Academic literature on the topic 'Abraham-Minkowski controversy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Abraham-Minkowski controversy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Abraham-Minkowski controversy"

1

Mansuripur, Masud. "Resolution of the Abraham–Minkowski controversy." Optics Communications 283, no. 10 (May 2010): 1997–2005. http://dx.doi.org/10.1016/j.optcom.2010.01.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grigoryan, Karen K. "ANALOGUE OF THE ABRAHAM–MINKOWSKI CONTROVERSY IN ELECTRONIC OPTICS." Proceedings of the YSU A: Physical and Mathematical Sciences 55, no. 3 (256) (December 28, 2021): 169–73. http://dx.doi.org/10.46991/pysu:a/2021.55.3.169.

Full text
Abstract:
In the problem of electron diffraction by a standing light wave (the Kapitza–Dirac effect), an electronic refractive index can be defined as the ratio of electron momenta in the wave field and outside it. Moreover, both kinetic and canonical electron momenta can be used for this purpose, which corresponds to the Abraham–Minkowski controversy in photonic optics. It is shown that in both cases the same expression for the electronic refractive index is obtained. This is consistent with Barnett's resolution of the Abraham–Minkowski dilemma.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Zhong-Yue, Pin-Yu Wang, and Yan-Rong Xu. "Crucial experiment to resolve Abraham–Minkowski controversy." Optik 122, no. 22 (November 2011): 1994–96. http://dx.doi.org/10.1016/j.ijleo.2010.12.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Grigoryan, Karen K. "MOMENTUM OF AN ELECTROMAGNETIC WAVE IN TIME-VARYING DIELECTRIC MEDIA." Proceedings of the YSU A: Physical and Mathematical Sciences 55, no. 2 (255) (August 30, 2021): 148–52. http://dx.doi.org/10.46991/pysu:a/2021.55.2.148.

Full text
Abstract:
In the context of the Abraham–Minkowski controversy, the problem of the propagation of electromagnetic waves in a linear dielectric medium with a time-varying dielectric constant is considered. It is shown that the momentum of an electromagnetic wave in the form of Minkowski is preserved with an instantaneous change in the dielectric permittivity of the medium. At the same time, the Abraham momentum is not conserved, despite the spatial homogeneity of the problem. This circumstance is interpreted as a manifestation of the Abraham force.
APA, Harvard, Vancouver, ISO, and other styles
5

AL-ITHAWI, Adnan Salih. "New Theory of Light and Resolution of the Abraham-Minkowski Controversy." Walailak Journal of Science and Technology (WJST) 17, no. 10 (September 30, 2020): 1060–65. http://dx.doi.org/10.48048/wjst.2020.5993.

Full text
Abstract:
The Abraham-Minkowski controversy about the momentum of light in media has been debated for over a century and has been informed by many distinguished distributions, both theoretical and experimental. We show that both the Abraham and Minkowski forms of momentum are need to be modified according to the new theory of light. We prove that the total momentum of a photon in matter is the same as compared with that in free space by using the new relations between energy and mass of light with refractive index.
APA, Harvard, Vancouver, ISO, and other styles
6

Abdul Hakim, Md. "An Extension of Abraham-Minkowski Controversy to Extend Abraham-Minkowski Friendship: A Theoretical Study in Astrophysics." International Journal of Discrete Mathematics 3, no. 1 (2018): 28. http://dx.doi.org/10.11648/j.dmath.20180301.14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jiménez, J. L., I. Campos, and M. A. López-Mariño. "Electromagnetic momentum in magnetic media and the Abraham–Minkowski controversy." European Journal of Physics 32, no. 3 (March 23, 2011): 739–45. http://dx.doi.org/10.1088/0143-0807/32/3/010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Alpin, T. Y., and A. B. Balakin. "DYNAMO-OPTICALLY ACTIVE MEDIA: NEW ASPECTS OF THE MINKOWSKI-ABRAHAM CONTROVERSY." SPACE, TIME AND FUNDAMENTAL INTERACTIONS 4 (December 2018): 32–47. http://dx.doi.org/10.17238/issn2226-8812.2018.4.32-47.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nelson, D. F. "Momentum, pseudomomentum, and wave momentum: Toward resolving the Minkowski-Abraham controversy." Physical Review A 44, no. 6 (September 1, 1991): 3985–96. http://dx.doi.org/10.1103/physreva.44.3985.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

López-Mariño, M. A., and J. L. Jiménez. "Analysis of the Abraham-Minkowski Controversy by Means of Two Simple Examples." Foundations of Physics Letters 17, no. 1 (February 2004): 1–23. http://dx.doi.org/10.1023/b:fopl.0000013001.98632.67.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Abraham-Minkowski controversy"

1

Le, fournis Romuald. "Propagation de la lumière dans la matière en présence de champs électromagnétiques." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALY011.

Full text
Abstract:
Dans cette thèse, nous nous concentrons sur l'analyse des forces et des couples résultant de l'interaction entre la matière et le champ électromagnétique, chacun décrit de manière classique ou quantique. Nous explorons comment l'ajout de champs électriques et magnétiques externes modifie les moments mécaniques agissant sur le milieu. Les champs externes peuvent avoir un impact significatif, altérer les trajectoires des particules, induire un moment angulaire ou provoquer des changements dans les niveaux d'énergie des états quantiques.La thèse s’articule autour de deux axes connectés, chacun offrant une perspective différente sur l’interaction entre la lumière et la matière en présence de champs extérieurs.Dans le premier axe, nous nous immergeons dans le domaine de l'électrodynamique quantique (QED) pour étudier le rôle du vide quantique dans les forces électromagnétiques. Notre attention se porte particulièrement sur deux forces classiques distinctes: la force d’Abraham et la force d’Aharonov-Casher. Ces deux forces sont notamment au cœur de la controverse d’Abraham-Minkoswki discuté dans le premier chapitre de cette thèse.Le premier axe est exploré dans les chapitres 2 et 3 qui se concentrent sur la modification de l’impulsion du vide quantique en présence de matière et de champs électromagnétiques externes. La modification de l’impulsion du vide quantique entraîne l’existence d’une force du vide quantique sur la matière, mais reste inobservée expérimentalement. Pour cette investigation nous utilisons une approche QED ainsi qu’un modèle microscopique.Dans le chapitre 2 nous étudions les contributions du vide quantique à la force d’Abraham agissant sur un atome de Rydberg en présence d’un champ électrique et d’un champ magnétique croisés. Notre de but est de déterminer si les atomes de Rydberg ont le potentiel pour permettre d'observer les contributions du vide quantique à la force d’Abraham classique.Le chapitre 3 est quant à lui axé sur la force d’Aharonov-Casher. Celle-ci n’a jamais été observé pour l’heure car elle est extrêmement petite. Nous calculons la force du vide pour un atome de Rydberg avec un grand moment magnétique soumis à un champ électrique afin de déterminer si le vide quantique est susceptible de générer une force d’Aharonov-Casher.Le deuxième axe adopte une approche classique de l'interaction entre la lumière et la matière, se concentrant sur les couples sur la matière induits par le champ électromagnétique.Le chapitre 4 est dévoué à l'étude de la radiation de moment angulaire d’une source entourée par un environnement magnéto-biréfringent. Plus précisément, nous caractérisons l’influence de la diffusion multiple de la lumière sur la radiation de moment angulaire ainsi que sur le couple agissant sur la matière.Bien que les deux axes adoptent des approches différentes, ils restent étroitement interconnectés. La force et le couple, fondamentaux en mécanique, entretiennent une relation intime, et l'étude des deux offre une image plus complète des interactions entre la lumière et la matière en présence de champs externes. En conséquence, les deux axes se complètent mutuellement, offrant une perspective globale et éclairée sur ce domaine d'étude sous des angles complémentaires. Une présentation détaillée des deux axes de recherche, ainsi que leurs outils mathématiques, est fournie dans le chapitre 1
In this thesis, we focus on the analysis of forces and torques resulting from the interaction between matter and the electromagnetic field, both either described classically or quantum-mechanically. We explore how the addition of external electric and magnetic fields modifies the mechanical moments acting on the medium. External fields can have a significant impact, alter particle trajectories, induce angular momentum, or cause changes in the energy levels of quantum states.The thesis splits up into two related axes, each offering a different perspective on the interaction between light and matter in the presence of external fields.In the first axis, we delve into the field of quantum electrodynamics (QED) to study the role of the quantum vacuum in electromagnetic forces. Our focus is on two distinct classical forces: the Abraham force and the Aharonov-Casher force. Both these forces are central to the Abraham-Minkoswki controversy discussed in the first chapter of this thesis.The first axis is explored in Chapters 2 and 3, which focus on the modification of quantum vacuum momentum in the presence of matter and external electromagnetic fields. The modification of quantum vacuum momentum leads to the existence of a quantum vacuum force on matter but remains unobserved experimentally. For this investigation, we employ a QED approach along with a microscopic model.In Chapter 2, we study the contributions of the quantum vacuum to the Abraham force acting on a Rydberg atom in the presence of crossed electric and magnetic fields. Our goal is to determine whether Rydberg atoms are good candidates for the observation of the quantum vacuum contributions to the classical Abraham force.Chapter 3 is focused on the Aharonov-Casher force. This force has not been observed so far because it is extremely small. We calculate the quantum vacuum force for a Rydberg atom with a large magnetic moment exposed to an electric field to determine if the quantum vacuum is capable of generating an Aharonov-Casher force.The second axis adopts a classical approach to the interaction between light and matter, focusing on the torques exerted on matter by the electromagnetic field.Chapter 4 is devoted to the study of the angular momentum radiation from a source surrounded by a magneto-birefringent environment. More precisely, we characterize the influence of multiple light scattering on angular momentum radiation as well as on the torque acting on matter.Although both axes adopt different approaches, they remain closely interconnected. Force and torque, fundamental in mechanics, share an intimate relationship, and the study of both provides a more comprehensive picture of the interactions between light and matter in the presence of external fields. As a result, both axes complement each other, offering a global and enlightened perspective on this field of study from complementary angles. A detailed presentation of both lines of research including their mathematical tools is provided in Chapter 1
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Abraham-Minkowski controversy"

1

Crenshaw, Michael E. "Continuum electrodynamics and the Abraham-Minkowski momentum controversy." In SPIE Nanoscience + Engineering, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2015. http://dx.doi.org/10.1117/12.2188132.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crenshaw, Michael E. "The Abraham-Minkowski momentum controversy for a linear magneto-dielectric medium." In Optical Trapping and Optical Micromanipulation XV, edited by Kishan Dholakia and Gabriel C. Spalding. SPIE, 2018. http://dx.doi.org/10.1117/12.2320713.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chowdhury, S. Tanvir-Ur-Rahman, Ayed Al Sayem, Rezwan Mohammad Sayeed, and Md Saifur Rahman. "Time dependent force outside a complex magneto-dielectric particle: Abraham-Minkowski controversy." In 2014 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). IEEE, 2014. http://dx.doi.org/10.1109/iceeict.2014.6919104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Macleod, Alexander J., Adam Noble, and Dino A. Jaroszynski. "On the energy-momentum tensor of light in strong fields: an all optical view of the Abraham-Minkowski controversy." In SPIE Optics + Optoelectronics, edited by Dino A. Jaroszynski. SPIE, 2017. http://dx.doi.org/10.1117/12.2269630.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Abraham-Minkowski controversy"

1

L.Y. Dodin and N.J. Fisch. Axiomatic Geometrical Optics, Abraham-Minkowski Controversy, and Photon Properties Derived Classically. Office of Scientific and Technical Information (OSTI), June 2012. http://dx.doi.org/10.2172/1059262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography