional analysis technique. The models are then verified by assessing both qualitatively and quantitatively the model predictions with respect to the corresponding experimental data. It shows that the models can adequately predict the cutting performance measures and form the essential basis for developing strategies for selecting the optimum process parameters in AWJ cutting. To achieve an in-depth understanding of the jet dynamic characteristics such as the velocity and pressure distributions inside a jet, a Computational Fluid Dynamics (CFD) simulation is carried out using a Fluent6 flow solver and the simulation results are validated by an experimental investigation. The water and particle velocities in the jet are obtained under different input and boundary conditions to provide an insight into the jet characteristics and a good understanding of the kerf formation process in AWJ cutting. Various plausible trends and characteristics of the water and particle velocities are analysed and discussed, which provides the essential knowledge for optimizing the jet performance through optimizing the jetting and abrasive parameters. Mathematical models for the water and particle velocity distributions in an AWJ are finally developed and verified by comparing the predicted jet characteristics with the corresponding CFD simulation data. It shows that the jet characteristics models can yield good predictions for both water and particle velocity distributions in an AWJ. The successful development of these jet dynamic characteristics models is an essential step towards developing more comprehensive mathematical cutting performance models for AWJ cutting and eventually developing the optimization strategies for the effective and efficient use of this advanced manufacturing technology.
APA, Harvard, Vancouver, ISO, and other styles
13

Zhong, Yu Mechanical &amp Manufacturing Engineering Faculty of Engineering UNSW. "A study of the cutting performance in multipass abrasive waterjet machining of alumina ceramics with controlled nozzle oscillation." Publisher:University of New South Wales. Mechanical & Manufacturing Engineering, 2008. http://handle.unsw.edu.au/1959.4/41216.

Full text
Abstract:
An experimental investigation has been undertaken to study the depth of cut in multipass abrasive waterjet (AWJ) cutting of an 87% alumina ceramic with controlled nozzle oscillation. The experimental data have been statistically analysed to study the trends of the depth of cut with respect to the process parameters. It has been found that multipass cutting with controlled nozzle oscillation can significantly increase the depth of cut. Within the same cutting time and using the same cutting parameters other than the jet traverse speed, it has been found that multipass cutting with nozzle oscillation can increase the depth of cut by an average of 74.6% as compared to single pass cutting without nozzle oscillation. Furthermore, a multipass cutting with higher nozzle traverse speeds can achieve a larger depth of cut than a single pass cutting at a low traverse speed within the same cutting time. A recommendation has been made for the selection of appropriate process parameters for multipass cutting with nozzle oscillation. In order to estimate the depth of cut on a mathematical basis, predictive models for the depth of cut in multipass cutting with and without nozzle oscillation have been developed using a dimensional analysis technique. The model development starts with the models for single pass cutting which are then extended to multipass cutting where considerations are given to the change of the actual standoff distance after each pass and the variation of kerf width. These predictive models has been numerically studied for their plausibility by assessing their predicted trends with respect to the various process variables, and verified qualitatively and quantitatively based on the experimental data. The model assessment reveals that the developed models correlate very well with the experimental results and can give adequate predictions of this cutting performance measure in process planning.
APA, Harvard, Vancouver, ISO, and other styles
14

Babashov, Vusal, and Gunel Mammadova. "An Investigation on the Suitability of Abrasive Waterjet Cutting for Hybrid Manufacturing of Gears in Automotive Industry." Thesis, KTH, Industriell produktion, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-183093.

Full text
Abstract:
Gears are components in mechanical assemblies used for transmitting power and motion. Gear form cutting (broaching, milling) and gear generating (shaping and hobbing) are two of the main gear manufacturing methods. Usually production involves three stages: (i) soft machining, (ii) heat treatment, and (iii) hard machining. Limitations introduced by conventional methods can be listed as follows: - In machining difficult to cut materials, high cost of specialized cutting tools, high cutting tool failures is a major issue and high cost of machine tools. - Stresses generated due to heat (thermal stresses) and cutting force affect the component life and cost. This demands alternative ways of material removal without affecting the mechanical properties while delivering right quality in a cost effective way which is the goal of the industry. - Increasing standards on environmental impacts associated with products force the modern manufacturing industry to take critical approach on making processes environmental friendly. Large volume of material is removed during conventional gear production resulting in higher lead time, more use of cutting fluids (and its disposal), chip handling (and its disposal) and dust. In this context, abrasive waterjet (AWJ) cutting is considered to be a good addition to the current production system due to the low amount of applied force, negligible heat generated during machining, minimal change in material properties, versatility, lower initial investment and environmental friendliness (no chip generation and no need for cutting fluids). To demonstrate the capability of the proposed approach in manufacturing spur gears and helical gears, forged gear blanks typically used on automobile industry were used for initial tests and two gears were produced using 3-axis KimTech and 5-axis FineCut precision AWJ machine tools. Individual teeth have been separated from each gear and tested against each other from different perspectives. The metrological, surface integrity, productivity and production cost comparisons were presented.While improvements were achieved from environment and surface integrity perspectives, AWJ cutting cannot replace soft machining stage due to increased lead time and production cost. Novel hybrid gear manufacturing method was proposed from the experiences from this research and compared against the conventional method employed in the automotive industry. Proposed hybrid approach comprises AWJ cutting process as the major material removal method and conventional 5-axis machining for final finishing or maintenance of tight tolerances and at the same time, decreasing initial investment and adding further flexibility to production system.This publication is part of my research work at KTH Royal Institute of Technology, thanks to a Swedish Institute scholarship.
APA, Harvard, Vancouver, ISO, and other styles
15

Arab, Paola Bruno. "Rock cutting by abrasive water jet: an energy approach." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18132/tde-11072017-152834/.

Full text
Abstract:
Abrasive waterjet (AWJ) cutting is a versatile technique which has been effectively applied to rock cutting since the late 1980s. The complexity of the interaction between the waterjet and the rocks complicates the thorough understanding of the phenomena involved in AWJ rock cutting. On one hand, rocks are complex materials which are generated through different processes in an uncontrolled environment without human interference. On the other hand, the AWJ acts with high velocity and turbulence, complicating direct observation and the perception of details. In this respect, the present research aims to contribute to the study of AWJ cutting applied to rocks, including the analysis of qualitative and quantitative information, both of great importance regarding the study of complex materials. Concerning quantitative data, special attention is given to the investigation of the cutting efficiency, which can be analyzed by observing conditions in which the higher cutting rate is associated with the minimum energy provided by the AWJ machine per removed volume of rock. Moreover, the real efficiency can be analyzed through the investigation of the conditions in which the major part of the energy provided by the AWJ machine is used effectively for rock cutting, deducting dissipation losses. The effects of varying traverse velocity and pump pressure on cutting parameters were also investigated, in addition to the influence of rock properties on the effective energy of cutting. The effective energy was calculated based both on the specific energy and specific destruction work of the materials. With respect to the qualitative investigation, petrographic and scanning electron microscopy (SEM) analyses were conducted in order to visualize and better understand the different effects of cutting on the studied rocks. Cutting tests with a traverse velocity of 200 mm/min and a pump pressure of 400 MPa presented the most efficient rock cutting regarding both methods of efficiency analysis. Dry density and tensile strength presented fair correlations with the effective cutting energy, while the modulus ratio presented the best correlations. It was observed that brittleness plays a key role in the understanding of the phenomena involved in AWJ rock cutting.
O jato d\'água abrasivo (AWJ) é uma técnica versátil que tem sido efetivamente aplicada ao corte de rochas desde o fim da década de 1980. A complexidade da interação entre o jato e as rochas dificulta a compreensão detalhada dos fenômenos envolvidos no corte de rochas com AWJ. Por um lado, rochas são materiais complexos gerados em ambientes sem interferência humana. Por outro lado, o AWJ age com alta velocidade e turbulência, dificultando a observação direta do procedimento. Assim, a presente tese de doutorado visa a contribuir com o estudo do corte de rochas com AWJ, incluindo análises de dados qualitativos e quantitativos, ambos de grande importância em estudos de materiais complexos. A análise quantitativa possui foco na investigação da eficiência de corte, a qual pode ser analisada por meio da observação das condições em que há a maior taxa de corte associada à mínima energia fornecida pelo AWJ por volume de rocha removido. Além disso, a eficiência real do corte pode ser analisada a partir da investigação das condições em que a maior parte da energia fornecida pelo AWJ é usada para efetivamente cortar a rocha, descontando perdas por dissipação. Os efeitos da variação da velocidade transversal de corte e da pressão da bomba nos parâmetros de corte também foram investigados, além da influência das propriedades das rochas na energia efetiva de corte. A energia efetiva de corte, denominada energia relativa de formação da ranhura (EKR), foi calculada com base na energia específica e no trabalho de destruição específico dos materiais. Análises de microscopia eletrônica de varredura (SEM) e petrografia foram conduzidas para visualizar e compreender melhor os diferentes efeitos do corte nas rochas estudadas. Os testes de corte realizados com velocidade transversal do bocal de 200 mm/min e pressão da bomba de 400 MPa apresentaram as melhores eficiências de corte considerando-se ambos os métodos de análise de eficiência. Dentre as propriedades das rochas investigadas, a massa específica e a resistência à tração por compressão diametral apresentaram correlações razoáveis com EKR, enquanto que o modulus ratio apresentou as melhores correlações. Observou-se que a ruptibilidade possui papel fundamental na compreensão dos fenômenos envolvidos no corte de rochas com AWJ.
APA, Harvard, Vancouver, ISO, and other styles
16

Kadlček, František. "Vodní paprsek ve strojírenství." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-444282.

Full text
Abstract:
This diploma thesis deals with the principle of the abrasive jet and describes the devices needed to create it. The thesis presents an analysis of technological parameters and their impact on the quality of the cut. Subsequently, this thesis deals with an experiment, which consists in the design of technology for a sample component, followed by evaluation of surface quality and the economic evaluation.
APA, Harvard, Vancouver, ISO, and other styles
17

Palazzo, Vittorio. "Progettazione e studio tecnologico di un sistema di sterzo per applicazioni sportive." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25471/.

Full text
Abstract:
This study has been done in order to design and realize the first version of the steering system for a race car, the Corbellati Missile. The main objective of this thesis is the development of a repeatable and parameterizable calculation procedure according to the manufacturing costraints. The methods shown were used in order to limit the waste of time and money in the prototyping phase, decreasing the tested number of components and exploiting the potential of FEA based on the experimental know how of the Corbellati company. The designed steering system is a rack and pinion system in a Panhard configuration, enterily realized using CNC machine and Abrasive Water Jet cutting. Contrary to the usual construction of the steering boxes, due to the manufacturing constraint, it was opted for a steering box consisting of several elements connected by threaded joints
APA, Harvard, Vancouver, ISO, and other styles
18

Pan, Jia Tian, and 潘家添. "Analysis of Kerf Surface Roughness in Abrasive Waterjet Cutting." Thesis, 1995. http://ndltd.ncl.edu.tw/handle/02986015084631481100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography